## Supplementary Material For Dalton Trans. Manuscript (Version: 13 March 2008)

"Gas Phase Synthesis, Structure and Unimolecular Reactivity of Silver Iodide

Cluster Cations, Ag<sub>n</sub>I<sub>m</sub><sup>+</sup> (n=2-5, 0<m<n)." by George N. Khairallah and Richard A.

J. O'Hair\*, School of Chemistry and Bio21 Institute of Molecular Science and

Biotechnology, The University of Melbourne, Victoria 3010, AUSTRALIA

\* Corresponding Author: Phone +61 3 8344-2452; FAX: +613 9347-5180, EMAIL:

rohair@unimelb.edu.au

## List of Supplementary Material:

- (A) Cartesian Coordinates for structures shown in Figures 3 and 4 (pages S1-S33)(The point groups of the output geometries (using GaussView with tolerance 0.01) are listed in brackets);
- (B) Supplementary Figures S1 and S2 (pages S34-S36);
- (C) Supplementary Tables S1, S2, and S3 (pages S37-S44).

Coordinates for  $Ag_x I_y^{0/+}$  (SDD basis set, all energies are in Hartrees; where there are several isomers, relative energies are in kcal mol<sup>-1</sup>):

AgI neutral: (Used in Figure 3a)

E(B3LYP) =-158.4732823; Zero-point correction = 0.000436

Ag 0.000000 0.000000 -1.393829 I 0.000000 0.000000 1.236037

## Ag<sub>2</sub> neutral:

E(B3LYP) = -294.0430056; Zero-point correction = 0.000406

| Ag | 0.000000 | 0.000000 | 1.298211  |
|----|----------|----------|-----------|
| Ag | 0.000000 | 0.000000 | -1.298211 |

Ag<sub>2</sub>I<sup>+</sup> (C<sub>2v</sub>): Unique isomer (Used in Figure 4a)



E(B3LYP) = -305.25137; Zero-point correction = 0.000816 Ag 2.158825 -0.595263 0.000000 Ag -2.158825 -0.595265 0.000000 I 0.000000 1.055751 0.000000

## Ag<sub>2</sub>I<sub>2</sub> neutral (D<sub>2h</sub>): (Used in Figure 3b)



E(B3LYP) = -317.0025911; Zero-point correction = 0.001390

| Ag | 0.000000 | 1.430794  | 0.000000  |
|----|----------|-----------|-----------|
| Ag | 0.000000 | -1.430794 | 0.000000  |
| I  | 0.000000 | 0.000000  | 2.438866  |
| Ι  | 0.000000 | 0.000000  | -2.438866 |

Ag<sub>3</sub>I<sup>+</sup>: a) Unique isomer (Used in Figure 4b)



E(B3LYP) = -452.262528; Zero-point correction = 0.001215 Ag 1.948597 -1.351896 -0.109717 Ag 1.948559 1.351920 -0.109707 Ag -0.408997 -0.000026 0.412142 I -3.093273 0.000002 -0.170901

b) In and Out  $(C_{3v})$ :



E(B3LYP) = -452.2770734; Zero-point correction = 0.001158 Ag 0.000000 1.648187 -0.670612 Ag 1.427372 -0.824093 -0.670612 Ag -1.427372 -0.824093 -0.670612 I 0.000000 0.000000 1.784082

c) In and Out  $(C_{2v})$ :



E(B3LYP) = -452.2805541; Zero-point correction = 0.001250 Ag 0.00000000 -0.00000000 2.46753230 Ag 0.00000000 -1.48552515 0.05113636 Ag -0.00000000 1.48552515 0.05113636 I 0.00000000 -0.00000000 -2.27888370

Ag<sub>3</sub>I<sub>2</sub><sup>+</sup> (C<sub>2h</sub>): a) Isomer 1 (C<sub>2h</sub>) (Used in Figure 4c)

### The following two different input guesses



**Converged to the same structure:** 



$$\begin{split} E(B3LYP) &= -463.7818205; \ \text{Zero-point correction} = \ 0.001758 \\ \hline \textbf{Relative energy} = 0 \ \textbf{kcal mol}^{-1} \\ Ag & 4.118484 \ 0.832083 \ 0.088397 \\ Ag & -0.000002 \ -0.000033 \ -0.049426 \\ Ag & -4.118511 \ -0.832042 \ 0.088414 \\ I & -2.421270 \ 1.255075 \ -0.056505 \\ I & 2.421296 \ -1.255083 \ -0.056459 \end{split}$$

#### b) Isomer 2 (D<sub>3h</sub>): The following four different input guesses





**Converged to the same structure:** 



$$\begin{split} & E(B3LYP) = -463.7798878; Zero-point correction = 0.001768 \\ & \textbf{Relative energy} = 1.2 \text{ kcal mol}^{-1} \\ & \text{Ag} & 0.000000 & 1.797790 & 0.000000 \\ & \text{Ag} & -1.556932 & -0.898895 & 0.000000 \\ & \text{Ag} & 1.556932 & -0.898895 & 0.000000 \\ & \text{I} & 0.000000 & 0.000000 & 2.279405 \\ & \text{I} & 0.000000 & 0.000000 & -2.279405 \\ \end{split}$$

c) **Isomer 3:** has 1 small imaginary frequency -7.3473 cm<sup>-1</sup>



$$\begin{split} E(B3LYP) &= -463.7793828 \ ; \ Zero-point \ correction = 0.001744 \\ \hline \textbf{Relative energy} = \textbf{1.5 kcal mol}^{-1} \\ I & 2.718192 & 0.996524 & 0.000000 \\ Ag & 0.000000 & 0.717177 & 0.000000 \\ I & -2.718203 & 0.996487 & 0.000000 \\ Ag & -3.759736 & -1.482330 & 0.000000 \\ Ag & 3.759748 & -1.482284 & 0.000000 \\ \end{split}$$

Ag<sub>3</sub>I<sub>3</sub> neutral: a) Isomer 1 (D<sub>3h</sub>) (Used in Figure 3c)



E(B3LYP) = -475.552877; Zero-point correction = 0.002637 **Relative energy = 0 kcal mol<sup>-1</sup>** Ag 0.000000 1.817581 0.000000

| Ag | 1.574072  | -0.908791 | 0.000000 |
|----|-----------|-----------|----------|
| Ag | -1.574072 | -0.908791 | 0.000000 |
| I  | 0.000000  | -3.146658 | 0.000000 |
| Ι  | 2.725086  | 1.573329  | 0.000000 |
| Ι  | -2.725086 | 1.573329  | 0.000000 |

b) Isomer 2 (C<sub>2v</sub>)



E(B3LYP) = -475.429427; Zero-point correction = 0.002286 **Relative energy = 77.2 kcal mol**<sup>-1</sup>

| Ag | 0.000000 | 0.000000  | -3.293988 |
|----|----------|-----------|-----------|
| Ag | 0.000000 | 1.418989  | -1.001714 |
| Ag | 0.000000 | -1.418989 | -1.001714 |
| Ι  | 0.000000 | 0.000000  | 2.043908  |
| Ι  | 0.000000 | 3.070964  | 1.326900  |
| Ι  | 0.000000 | -3.070964 | 1.326900  |
|    |          |           |           |

 $Ag_{4}^{+}(D_{2h}):$ 



E(B3LYP) = -587.8724978; Zero-point correction = 0.001283

| Ag | 0.000000 | 1.350967  | 0.000000  |
|----|----------|-----------|-----------|
| Ag | 0.000000 | -1.350967 | 0.000000  |
| Ag | 0.000000 | 0.000000  | 2.462614  |
| Ag | 0.000000 | 0.000000  | -2.462614 |

 $Ag_4I^+$ : four isomers have been previously reported in: Khairallah, G.N.; O'Hair, R. A. J., "Activation of the C-I and C-OH Bonds of 2-Iodoethanol by Gas Phase Silver Cluster Cations Yields Subvalent Silver-Iodide and -Hydroxide Cluster Cations.", *Dalton Trans.*, 2007, 3149 - 3157. The structure shown in Figure 4e is taken from this paper.

