Table S1. Single-ion principal components of the g matrix of the Mn(III) centres in 1 and
2 and orientations with respect to the crystallographic frame of reference XYZ by means
of Euler angles.

	g _{xx}	g _{yy}	g _{zz}	<i>α</i> /°	ß/°	γ/°
Mn1 (1)	1.978	1.992	1.999	60.10	100.64	345.98
(2)	1.977	1.990	1.998	83.97	89.70	315.67
Mn2 (1)	1.982	1.994	1.998	38.01	141.29	144.04
(2)	1.978	1.992	1.998	144.19	117.42	340.11
Mn3 (1)	1.980	1.992	1.998	281.22	132.66	31.42
(2)	1.978	1.993	1.998	210.52	125.14	6.02

Table S2. Angles, in degrees, between the Jahn-Teller orientation and the AOM calculated D_{ZZ} component of the anisotropy tensor for the Mn(III) sites Mn1, Mn2, and Mn3, for compounds 1 and 2.

	Mn1	Mn2	Mn3
1	4°°	7°	4°
2	15°	14°	13°

Figure S1. Field dependence of the eigenvalues of the twenty eight lowest lying eigenstates of 1 calculated as described in the text. The magnetic field is applied along the quantization axis (Z-axis).

Figure S2. Field dependence of the Boltzmann population of the twenty eight lowest lying eigenstates of 1 (top) and of the forty eight eigenstates of 2 (bottom) determined by diagonalisation of the anisotropic spin-Hamiltonian (5) at 4.2 K.

Figure S3. Field dependence of the eigenvalues of the forty eight lowest lying eigenstates of 2 calculated as described in the text. The magnetic field is applied along the quantization axis (Z-axis)