Supporting information

Experimental and theoretical aspects of the haptotropic rearrangement of diiron and diruthenium carbonyl complexes bound to 4,6,8-trimethylazulene

Kazuhiro Tsuchiya,^c Keiko Ideta,^b Koichi Mogi,^{c#}* Yusuke Sunada^c and Hideo Nagashima^{a,c}*

Division of Applied Molecular Chemistry^a and Analytical Center^b of Institute for Materials Chemistry and Engineering, Department of Molecular and Materials Science,^c Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan

S-1. Measurement of SST experiment

- S-1-1 The list of data of Fe complex (3)
 - Table S-1-1-1 $T_{I(H1)}$ measurement of Fe (**3**) complex
 - Table S-1-1-2 $I_{f(H1)}/I_{0(H1)}$ measurement of Fe (3) complex
- S-1-2 The list of data of Ru complex (4)
 - Table S-1-2-1 $T_{I(H1)}$ measurement of Ru (4) complex
 - Table S-1-2-2 $I_{f(H1)}/I_{0(H1)}$ measurement of Ru (4) complex

S-2. Data of the SST experiment

S-2-1 The list of data of Fe complex (3)

Table S-2-1-1 The calculated value of $\ln(I_{(HI)}/I_{f(HI)}-1)$

Table S-2-1-2 The calculated value of $ln(T_{I(H1)})$

Table S-2-1-3 The calculated value of ln(k/T)

Table S-2-1-4 The calculated value of 1000/T

Table S-2-1-5 The y-intercept and slope values of Eyring plot

Table S-2-1-6 Thermodynamic parameters of complex 3

S-2-2 The list of data of Ru complex (4)

Table S-2-2-1 The calculated value of $\ln(I_{0(HI)}/I_{f(HI)}-1)$

Table S-2-2-2 The calculated value of $ln(T_{I(HI)})$

Table S-2-2-3 The calculated value of ln(k/T)

Table S-2-2-4 The calculated value of 1000/T

Table S-2-2-5 The y-intercept and slope values of Eyring plot

Table S-2-2-6 Thermodynamic parameters of complex 3

S-3. x,y,z-coordinates of ground and transition state structures of complex 3 and 4

Table S-3-1ground state structures of complex 3

Table S-3-2transition state structures of complex 3

- Table S-3-3 ground state structures of complex 4
- Table S-3-4 transition state structures of complex 4

<u>S-4.</u> Thermodynamic parameters for **3** and **4** by DFT calculation

- Table S-4-1. The value of internal energy contributed from each motion
- Table S-4-2. The value of entropies contributed from each motion
- Table S-4-3. The value of lnq contributed from each motion
- Table S-4-4.
 The value of thermochemical parameters at ground state and transition state
- Table S-4-5Thermodynamic parameters for 3 and 4 by DFT calculationwith three functionals.

The spin-saturation transfer (SST) mesurement

The SST studies of **3** and **4** were carried out in the temperature range of 349 to 402 K. The spin-lattice relaxation time of H1 { $T_{I(HI)}$ } was determined by the standard inversion recovery method as the average of ten measurements at 381, 385, 390, 394, 398 and 402K for the complex **3**, and 349, 353, 358, 363, 367 and 372 K for the complex **4**. At each temperature, ten raw data of $T_{I(HI)}$ and their average are listed in Tables S-1-1-1 for **3** and S-1-2-1 for **4**. The average data { $T_{I(HI)}$ }_{av} are used for the determination of k as described below. The SST measurement led to change of integral value of the peak due to H1: Ten measurements were performed at each temperature for the determination of $I_{f(HI)} / I_{0(HI)}$, where $I_{f(HI)}$ is the final intensity of H1 while $I_{0(HI)}$ is the initial intensity as listed in Tables S-1-1-2 for **3** and S-1-2-2 for **4**. The exchange rate k is defined as $I_{f(HI)} / I_{0(HI)} = {T_{I(HI)}}_{av}^{-1} / [k + {T_{I(HI)}}_{av}^{-1}]$, and the values of $\ln(k / T)$ are calculated according to the following equation.