Ag<sub>4</sub>I<sub>2</sub><sup>+</sup>: a) Isomer 1 (C<sub>s</sub>) (Used in Figure 4e): The following input guess



**Converged to:** 



$$\begin{split} E(B3LYP) &= -610.8151529; \mbox{ Zero-point correction} = 0.002226 \\ \hline \mbox{Relative energy} = 0 \ \mbox{kcal mol}^{-1} \\ I & -2.494500 & -0.834081 & 0.101026 \\ \mbox{Ag} & -1.406880 & 1.820034 & -0.400834 \\ \mbox{Ag} & 1.408128 & 1.819757 & -0.400329 \\ \mbox{Ag} & 0.000026 & 0.059964 & 1.433184 \\ \mbox{Ag} & -0.000620 & -1.817211 & -0.859580 \\ I & 2.493920 & -0.835345 & 0.100771 \\ \end{split}$$

b) Isomer 2 (C<sub>s</sub>) : The following five different input guesses



**Converged to the same structure:** 



E(B3LYP) = -610.813766; Zero-point correction = 0.002325Relative energy = 0.9 kcal mol<sup>-1</sup> I 2.934328 -0.808843 -0.000841 Ag 0.273600 -1.406917 -0.001328

| Ag | -1.070287    | 1.028614  | 1.407446  |
|----|--------------|-----------|-----------|
| Ag | 1.399990     | 1.510970  | -0.000251 |
| Ag | -1.073757    | 1.033479  | -1.403997 |
| Ι  | -2.517133 -1 | .112080 - | -0.000817 |

c) **Isomer 3:** has 1 small imaginary frequency -21.2 cm<sup>-1</sup>



$$\begin{split} & \mathsf{E}(\mathsf{B3LYP}) = -610.8135422; \ \mathsf{Zero-point\ correction} = 0.002130 \\ & \mathsf{Relative\ energy} = 1.0\ \mathsf{kcal\ mol}^{-1} \\ & \mathsf{I} \qquad 2.515394 \quad -0.922171 \quad 0.003282 \\ & \mathsf{Ag} \qquad 1.385517 \quad 1.729986 \quad -0.007721 \\ & \mathsf{Ag} \qquad -1.391184 \quad 1.727205 \quad -0.006344 \\ & \mathsf{Ag} \qquad 0.001050 \quad -0.698839 \quad -1.448860 \\ & \mathsf{Ag} \qquad 0.001286 \quad -0.674340 \quad 1.456125 \\ & \mathsf{I} \qquad -2.512440 \quad -0.925915 \quad 0.002749 \end{split}$$

d) **Isomer 4:** has 1 small imaginary frequency -4.9034 cm<sup>-1</sup>



e) **Isomer 5:** has 1 small imaginary frequency -1.3667 cm<sup>-1</sup>



$$\begin{split} E(B3LYP) &= -610.7983978; \text{Zero-point correction} = 0.002197 \\ \hline \textbf{Relative energy} &= 10.5 \text{ kcal mol}^{-1} \\ Ag & -1.084803 & -0.625709 & -1.269039 \\ Ag & 1.088624 & -1.261557 & 0.640860 \\ Ag & 1.094728 & 1.274003 & -0.621291 \\ Ag & -1.098221 & 0.636323 & 1.266317 \\ I & -3.502468 & -0.010063 & -0.007030 \end{split}$$

I 3.502178 -0.010386 -0.007910

f) Isomer 6 ( $C_{2h}$ ): has 1 small imaginary frequency -5.9439 cm<sup>-1</sup>



$$\begin{split} E(B3LYP) &= -610.7959515; Zero-point \ correction = \ 0.001937 \\ \hline \textbf{Relative energy} = 11.9 \ \textbf{kcal mol}^{-1} \\ Ag & -2.317912 \ 5.010329 \ 0.000000 \\ Ag & 0.000000 \ 1.372156 \ 0.000000 \\ Ag & 0.000008 \ -1.372176 \ 0.000000 \\ Ag & 2.317913 \ -5.010308 \ 0.000000 \\ I & 0.228699 \ 4.163068 \ 0.000000 \\ I & -0.228707 \ -4.163069 \ 0.000000 \end{split}$$

g) Isomer 7 (C<sub>2v</sub>): The following input guess



 $\begin{array}{rl} E(B3LYP) = -610.7862828; \mbox{ Zero-point correction} = 0.002424 \\ \hline \mbox{Relative energy} = 18.2 \ \mbox{kcal mol}^1 \\ I & -2.383612 & -1.762679 & 0.000035 \\ \mbox{Ag} & 0.302651 & -1.413319 & -0.000193 \\ \mbox{Ag} & 2.385233 & -0.000168 & 1.357355 \\ \mbox{Ag} & 2.385223 & 0.000123 & -1.357343 \\ \mbox{Ag} & 0.302661 & 1.413367 & 0.000165 \\ \mbox{I} & -2.383577 & 1.762676 & -0.000022 \\ \end{array}$ 

$$Ag_{4}I_{3}^{+}$$
:

# a) Isomer 1 (C<sub>s</sub>): (Used in Figure 4f) The following four different input guesses



**Converged to the same structure:** 



E(B3LYP) = -622.3239667; Zero-point correction = 0.002983 **Relative energy = 0 kcal mol**<sup>-1</sup>

| Ι  | 1.424303 2.485671 0.068635    |
|----|-------------------------------|
| Ag | 0.851292 0.000009 1.475822    |
| Ag | 2.191163 0.000777 -1.153800   |
| Ag | -1.210871 -1.602753 -0.130863 |
| Ag | -1.212576 1.602371 -0.130134  |
| Ι  | 1.426190 -2.484849 0.068868   |
| Ι  | -3.399425 -0.001180 -0.191620 |

b) **Isomer 2:** has 1 small imaginary frequency -15.7800 cm<sup>-1</sup>



E(B3LYP) = -622.3232744; Zero-point correction = 0.002837 Relative energy = 0.3 kcal mol<sup>-1</sup> -1.960030 0.292998 0.000000Ag 0.765457 1.827772 0.000000 Ag 0.765457 -1.359093 1.478959 Ag 0.765457 -1.359093 -1.478959 Ag -1.466305 -2.445954 0.000000 I 2.851720 -0.013552 0.000000 Ι -1.683678 2.989290 0.000000 Ι

c) Isomer 3: has 1 small imaginary frequency -16.3 cm<sup>-1</sup> The following two different input guesses





**Converged to the same structure:** 



E(B3LYP) = -622.320497; Zero-point correction = 0.002781 **Relative energy = 2.1 kcal mol<sup>-1</sup>** I 0.853784 2.830987 0.130433 Ag -1.612335 1.686108 -0.524555 Ag 0.029306 0.027091 1.199633 Ag -0.676335 -2.214092 -0.491741 Ag 2.290731 0.529968 -0.565444 I 2.040750 -2.167990 0.114894

