Table S1. Single-ion principal components of the g matrix of the Mn (III) centres in $\mathbf{1}$ and 2 and orientations with respect to the crystallographic frame of reference $X Y Z$ by means of Euler angles.

	g_{xx}	g_{yy}	g_{zz}	$\alpha /^{\circ}$	$\beta /^{\circ}$	γ°
Mn 1 (1) (2)	1.978					
1.977	1.992	1.999 1.998	60.10 83.97	100.64 89.70	345.98 315.67	
Mn2 (1)	1.982					
(2)	1.978	1.994	1.992	1.998	38.01 144.19	141.29 117.42
Mn3 (1) (2)	1.980	1.978	1.992			

Table S2. Angles, in degrees, between the Jahn-Teller orientation and the AOM calculated $D_{Z Z}$ component of the anisotropy tensor for the $\mathrm{Mn}(\mathrm{III})$ sites $\mathrm{Mn} 1, \mathrm{Mn2}$, and Mn 3 , for compounds $\mathbf{1}$ and 2.

	Mn1	Mn2	Mn3
$\mathbf{1}$	$4^{\circ \circ}$	7°	4°
$\mathbf{2}$	15°	14°	13°

Figure S1. Field dependence of the eigenvalues of the twenty eight lowest lying eigenstates of $\mathbf{1}$ calculated as described in the text. The magnetic field is applied along the quantization axis (Z-axis).

Figure S2. Field dependence of the Boltzmann population of the twenty eight lowest lying eigenstates of $\mathbf{1}$ (top) and of the forty eight eigenstates of $\mathbf{2}$ (bottom) determined by diagonalisation of the anisotropic spin-Hamiltonian (5) at 4.2 K.

Figure S3. Field dependence of the eigenvalues of the forty eight lowest lying eigenstates of 2 calculated as described in the text. The magnetic field is applied along the quantization axis (Z-axis)