$$\ln(k/T) = \ln(I_{\ell(H1)}/I_{f(H1)}-1) - \ln\{T_{1(H1)}\}_{av} - \ln(T) \quad (eq. \ S-1)$$

The data of ln(k/T) are summarized in Tables S-2-1-1 (for **3**) S-2-2-1 (for **4**). The average of ln(k / T) at each temperature was adopted to an Eyring plot of ln(k/T) vs. 1000/T as shown in Figures S-2-1-1 and S-2-2-1. The best-fit line drawn from a least-squares analysis of the plot provided the enthalpy and entropy of activation from the slope and the intercept, respectively (Table S-2-1-2 and S-2-2-2). The $\Delta G^{\ddagger}_{373}$, $\Delta H^{\ddagger}_{373}$, and $\Delta S^{\ddagger}_{373}$ calculated by the following equation (eq. S-2, where k_B: Boltzman constant, h: plank constant) for the rearrangement of **3** and **4** are listed in Table S-2-1-3 and S-2-2-3.

$$\ln\left(\frac{k}{T}\right) = \ln\left(\frac{k_B}{h}\right) - \frac{\Delta H}{RT} + \frac{\Delta S}{R} \qquad (eq. S-2)$$

S-1 Data of SST experiment

S-1-1 The list of data of Fe complex (3)

Table S-1-1-1 $\{T_{1(HI)}\}$ measurement of Fe (3) complex

Complex	Temperature		The	$e \{T_{1(H1)}\}$)} value	observ	ed in ea	ach mea	sureme	nt		$\{T_{1(H1)}\}$ of
	K	1^{st}	2^{nd}	3 rd	4 th	5^{th}	6^{th}	7 th	8^{th}	9 th	10^{th}	the average
Fe(3)	380.8	7.650	7.158	7.117	7.094	7.025	7.124	7.089	7.012	6.962	6.993	7.122 ± 0.186
	385.3	7.440	7.393	7.465	7.061	7.172	7.248	7.278	7.351	7.399	7.180	7.299 ± 0.126
	389.9	7.116	7.152	6.953	7.041	7.009	6.999	6.962	6.940	6.928	6.976	7.008 ± 0.071
	393.6	7.325	7.260	6.866	6.972	6.878	6.794	7.148	6.867	6.816	6.896	6.982 ± 0.182
	398.1	5.526	5.692	5.611	5.660	5.728	5.692	5.714	5.805	5.873	5.771	5.707 ± 0.093
	401.8	6.231	6.155	6.152	6.215	6.223	6.250	6.243	6.335	6.164	6.198	6.217 ± 0.052

Table S-1-1-2 $I_{f(H1)}/I_{0(H1)}$ measurement of Fe (3) complex

Complex	Temperature		The	$I_{f(H1)}/I_{0(H1)}$	_{H1)} valu	e obser	ved in e	each me	asurem	ent	
	K	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}	8^{th}	9^{th}	10^{th}
Fe(3)	380.8	0.745	0.751	0.743	0.746	0.742	0.722	0.728	0.735	0.735	0.735
	385.3	0.639	0.672	0.673	0.667	0.627	0.639	0.644	0.612	0.635	0.620
	389.9	0.564	0.569	0.578	0.568	0.560	0.578	0.572	0.572	0.574	0.567
	393.6	0.507	0.500	0.513	0.510	0.524	0.518	0.520	0.510	0.516	0.513
	398.1	0.473	0.493	0.483	0.512	0.503	0.493	0.495	0.494	0.489	0.484
	401.8	0.416	0.397	0.402	0.404	0.409	0.405	0.400	0.403	0.397	0.378

S-1-2 The list of data of Ru complex (4)