I -2.922351 -0.688780 0.093523

d) **Isomer 4:** has 1 small imaginary frequency -26.7 cm<sup>-1</sup>



| E(B3LYP) = -622.306748; Zero-point correction = 0.002701 |                                        |  |  |
|----------------------------------------------------------|----------------------------------------|--|--|
| Relativ                                                  | e energy = 10.6 kcal mol <sup>-1</sup> |  |  |
| Ag                                                       | 0.000000 1.940896 0.184783             |  |  |
| Ag                                                       | 0.000000 -1.940896 0.184783            |  |  |
| Ag                                                       | 0.000000 0.000000 -2.551873            |  |  |
| I                                                        | 0.000000 0.000000 2.270360             |  |  |
| Ag                                                       | 0.000000 0.000000 5.007237             |  |  |
| Ι                                                        | 0.000000 2.728701 -2.387744            |  |  |
| Ι                                                        | 0.000000 -2.728701 -2.387744           |  |  |

e) Isomer 5 (C<sub>2v</sub>): The following four different input guesses



**Converged to the same structure:** 



E(B3LYP) = -622.3064865; Zero-point correction = 0.002688 **Relative energy = 10.8 kcal mol<sup>-1</sup>** Ag 6.175719 0.283422 0.002481

| 0  |           |            |             |
|----|-----------|------------|-------------|
| Ag | 2.054454  | 4 0.258854 | 4 -0.001190 |
| Ag | -2.05450  | 0 0.25880  | 3 0.000872  |
| Ag | -6.17560  | 0.28349    | 6 -0.001617 |
| Ι  | 4.158337  | -1.491250  | -0.002365   |
| Ι  | -4.158356 | -1.491335  | 0.002128    |
| Ι  | -0.000044 | 2.020792   | -0.000247   |

#### Ag<sub>4</sub>I<sub>4</sub> neutral:

a) Isomer (**D**<sub>2d</sub>): (used in figure 3d): **The following input guess:** 



**Converged to:** 



E(B3LYP) = -634.0762313; Zero-point correction = 0.003608 1.885402 1.885383 -0.000126 Ag Ag -1.885402 1.885383 -0.000126 Ag -1.885402 -1.885383 -0.000126 1.885402 -1.885383 -0.000126 Ag Ι  $0.000000 \quad 3.742718 \quad 0.599787$ 0.000000 -3.742718 0.599787 Ι -3.742900 0.000000 -0.599563 I I 3.742900 0.000000 -0.599563

 $Ag_5I^+$ :

a) Isomer 1 ( $C_{2v}$ ): (Used in Figure 4g) The following input guess:



**Converged to:** 



| E(B3LY   | (P) = -746.39 | 529; Zero-p            | oint correction | = 0.002320 |
|----------|---------------|------------------------|-----------------|------------|
| Relative | e energy = 0  | kcal mol <sup>-1</sup> |                 |            |
| Ag       | 0.774539      | -1.481713              | -0.000595       |            |
| Ag       | 0.776809      | 1.480450               | 0.000732        |            |
| Ag       | -1.687099     | 2.783356               | -0.000360       |            |
| Ag       | -1.691491     | -2.780837              | 0.000347        |            |
| <u>م</u> | 1 (70050      | 0.001251               | 0.000052        |            |

- -1.670850 0.001351 -0.000053 Ag Ι
- 3.102082 -0.002312 -0.000062

b) Isomer 2 (C<sub>1</sub>): The following two different input guesses



**Converged to the same structure:** 



E(B3LYP) = -746.3933769; Zero-point correction = 0.002315 Relative energy =  $1.2 \text{ kcal mol}^{-1}$ 

| Ag | 2.603761    | -1.699923 | -0.341211 |
|----|-------------|-----------|-----------|
| Ag | 0.123510    | 2.236835  | -0.472330 |
| Ag | 0.067878    | -0.563589 | 0.090673  |
| Ag | -2.405241   | 1.067504  | 0.114369  |
| Ag | 2.379428    | 0.868555  | 0.560481  |
| Ι  | -2.455827 - | 1.693227  | 0.042582  |

c) Isomer 3 (C<sub>s</sub>): The following three different input guesses



#### **Converged to the same structure:**



E(B3LYP) = -746.392747; Zero-point correction = 0.002308

| Relativ | e energy = 1/ | .6 kcal mol | -1        |
|---------|---------------|-------------|-----------|
| Ag      | 1.419429      | 1.705540    | -0.000234 |
| Ag      | -1.374498     | 1.616720    | -0.000621 |
| Ag      | -0.116729     | -0.591510   | 1.385330  |
| Ag      | -0.116991     | -0.593041   | -1.385008 |
| Ag      | -2.569089     | -0.975318   | 0.000429  |
| Ι       | 2.445666      | -1.030800   | 0.000092  |
|         |               |             |           |

d) Isomer 4 (C<sub>s</sub>):



 $\begin{array}{rl} E(B3LYP) = -746.3920387; \mbox{ Zero-point correction} = \ 0.002357 \\ \hline \mbox{Relative energy} = 2.1 \ \mbox{kcal mol}^{-1} \\ \mbox{Ag} & -2.597154 & -1.149806 & -0.002055 \\ \mbox{Ag} & 0.163136 & -1.301660 & -0.003819 \\ \mbox{Ag} & -1.100347 & 0.946007 & 1.356976 \\ \mbox{Ag} & -1.102357 & 0.957112 & -1.351228 \\ \mbox{Ag} & 1.390147 & 1.515608 & 0.000987 \\ \mbox{I} & 2.879037 & -0.857760 & -0.000763 \\ \end{array}$ 

e) Isomer 5 (C<sub>s</sub>):



$$\begin{split} E(B3LYP) &= -746.3919542; \text{ Zero-point correction} = 0.002309 \\ \hline \textbf{Relative energy} = 2.1 \text{ kcal mol}^{-1} \\ Ag & -2.076107 & 1.448649 & -0.111450 \\ Ag & 0.652143 & 1.957052 & -0.620993 \\ Ag & 0.651718 & -1.957074 & -0.621015 \\ Ag & -2.076334 & -1.448419 & -0.111421 \\ Ag & -0.133136 & 0.000043 & 1.269724 \\ I & 2.644164 & -0.000222 & 0.173061 \end{split}$$

f) Isomer 6 (C<sub>s</sub>)



| E(B | 33LYP = -746.3833394; Zero                | p-point correction = $0.002201$ |
|-----|-------------------------------------------|---------------------------------|
| Rel | ative energy = 7.4 kcal mol <sup>-1</sup> | 1                               |
| Ag  | 2.518168 -0.172410 0                      | 0.000000                        |
| Ag  | 2.574902 -2.885130 0                      | 0.000000                        |
| Ag  | 0.074831 -1.430981 0                      | 0.000000                        |
| Ag  | 0.000000 1.360293 0                       | .000000                         |
| Ag  | -2.487728 -0.012918 (                     | 0.000000                        |
| I   | -2.376757 2.785544 0.0                    | 00000                           |
|     |                                           |                                 |

g) **Isomer 7 (C**<sub>2v</sub>)



E(B3LYP) = -746.3830176; Zero-point correction = 0.002171Relative energy = 7.6 kcal mol<sup>-1</sup> Ag 0.000387 3.367379 1.337450 Ag 0.000387 3.367379 -1.337450

| Ag | -0.000645 | 0.909850  | 0.000000 |
|----|-----------|-----------|----------|
| Ag | 1.407316  | -1.572597 | 0.000000 |
| Ag | -1.407883 | -1.573353 | 0.000000 |
| I  | 0.000387  | -3.989376 | 0.000000 |

h) Isomer 8 (C<sub>s</sub>):



E(B3LYP) = -746.3814152; Zero-point correction = 0.002095 **Relative energy = 8.6 kcal mol<sup>-1</sup>** Ag 3 070293 1 212201 -0 000038

| Ag | 3.070293  | 1.212201    | -0.000038 |
|----|-----------|-------------|-----------|
| Ag | -1.851517 | -0.952750   | 1.394412  |
| Ag | 0.431860  | 0.334212    | -0.005582 |
| Ag | -1.800122 | -1.043232   | -1.363690 |
| Ag | 2.527017  | -1.415255   | 0.016519  |
| Ι  | -2.108376 | 1.653712 -( | 0.036909  |
|    |           |             |           |

i) Isomer 9 (C2v): has 1 small imaginary frequency -15.3 cm<sup>-1</sup>



$$\begin{split} \text{E(B3LYP)} &= -746.3732857; \text{ Zero-point correction} = 0.002339\\ \hline \textbf{Relative energy} = \textbf{13.8 kcal mol}^{-1}\\ \text{Ag} & 0.006082 & 0.844008 & 0.000000\\ \text{Ag} & -1.376506 & -1.601919 & 0.000000\\ \text{Ag} & 1.369357 & -1.613087 & 0.000000\\ \text{Ag} & 0.000341 & -0.757793 & 2.380600\\ \text{Ag} & 0.000341 & -0.757793 & -2.380600\\ \text{I} & 0.000341 & 3.446594 & 0.000000 \end{split}$$

 $Ag_5I_2^+$ :

a) Isomer 1 (C2v): (Used in Figure 4h) The following five different input guesses





**Converged to the same structure:** 



E(B3LYP) = -757.9026117; Zero-point correction = 0.003149 **Relative energy = 0 kcal mol**<sup>-1</sup> Ag = 0.000000 = 1.433869 = 0.569957

| Ag | 0.000000  | 1.433869  | -0.569957 |
|----|-----------|-----------|-----------|
| Ag | -1.360364 | 0.000000  | -2.611312 |
| Ag | 0.000000  | -1.433869 | -0.569957 |
| Ag | 0.000000  | 0.000000  | 2.247853  |
| Ag | 1.360364  | 0.000000  | -2.611312 |
| Ι  | 0.000000  | 2.710702  | 1.824435  |
| Ι  | 0.000000  | -2.710702 | 1.824435  |
|    |           |           |           |

b) Isomer 2 (C<sub>s</sub>): The following 11 different input guesses



**Converged to the same structure:** 



E(B3LYP) = -757.9014567; Zero-point correction = 0.003061 Relative energy = 0.7 kcal mol<sup>-1</sup> Ag 1.303386 0.109268 -1.382361 -1.509946 1.398550 -0.000029 Ag 1.304234 0.109229 1.382410 Ag -0.609189 -1.593252 0.000055 Ag 2.068576 -2.246300 -0.000229 Ag 0.945011 2.696660 -0.000058 Ι -3.212593 -0.725759 0.000196 I

c) Isomer 3 (C<sub>s</sub>): The following two different input guesses





**Converged to the same structure:** 



E(B3LYP) = -757.8980473; Zero-point correction = 0.002933 **Relative energy = 2.7 kcal mol**<sup>-1</sup> -1.262274 -1.398514 -0.189996 Ag 2.195098 0.000116 -1.085611 Ag 0.782616 -0.000026 1.492984 Ag -3.584530 -0.001518 -0.157318 Ag Ag -1.264834 1.399694 -0.186221 Ι 1.389401 2.485242 0.055021 Ι 1.389739 -2.485022 0.056858

d) Isomer 4 (C<sub>1</sub>): The input guess:



**Converged to:** 



| (B3LYP) = -757.8864396; Zero-point correction = 0.002720 |
|----------------------------------------------------------|
| elative energy = 9.9 kcal mol <sup>-1</sup>              |
| .g -4.632255 -0.547244 1.360182                          |
| .g -4.486515 -0.967404 -1.269665                         |
| 2.497927 0.492683 -0.040637                              |
| -0.246845 2.064355 -0.131081                             |
| ng 1.744097 0.241151 -0.024350                           |
| 3.812451 -1.549186 0.089910                              |
| g 5.851811 0.199879 0.020895                             |
|                                                          |

e) Isomer 5 (C<sub>2</sub>): The following three different input guesses





**Converged to the same structure:** 



E(B3LYP) = -757.8726038; Zero-point correction = 0.002949 Relative energy =  $18.7 \text{ kcal mol}^{-1}$ -0.000134 2.308170 -0.000240 Ag Ag 0.751106 -0.155069 1.234315 -0.750625 -0.155402 -1.233697 Ag 2.100213 0.630867 -1.148207 Ag -2.100729 0.630785 1.148069 Ag Ι -3.080942 -1.445260 -0.427543 Ι 3.081092 -1.445108 0.427330

f) Isomer 6 (C<sub>2</sub>): The following two different input guesses





**Converged to the same structure:** 



E(B3LYP) = -757.865901; Zero-point correction = 0.002794 Relative energy =  $22.8 \text{ kcal mol}^{-1}$ -1.372893 -0.866587 -0.314169 Ag 1.372818 -0.866737 0.313874 Ag Ag 0.000303 1.498717 -0.000717 3.015432 1.283038 -0.642325 Ag -3.015682 1.282887 0.643206 Ag Ι 4.140984 -1.033743 0.322824 Ι -4.140965 -1.033652 -0.322708

$$Ag_{5}I_{3}^{+}$$
:

a) Isomer 1 (C<sub>s</sub>) (Used in Figure 4i)



E(B3LYP) = -769.3593624; Zero-point correction = 0.003411 Relative energy =  $0 \text{ kcal mol}^{-1}$ 1.617557 1.653932 -0.020155 Ag -0.840609 0.000019 -1.027211 Ag Ag 1.617405 -1.653992 -0.020129 -0.760649 -2.822589 -0.874008 Ι Ι -0.760469 2.822627 -0.8739893.626307 -0.000118 0.729898 -2.384185 -1.388942 1.107786 Ι Ag -2.384104 1.389073 1.107779 Ag

b) Isomer 2 (C<sub>1</sub>) : has 1 small imaginary frequency  $-4.8 \text{ cm}^{-1}$ The following nine different input guesses:





**Converged to the same structure:** 



E(B3LYP) = -769.3569614; Zero-point correction = 0.003313 **Relative energy = 1.4 kcal mol<sup>-1</sup>** 

| Ag | -0.502687  | 1.584238   | -0.287645 |
|----|------------|------------|-----------|
| Ag | 0.367512   | -0.829574  | 1.705836  |
| Ag | -0.786849  | -1.472991  | -0.976984 |
| Ag | 2.332111   | 0.080239   | -0.396141 |
| Ag | -2.229314  | 0.119929   | 1.685771  |
| Ι  | 1.672975 - | 2.625507 - | 0.301788  |
| Ι  | -2.907525  | 0.336337 - | 1.172644  |
| Ι  | 1.961035   | 2.748670 - | 0.060461  |

c) Isomer 3 (C<sub>s</sub>) : The following two different input guesses



**Converged to the same structure:** 



E(B3LYP) = -769.3535597; Zero-point correction = 0.003495 Relative energy =  $3.7 \text{ kcal mol}^{-1}$ 1.431974 -2.107064 0.440369 Ag Ag 2.084979 1.334595 -0.459761 0.000003 0.188091 1.255309 Ag -1.432279 -2.107003 0.440775Ag -2.084839 1.334728 -0.459889 Ag Ι 0.000101 2.986521 0.403091 Ι 3.614408 -0.891819 -0.741010 -3.614364 -0.891633 -0.741133 Ι

d) **Isomer 4 (C<sub>s</sub>) :** has 1 small imaginary frequency -5.8 cm<sup>-1</sup> **The following input guess** 