Complex	Temperature		The	$e \{T_{1(H1)}\}$)} value	observ	ed in ea	ach mea	sureme	nt		$\{T_{1(H1)}\}$ of
	K	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6 th	7^{th}	8^{th}	9^{th}	10^{th}	the average
Ru(4)	348.8	6.436	6.255	6.522	7.236	6.412	6.620	6.286	6.428	6.689	6.562	6.545 ± 0.264
	353.4	8.068	7.113	7.644	7.167	8.012	6.984	7.191	6.721	6.712	7.581	7.319 ± 0.462
	357.9	7.568	7.523	7.466	7.503	7.509	7.315	7.426	7.434	7.450	7.287	7.448 ± 0.084
	362.5	7.440	7.393	7.465	7.061	7.172	7.248	7.278	7.351	7.399	7.180	7.299 ± 0.126
	367.1	7.061	7.078	7.063	7.041	7.113	6.977	7.131	7.155	7.257	7.274	7.115 ± 0.089
	371.6	6.903	6.698	6.925	6.425	6.355	6.792	8.087	7.910	6.677	6.841	6.961 ± 0.550

Table S-1-2-1 $\{T_{I(HI)}\}$ measurement of Ru (4) complex

Table S-1-2-2 $I_{f(H1)}/I_{0(H1)}$ measurement of Ru (4) complex

Complex	Temperature		The $I_{f(H1)}/I_{0(H1)}$ value observed in each measurement								
	K	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}	7^{th}	8^{th}	9^{th}	10^{th}
Ru(4)	348.8	0.844	0.846	0.843	0.841	0.842	0.853	0.835	0.831	0.844	0.834
	353.4	0.704	0.740	0.747	0.747	0.766	0.704	0.750	0.729	0.763	0.768
	357.9	0.627	0.631	0.627	0.608	0.621	0.615	0.622	0.619	0.618	0.617
	362.5	0.531	0.524	0.521	0.522	0.524	0.532	0.526	0.530	0.527	0.531
	367.1	0.403	0.396	0.402	0.399	0.399	0.403	0.402	0.402	0.402	0.402
	371.6	0.354	0.314	0.325	0.330	0.332	0.338	0.344	0.355	0.318	0.322

S-2 Data of the SST measurement

S-2-1 The list of data of Fe complex (3)

Table S-2-1-1 The calculated values of ln(k/T)

Ex K	p. No.	1^{st}	2 nd	3 rd	4 th	5 th	6^{th}	7 th	8 th	9 th	10 th	average
	380.8	-8.979	-9.009	-8.967	-8.985	-8.964	-8.858	-8.891	-8.926	-8.927	-8.927	-8.943 ± 0.044
	385.3	-8.514	-8.659	-8.663	-8.637	-8.459	-8.514	-8.535	-8.399	-8.494	-8.433	-8.531 ± 0.089
	389.9	-8.169	-8.191	-8.227	-8.185	-8.153	-8.226	-8.203	-8.202	-8.210	-8.182	-8.195 ± 0.023
	393.6	-7.947	-7.919	-7.972	-7.961	-8.015	-7.990	-7.997	-7.957	-7.982	-7.972	-7.971 ± 0.026
	398.1	-7.620	-7.700	-7.662	-7.778	-7.740	-7.701	-7.709	-7.706	-7.686	-7.666	-7.697 ± 0.041
	401.8	-7.484	-7.404	-7.427	-7.433	-7.455	-7.440	-7.419	-7.431	-7.404	-7.325	-7.422 ± 0.039

 Table S-2-1-2
 The y-intercept and slope values of Eyring plot

	(least square method)
y-intercept	19.392 ± 0.352
slope	-10.722 ± 0.056

Table S-2-1-3 Thermodynamic parameters of complex **3**

ΔS^{\neq}	$-33 \pm 3 \text{ J K}^{-1} \text{mol}^{-1}$	-8 ± 1 cal K ⁻¹ mol ⁻¹
ΔH^{\sharp}	89 ± 1 kJ mol ⁻¹	21 ± 1 kcal mol ⁻¹
ΔG^{\sharp}_{373}	$101 \pm 2 \text{ kJ mol}^{-1}$	24 ± 1 kcal mol ⁻¹

S-2-2 The list of data of Ru complex (4)