**Converged to the structure:** 



E(B3LYP) = -769.3402865; Zero-point correction = 0.003128Relative energy = 11.8 kcal mol<sup>-1</sup> Ag 2.040945 0.545514 -1.480894 Ag -1.470620 0.910009 0.000451

| Page | <b>S</b> 27 |
|------|-------------|
|------|-------------|

| Ag | 0.231673   | -1.60997 | 3 -0.003531 |
|----|------------|----------|-------------|
| Ag | -2.509387  | -1.86782 | 3 0.003429  |
| Ag | 2.026465   | 0.53235  | 0 1.484811  |
| Ι  | 0.771552   | 2.645320 | 0.005026    |
| Ι  | -4.174201  | 0.341825 | -0.006104   |
| Ι  | 3.119694 - | 1.665893 | -0.002704   |

 $Ag_{5}I_{4}^{+}$ :

a) Isomer 1 (C<sub>2v</sub>) (Used in Figure 4j): The following four different input guesses



**Converged to the same structure:** 



E(B3LYP) = -780.8694168; Zero-point correction = 0.004152 **Relative energy = 0** kcal  $mol^{-1}$ 3.698147 -0.000003 1.568482 Ι 2.008541 1.645983 0.241181 Ag 2.008543 -1.645982 0.241170 Ag 0.000649 0.000004 -1.511226 Ag 0.000253 2.800018 -1.324810 Ι Ι 0.000255 -2.800011 -1.324825 -2.008862 1.646217 0.240399 Ag -3.698667 -0.000005 1.567187 Ι -2.008857 -1.646220 0.240396 Ag

b) **Isomer 2:** has 1 small imaginary frequency -18.0 cm<sup>-1</sup> **The following input guess** 



**Converged to the structure:** 



E(B3LYP) = -780.8593291; Zero-point correction = 0.004037 **Relative energy = 6.3 kcal mol**<sup>-1</sup>

| Ag | 2.503838  | -1.62096   | 5 0.031879  |
|----|-----------|------------|-------------|
| Ag | -2.489666 | 6 -1.64716 | -0.126438   |
| Ag | -0.020528 | 0.01428    | 7 0.050426  |
| Ag | -2.526190 | ) 1.63743  | 5 0.068854  |
| Ag | 2.504802  | 2 1.62498  | 1 -0.058083 |
| Ι  | 4.657480  | -0.006570  | -0.247028   |
| Ι  | 0.010412  | -2.851027  | 0.283413    |
| Ι  | -4.646991 | -0.015321  | -0.232621   |
| Ι  | 0.003703  | 2.865311   | 0.225821    |
|    |           |            |             |

c) Isomer 3 (C<sub>s</sub>):



$$\begin{split} E(B3LYP) &= -780.8469822; \mbox{ Zero-point correction} = 0.003870 \\ \hline \mbox{Relative energy} &= 13.9 \ \mbox{kcal mol}^{-1} \\ \mbox{Ag} & -1.505191 \ \ -1.569466 \ \ \ 0.796859 \\ \mbox{Ag} & -1.453134 \ \ 1.572792 \ \ \ 0.791851 \end{split}$$

| Ag | -3.648340   | 0.037181   | -0.913038 |
|----|-------------|------------|-----------|
| Ι  | -3.341917   | 2.750588   | -0.736705 |
| Ι  | 0.369841    | -0.026245  | 2.220781  |
| Ι  | -3.433685   | -2.684336  | -0.729222 |
| Ag | 2.377140    | -0.068468  | 0.341394  |
| Ι  | 4.321772 -( | ).124602 - | 1.560830  |
| Ag | 6.579556 0  | .123355 -( | ).108199  |

d) Isomer 4 (C<sub>1</sub>):



E(B3LYP) = -780.837153; Zero-point correction = 0.003906 Relative energy =  $20.1 \text{ kcal mol}^{-1}$ 2.496500 - 1.920990 0.126636Ag Ag -1.345153 -1.971224 -0.442124 Ag -1.345152 1.971224 -0.442124 2.496501 1.920990 0.126636 Ag 0.499229 -3.788657 0.210219 Ι -3.260115 0.000000 -1.037749 I 0.499230 3.788657 0.210219 Ι Ι 4.394615 0.000000 0.036472 -4.707947 0.000000 1.285965 Ag

e) Isomer 5 (D<sub>2d</sub>):



$$\begin{split} E(B3LYP) &= -780.81918; Zero-point \ correction = 0.003379 \\ \hline \textbf{Relative energy} = \textbf{31.0 kcal mol}^{-1} \\ Ag & 2.649139 & 0.604181 & -1.418768 \\ Ag & -2.642461 & 1.421641 & 0.605400 \\ Ag & -0.000105 & -0.004088 & -0.003724 \\ Ag & -2.652629 & -1.417981 & -0.602571 \end{split}$$

Ag 2.645213 -0.603376 1.420424

| Ι | 2.042680  | -2.142698 | -0.911650 |
|---|-----------|-----------|-----------|
| Ι | -2.042498 | 0.911450  | -2.142111 |
| Ι | -2.039283 | -0.911812 | 2.142276  |
| Ι | 2.039848  | 2.142727  | 0.910810  |

f) Isomer 6: has 2 small imaginary frequencies -12.5676 and -4.5454cm<sup>-1</sup>



E(B3LYP) = -780.8177435; Zero-point correction = 0.003538 Relative energy = 32.0 kcal mol<sup>-1</sup> 0.000000 0.000000 2.325176 Ag 0.000000 4.283974 0.595595Ag Ag 0.000000 -4.283974 0.595595 0.000000 5.338836 -3.592776 Ag 0.000000 -5.338836 -3.592776 Ag Ι 0.000000 2.685225 2.769012 Ι 0.000000 -2.685225 2.769012 Ι 0.000000 6.414264 -1.142109

I 0.000000 -6.414264 -1.142109

g) Isomer 7 (C<sub>s</sub>): The following input guess



**Converged to the structure:** 



E(B3LYP) = -780.7555356; Zero-point correction = 0.003977 **Relative energy = 71.4 kcal mol**<sup>-1</sup>

| Ag | 0.029808 -1.478786 1.28936    | 60 |
|----|-------------------------------|----|
| Ag | 2.218561 -0.001233 0.18122    | 29 |
| Ag | 0.030735 1.473635 1.29475     | 9  |
| Ag | 1.743024 -0.006180 2.91297    | 9  |
| Ag | -0.018078 0.004253 -2.02515   | 53 |
| Ι  | 2.647882 0.004353 -2.525108   |    |
| Ι  | -1.861781 -3.067887 -0.041940 |    |
| Ι  | -1.859757 3.069040 -0.030578  |    |
| Ι  | -2.477106 0.001865 -0.641981  |    |

g) Isomer 8 (C<sub>2</sub>): The following input guess



# **Converged to the structure:**



| E(B3] | LYP) = -780.8288073; Zero-point correction = 0.003623 |
|-------|-------------------------------------------------------|
| Relat | ive energy = 18.9 kcal mol <sup>-1</sup>              |
| Ag    | -4.043527 0.260958 0.014768                           |
| Ag    | -0.000006 $0.000074$ $0.170078$                       |
| Ag    | 4.043537 -0.260920 0.014860                           |
| Ag    | 8.110437 -0.548146 -0.129258                          |
| Ι     | -1.920792 1.921141 0.174893                           |
| Ι     | 6.237033 1.373621 -0.148916                           |
| Ι     | 1.920732 -1.921033 0.175047                           |
| Ι     | -6.236952 -1.373679 -0.149037                         |
| Ag    | -8.110464 0.547979 -0.129070                          |

Neutrals used in calculations for reactions of cluster cations with allyl iodide:

# Allyl iodide (C<sub>3</sub>H<sub>5</sub>I):

| С | 3.135366  | -0.468335 | -0.252017 |
|---|-----------|-----------|-----------|
| С | 2.149599  | 0.068822  | 0.473956  |
| С | 1.084754  | 0.920323  | -0.100124 |
| Ι | -0.935226 | -0.086954 | -0.008734 |
| Η | 3.921634  | -1.059910 | 0.207677  |

H 3.191902 -0.332539 -1.329837 H 2.113063 -0.094337 1.549618 H 1.221064 1.136324 -1.158379 H 0.901009 1.834171 0.462946 E(B3LYP) = -128.7198675; Zero-point correction = 0.070932

# Allyl Radical (C<sub>3</sub>H<sub>5</sub>):

| C   | 1.230252          | 0.196157     | 0.000011                           |
|-----|-------------------|--------------|------------------------------------|
| С   | 0.000044          | -0.443164    | -0.000070                          |
| С   | -1.230271         | 0.196066     | 0.000017                           |
| Η   | 2.161085          | -0.361223    | 0.000234                           |
| Η   | 1.299657          | 1.280844     | -0.000110                          |
| Η   | 0.000135          | -1.533677    | -0.000021                          |
| Η   | -2.161253         | -0.361072    | 0.000135                           |
| Η   | -1.299774         | 1.280778     | 0.000017                           |
| E(B | $3LYP) = -11^{2}$ | 7.2579397; 2 | Zero-point correction $= 0.066578$ |

#### Propene (C<sub>3</sub>H<sub>6</sub>):

| С     | -1.283184   | 0.220545     | -0.000067      |                 |
|-------|-------------|--------------|----------------|-----------------|
| С     | -0.133803   | -0.455933    | -0.000186      |                 |
| С     | 1.235076    | 0.163011     | 0.000037       |                 |
| Н     | -2.245583   | -0.284386    | 0.000620       |                 |
| Н     | -1.305021   | 1.308841     | 0.000029       |                 |
| Н     | -0.163952   | -1.546669    | 0.000243       |                 |
| Н     | 1.811694    | -0.148618    | 0.881676       |                 |
| Н     | 1.181011    | 1.256961     | -0.001949      |                 |
| Н     | 1.813318 .  | -0.151868 ·  | -0.879324      |                 |
| E(B31 | LYP) = -117 | .90521; Zero | o-point correc | tion = 0.080097 |

#### 1,5-hexadiene, (C<sub>3</sub>H<sub>6</sub>)<sub>2</sub>:

| С | -0.572990 | -0.297257 | -0.520358 |
|---|-----------|-----------|-----------|
| С | -1.934984 | -0.338121 | 0.117232  |
| С | -2.873995 | 0.600181  | -0.012816 |
| Η | 0.448335  | -1.172903 | 1.176072  |
| Η | -0.483599 | 0.589179  | -1.160256 |
| Η | -2.140627 | -1.210375 | 0.741202  |
| Η | -2.713406 | 1.487796  | -0.622006 |
| Η | -3.839819 | 0.517423  | 0.478733  |
| С | 2.874002  | 0.600175  | 0.012798  |
| С | 1.934981  | -0.338121 | -0.117221 |
| С | 0.572985  | -0.297223 | 0.520364  |
| Η | 3.839828  | 0.517386  | -0.478742 |
| Η | 2.713421  | 1.487813  | 0.621956  |
| Η | 2.140617  | -1.210399 | -0.741159 |
| Η | 0.483590  | 0.589252  | 1.160209  |
| Η | -0.448336 | -1.172979 | -1.176010 |

E(B3LYP) = -234.6071736; Zero-point correction = 0.14252







**Table S1:** DFT calculated energies for ground state structures relevant to the silver clusters used in the thermochemistry calculations. The scaling factor used is 0.9806 and the basis sets were LanL2DZ for Ag and I, and 6-31G\* for C, N and H.

| Species                  | Isomer <sup>a</sup> | Comments <sup>b</sup> | Ec          | ZPE <sup>d</sup> | ZPE corr <sup>e</sup> | E+ZPEcorr <sup>f</sup> | Rel E (kcal mol <sup>-1</sup> ) <sup>g</sup> |
|--------------------------|---------------------|-----------------------|-------------|------------------|-----------------------|------------------------|----------------------------------------------|
| $\mathbf{Ag}^+$          |                     |                       | -146.70064  |                  |                       | -146.70064             |                                              |
| ${ m Ag_2H^+}$           |                     | from DT               | -294.36431  | 0.005742         | 0.00563061            | -294.35868             |                                              |
| ${ m Ag_2I^+}$           |                     | Figure 4a             | -305.25137  | 0.000816         | 0.00080017            | -305.25057             |                                              |
| ${f Ag_3}^+$             |                     | from DT               | -440.84253  | 0.000896         | 0.00087862            | -440.84165             |                                              |
| $Ag_3I^+$                | Isomer 1            |                       | -452.26253  | 0.001215         | 0.00119143            | -452.26134             | 11.28977024                                  |
|                          | Isomer 2            |                       | -452.27707  | 0.001158         | 0.00113553            | -452.27594             | 2.127563117                                  |
|                          | Isomer 3            | Figure 4b             | -452.28055  | 0.00125          | 0.00122575            | -452.27933             | 0                                            |
| $Ag_{3}I_{2}^{+}$        | Isomer 1            | Figure 4c             | -463.78182  | 0.001758         | 0.00172389            | -463.7801              | 0                                            |
|                          | Isomer 2            |                       | -463.77989  | 0.001768         | 0.0017337             | -463.77815             | 1.21894194                                   |
|                          | Isomer 3            |                       | -463.77938  | 0.001744         | 0.00171017            | -463.77767             | 1.521066419                                  |
| $\mathbf{Ag_{4}^{+(h)}}$ |                     |                       | -587.872498 | 0.001283         | 0.00125811            | -587.87124             |                                              |
| ${ m Ag}_4{ m H}^+$      |                     | from DT               | -588.475    | 0.007106         | 0.00696814            | -588.46803             |                                              |
| $\mathbf{Ag_4I}^+$       |                     | from DT               | -599.36216  | 0.00179          | 0.00175527            | -599.3604              |                                              |
| ${ m Ag_4I_2}^+$         | Isomer 1            | Figure 4e             | -610.81515  | 0.002226         | 0.00218282            | -610.81297             | 0                                            |
|                          | Isomer 2            |                       | -610.81377  | 0.002325         | 0.0022799             | -610.81149             | 0.931211913                                  |

Page S 37

Page S 38 Page S

| Species     | Isomer <sup>a</sup> | Comments <sup>b</sup>        | Ec         | ZPE <sup>d</sup> | ZPE corr <sup>e</sup> | E+ZPEcorr <sup>f</sup> | Rel E (kcal mol <sup>-1</sup> ) <sup>g</sup> |
|-------------|---------------------|------------------------------|------------|------------------|-----------------------|------------------------|----------------------------------------------|
|             | Isomer 3            | ifreq -21.2 cm <sup>-1</sup> | -610.81354 | 0.00213          | 0.00208868            | -610.81145             | 0.951658072                                  |
|             | Isomer 4            | ifreq -4.9 cm <sup>-2</sup>  | -610.8001  | 0.002088         | 0.00204749            | -610.79805             | 9.36161913                                   |
|             | Isomer 5            | ifreq -1.4 cm <sup>-3</sup>  | -610.7984  | 0.002197         | 0.00215438            | -610.79624             | 10.49614805                                  |
|             | Isomer 6            | ifteq $-5.9 \text{ cm}^{-3}$ | -610.79595 | 0.001937         | 0.00189942            | -610.79405             | 11.87123832                                  |
|             | Isomer 7            |                              | -610.78628 | 0.002424         | 0.00237697            | -610.78391             | 18.23811304                                  |
| $Ag_4I_3^+$ | Isomer 1            | Figure 4f                    | -622.32397 | 0.002983         | 0.00292513            | -622.32104             | 0                                            |
|             | Isomer 2            | ifreq -15.8 cm <sup>-1</sup> | -622.32327 | 0.002837         | 0.00278196            | -622.32049             | 0.344586072                                  |
|             | Isomer 3            | ifreq -16.3 cm <sup>-2</sup> | -622.3205  | 0.002781         | 0.00272705            | -622.31777             | 2.052973513                                  |
|             | Isomer 4            | ifreq -26.7 cm <sup>-3</sup> | -622.30675 | 0.002701         | 0.0026486             | -622.3041              | 10.6313816                                   |
|             | Isomer 5            |                              | -622.30649 | 0.002688         | 0.00263585            | -622.30385             | 10.78747609                                  |
| $Ag_5I^+$   | Isomer 1            | Figure 4g                    | -746.39529 | 0.00232          | 0.00227499            | -746.39302             | 0                                            |
|             | Isomer 2            |                              | -746.39338 | 0.002315         | 0.00227009            | -746.39111             | 1.197412699                                  |
|             | Isomer 3            |                              | -746.39275 | 0.002308         | 0.00226322            | -746.39048             | 1.588373894                                  |
|             | Isomer 4            |                              | -746.39204 | 0.002357         | 0.00231127            | -746.38973             | 2.062990706                                  |
|             | Isomer 5            |                              | -746.39195 | 0.002309         | 0.00226421            | -746.38969             | 2.086479159                                  |
|             | Isomer 6            |                              | -746.38334 | 0.002201         | 0.0021583             | -746.38118             | 7.425895986                                  |

| Species                                 | Isomer <sup>a</sup> | <b>Comments</b> <sup>b</sup> | Ec         | ZPE <sup>d</sup> | ZPE corr <sup>e</sup> | E+ZPEcorr <sup>f</sup> | Rel E (kcal mol <sup>-1</sup> ) <sup>g</sup> |
|-----------------------------------------|---------------------|------------------------------|------------|------------------|-----------------------|------------------------|----------------------------------------------|
|                                         | Isomer 7            |                              | -746.38302 | 0.002171         | 0.00212888            | -746.38089             | 7.609368614                                  |
|                                         | Isomer 8            |                              | -746.3814  | 0.002061         | 0.00202102            | -746.37938             | 8.555926034                                  |
|                                         | Isomer 9            | ifreq -15.3 cm <sup>-3</sup> | -746.37329 | 0.002339         | 0.00229362            | -746.37099             | 13.81960968                                  |
| ${\rm Ag_{5}I_{2}^{+}}$                 | Isomer 1            | Figure 4h                    | -757.90261 | 0.003149         | 0.00308791            | -757.89952             | 0                                            |
|                                         | Isomer 2            |                              | -757.90146 | 0.003061         | 0.00300162            | -757.89846             | 0.670624455                                  |
|                                         | Isomer 3            |                              | -757.89805 | 0.002933         | 0.0028761             | -757.89517             | 2.731294002                                  |
|                                         | Isomer 4            |                              | -757.88644 | 0.00272          | 0.00266723            | -757.88377             | 9.884175196                                  |
|                                         | Isomer 5            |                              | -757.8726  | 0.002949         | 0.00289179            | -757.86971             | 18.70719007                                  |
|                                         | Isomer 6            |                              | -757.8659  | 0.002794         | 0.0027398             | -757.86316             | 22.81788697                                  |
| ${ m Ag_5I_3}^+$                        | Isomer 1            | Figure 4i                    | -769.35936 | 0.003411         | 0.00334483            | -769.35602             | 0                                            |
|                                         | Isomer 2            | ifreq -4.8 cm <sup>-3</sup>  | -769.35696 | 0.003313         | 0.00324873            | -769.35371             | 1.446348552                                  |
|                                         | Isomer 3            |                              | -769.35356 | 0.003495         | 0.0034272             | -769.35013             | 3.692940527                                  |
|                                         | Isomer 4            | ifreq -5.8 cm <sup>-3</sup>  | -769.34029 | 0.003128         | 0.00306732            | -769.33722             | 11.79617783                                  |
| ${{{\rm Ag}_{{\rm 5}}{\rm I}_{4}}^{+}}$ | Isomer 1            | Figure 4j                    | -780.86942 | 0.004152         | 0.00407145            | -780.86535             | 0                                            |
|                                         | Isomer 2            | ifreq -18.0 cm <sup>-3</sup> | -780.85933 | 0.004037         | 0.00395868            | -780.85537             | 6.259368952                                  |
|                                         | Isomer 3            |                              | -780.84698 | 0.00387          | 0.00379492            | -780.84319             | 13.90441101                                  |

| Species                              | Isomer <sup>a</sup> | <b>Comments</b> <sup>b</sup>              | E <sup>c</sup> | ZPE <sup>d</sup> | ZPE corr <sup>e</sup> | E+ZPEcorr <sup>f</sup> | Rel E (kcal mol <sup>-1</sup> ) <sup>g</sup> |
|--------------------------------------|---------------------|-------------------------------------------|----------------|------------------|-----------------------|------------------------|----------------------------------------------|
|                                      | Isomer 4            |                                           | -780.83715     | 0.003906         | 0.00383022            | -780.83332             | 20.09448441                                  |
|                                      | Isomer 5            |                                           | -780.81918     | 0.003379         | 0.00331345            | -780.81586             | 31.05013368                                  |
|                                      | Isomer 6            | 2 x ifreq -12.6, -4.5<br>cm <sup>-3</sup> | -780.81774     | 0.003538         | 0.00346936            | -780.81427             | 32.04769599                                  |
|                                      | Isomer 7            |                                           | -780.75554     | 0.003977         | 0.00389985            | -780.75164             | 71.35390796                                  |
|                                      | Isomer8             |                                           | -780.82881     | 0.003623         | 0.00355271            | -780.82525             | 18.89798549                                  |
| ÷                                    |                     |                                           | -11.394691     |                  |                       | -11.394691             |                                              |
| CH <sub>2</sub> =CHCH <sub>2</sub> . |                     |                                           | -117.25794     | 0.066578         | 0.06528639            | -117.19265             |                                              |
| CH <sub>2</sub> =CHCH <sub>2</sub> I |                     |                                           | -128.71987     | 0.070932         | 0.06955592            | -128.65031             |                                              |
| CH <sub>2</sub> =CHCH <sub>3</sub>   |                     |                                           | -117.90521     | 0.080097         | 0.07854312            | -117.82667             |                                              |
| $(CH_2=CHCH_2)_2$                    |                     |                                           | -234.60717     | 0.142525         | 0.13976002            | -234.46741             |                                              |
| Ag <sup>.</sup>                      |                     |                                           | -146.9936      |                  |                       | -146.9936              |                                              |
| AgI                                  |                     | Figure 3a                                 | -158.47328     | 0.000436         | 0.00042754            | -158.47285             |                                              |
| $Ag_2I_2$                            |                     | Figure 3b                                 | -317.00259     | 0.00139          | 0.00136303            | -317.00123             |                                              |
| $Ag_3I_3$                            | Isomer 1            | Figure 3c                                 | -475.55288     | 0.002637         | 0.00258584            | -475.55029             | 0                                            |
|                                      | Isomer 2            |                                           | -475.42943     | 0.002286         | 0.00224165            | -475.42719             | 77.25012646                                  |
| $\mathbf{Ag_2}$                      |                     |                                           | -294.04301     | 0.000406         | 0.00039812            | -294.04261             |                                              |

- (a) The isomer number as it appears in the supplementary material part A.
  (b) The figure where the relevant structure is shown.
  (c) The converged geometries B3LYP/SDD energies.
  (d) Zero point energy.
  (e) ZPE x 0.9806.
  (f) The sum of the B3LYP/SDD energy and ZPE scaled.
  (g) The relative energy to the most stable isomer in each case.
  (h) This structure has been previously calculated; e.g.; P. Weis, T. Bierweiler, S. Gilb, M. M. Kappes, *Chem. Phys. Lett.*, 2002, **355**, 355

| reactions. |
|------------|
| cule       |
| -mole      |
| ion        |
| r the      |
| s foi      |
| energetics |
| lculated   |
| : Ca       |
| S 22       |
| ablé       |

| Reaction                                                                                                                                                     |                                                            | Reaction ∆H<br>in kcal.mol <sup>71 b</sup> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|
| Benchmark BDE of allyliodide                                                                                                                                 | Experimental value                                         |                                            |
| $CH_2 = CHCH_2I \rightarrow I' + CH_2 = CHCH_2'$                                                                                                             | $+45.6 \pm 0.9^{\circ}$                                    | +39.5                                      |
|                                                                                                                                                              |                                                            |                                            |
| Ion-molecule reactions with allyliodide                                                                                                                      | Relevant eq. in text<br>(reactants, products) <sup>a</sup> |                                            |
| $Ag_2H^+ + CH_2 = CHCH_2I \rightarrow Ag_2I^+ + CH_2 = CHCH_3$                                                                                               | (9)                                                        | -42.8                                      |
| $Ag_{3}^{+} + CH_2 = CHCH_2 I \rightarrow Ag_3 I^{+} + CH_2 = CHCH_2^{-}$                                                                                    | does not occur                                             | +12.5                                      |
| $Ag_3^+ + 2CH_2 = CHCH_2I \rightarrow Ag_3I_2^+ + (CH_2 = CHCH_2)_2$                                                                                         | (7) and (8)                                                | -66.0                                      |
| $Ag_4H^+ + CH_2 = CHCH_2I \rightarrow Ag_4I^+ + CH_2 = CHCH_3$                                                                                               | (6)                                                        | -43.1                                      |
| $Ag_4I^+ + CH_2 = CHCH_2I \rightarrow Ag_4I_2^+ + CH_2 = CHCH_2$                                                                                             | (10a)                                                      | +3.2                                       |
| $Ag_4I_2^+ + CH_2 = CHCH_2I \rightarrow Ag_4I_3^+ + CH_2 = CHCH_2$                                                                                           | (11)                                                       | -31.6                                      |
| $Ag_4I^+ + 2CH_2 = CHCH_2I \rightarrow Ag_4I_3^+ + (CH_2 = CHCH_2)_2$                                                                                        | (10b) and (12)                                             | -79.9                                      |
| $Ag_5^+ + CH_2 = CHCH_2 I \rightarrow Ag_5 I^+ + CH_2 = CHCH_2$                                                                                              | (13b)                                                      | +2.3                                       |
| $Ag_5^+$ + 2 CH <sub>2</sub> =CHCH <sub>2</sub> I $\rightarrow$ Ag <sub>4</sub> l <sup>+</sup> + AgI +<br>(CH <sub>2</sub> =CHCH <sub>2</sub> ) <sub>2</sub> |                                                            | -38.2                                      |
| $Ag_{5}I^{+} + CH_{2} = CHCH_{2}I \rightarrow Ag_{5}I_{2}^{+} + CH_{2} = CHCH_{2}$                                                                           | (14)                                                       | -30.7                                      |
| $Ag_{5}I_{2}^{+} + 2CH_{2} = CHCH_{2}I \rightarrow Ag_{5}I_{4}^{+} + (CH_{2} = CHCH_{2})_{2}$                                                                | (16b) and (17)                                             | -83.2                                      |
|                                                                                                                                                              |                                                            |                                            |

|                                                      | 1.0+                               |                                                      | -32.4                              |
|------------------------------------------------------|------------------------------------|------------------------------------------------------|------------------------------------|
| (162)                                                | (10a)                              |                                                      | (18)                               |
| $Ag_5I_2^+ + CH_2 = CHCH_2I \rightarrow Ag_5I_3^+ +$ | CH <sub>2</sub> =CHCH <sub>2</sub> | $Ag_5I_3^+ + CH_2 = CHCH_2I \rightarrow Ag_5I_4^+ +$ | CH <sub>2</sub> =CHCH <sub>2</sub> |

Table S3: Calculated reaction energetics for CID reactions

| $\begin{array}{l} Ag_{2}I^{+} \rightarrow Ag^{+} + AgI \; (eq.\; 24c) \\ Ag_{3}I_{2}^{+} \rightarrow Ag_{2}I^{+} + AgI \; (eq.\; 24c) \\ Ag_{3}I_{2}^{+} \rightarrow Ag^{+} + Ag_{2}I_{2} \; (eq.\; 24d) \\ Ag_{4}I^{+} \rightarrow Ag_{3}^{+} + AgI \; (eq.\; 24d) \\ Ag_{4}I^{+} \rightarrow Ag_{2}I^{+} + Ag_{2} \; (eq.\; 24b) \\ Ag_{4}I^{+} \rightarrow Ag_{3}I_{2}^{+} + Ag \; (eq.\; 24b) \\ Ag_{4}I_{2}^{+} \rightarrow Ag_{3}I_{2}^{+} + Ag \; (eq.\; 24a) \end{array}$ | in kcal.mol <sup>-1</sup><br>+48.4<br>+35.6<br>+49.1<br>+28.8<br>+42.2<br>+24.6 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| $g_4 I_3^+ \rightarrow Ag_3 I^+ + Ag I (eq. 24c)$<br>$g_4 I_3^+ \rightarrow Ag_3 I_2^+ + Ag I (eq. 24c)$<br>$g_4 I_3^+ \rightarrow Ag_2 I^+ + Ag_2 I_2 (eq. 24d)$<br>$kg_4 I_3^+ \rightarrow Ag^+ + Ag_3 I_3 (eq. 24e)$<br>$Ag_5 I^+ \rightarrow Ag_4 I^+ + Ag (eq. 24a)$<br>$Ag_5 I^+ \rightarrow Ag_3 I^+ + Ag_2 (eq. 24b)$                                                                                                                                                     | +38.1<br>+42.7<br>+43.5<br>+43.5<br>+43.9<br>+24.5<br>+24.6                     |

| $Ag_5I^+ \rightarrow Ag_4^+ + AgI$ (eq. 24c)                          | +30.7 |
|-----------------------------------------------------------------------|-------|
| $Ag_5I_2^+ \rightarrow Ag_4I^+ + AgI (eq. 24c)$                       | +41.6 |
| $Ag_5I_2^+ \rightarrow Ag_3I_2^+ + Ag_2$ (eq. 24b)                    | +48.2 |
| $Ag_5I_2^+ \rightarrow Ag_3^+ + Ag_2I_2$ (eq. 24d)                    | +35.6 |
| $Ag_5I_4^+ \rightarrow Ag_4I_3^+ + AgI (eq. 24c)$                     | +44.8 |
| $Ag_{5}I_{4}^{+} \rightarrow Ag_{3}I_{2}^{+} + Ag_{2}I_{2}$ (eq. 24d) | +52.7 |
| $Ag_5I_4^+ \rightarrow Ag_2I^+ + Ag_3I_3$ (eq. 24e)                   | +40.5 |

(a) The numbers refer to those equation numbers used in the text and figures.
(b) The reaction enthalpy is calculated using the (B3LYP/SDD + ZPE) values
(c) Experimental bond enthalpy value from Blanksby S. J.; Ellison G. B., *Acc. Chem. Res.* 2003, 36, 255