	Table S-2-2-1	The	calculated	value	of ln	(k/T)
--	---------------	-----	------------	-------	-------	-------

exp.No. K	1 st	2 nd	3 rd	4 th	5 th	6 th	7^{th}	8 th	9 th	10^{th}	average
348.8	-9.420	-9.436	-9.417	-9.399	-9.408	-9.490	-9.352	-9.327	-9.420	-9.348	-9.402 ± 0.046
353.4	-8.724	-8.904	-8.942	-8.942	-9.044	-8.722	-8.954	-8.845	-9.029	-9.055	-8.916±0.114
357.9	-8.408	-8.425	-8.406	-8.326	-8.380	-8.357	-8.388	-8.375	-8.371	-8.364	-8.380 ± 0.027
362.5	-8.006	-7.976	-7.964	-7.969	-7.975	-8.007	-7.985	-8.001	-7.988	-8.004	-7.988±0.015
367.1	-7.475	-7.445	-7.469	-7.460	-7.458	-7.477	-7.472	-7.471	-7.470	-7.472	-7.467 ± 0.009
371.6	-7.255	-7.078	-7.129	-7.152	-7.161	-7.186	-7.212	-7.261	-7.094	-7.112	-7.164 ± 0.061

Fig. S-2-2-1. Eyring plot for the haptotropic rearrangement of **4**

Table S-2-2-2 The y-intercept and slope values of Eyring plot

	(least square method)
y-intercept	27.688 ± 0.424
slope	-12.929 ± 0.062

Table S-2-2-3Thermodynamic parameters of complex 4

ΔS^{\neq}	$29 \pm 4 \text{ J K}^{-1} \text{mol}^{-1}$	$8 \pm 1 \text{ cal } \text{K}^{-1} \text{mol}^{-1}$
ΔH^{\sharp}	$106 \pm 1 \text{ kJ mol}^{-1}$	26 ± 1 kcal mol ⁻¹
ΔG^{\dagger}_{373}	$95\pm2 \text{ kJ mol}^{-1}$	22 ± 1 kcal mol ⁻¹

S-3 x,y,z-coordinates of ground and transition state structures of complex 3 and 4

		~			F	e (3)					
	B	3LYP			В	1B95			PB	E1PBE	
	х	У	z		x	У	Z		x	У	z
Fe	0.928	-0.085	1.304	Fe	-1.410	-0.582	0.109	Fe	-1.452	-0.528	0.128
Fe	-1.131	-0.562	-0.613	Fe	1.299	-0.269	0.189	Fe	1.306	-0.339	0.147
С	-0.093	1.633	0.578	С	-0.494	0.142	-1.625	С	-0.564	0.235	-1.605
С	-0.101	1.617	2.018	С	-1.277	-1.027	-1.909	С	-1.426	-0.872	-1.920
С	1.242	1.648	2.493	С	-2.628	-0.779	-1.561	С	-2.749	-0.566	-1.499
С	2.098	1.683	1.367	С	-2.705	0.535	-1.055	С	-2.731	0.724	-0.923
С	1.304	1.655	0.167	С	-1.397	1.118	-1.058	С	-1.390	1.237	-0.958
С	1.862	1.559	-1.186	С	-1.081	2.402	-0.440	С	-0.977	2.482	-0.314
С	1.159	1.052	-2.224	С	0.150	2.673	0.030	С	0.285	2.674	0.119
С	-0.250	0.634	-2.322	С	1.397	1.901	-0.063	С	1.490	1.847	-0.044
С	-1.311	1.266	-1.601	С	1.764	1.142	-1.214	С	1.767	1.099	-1.229
С	-1.314	1.579	-0.225	С	0.942	0.197	-1.851	С	0.871	0.214	-1.863
н	1.552	1.641	3.535	Н	-3.452	-1.478	-1.658	Н	-3.617	-1.214	-1.596
Н	3.184	1.698	1.400	Н	-3.603	1.021	-0.687	Н	-3.588	1.236	-0.493
С	3.311	1.946	-1.360	С	-2.218	3.350	-0.211	С	-2.047	3.499	-0.040
н	1.710	0.939	-3.164	н	0.262	3.618	0.568	Н	0.466	3.602	0.673
С	-2.519	-1.173	-1.539	С	3.018	-0.470	0.518	С	3.020	-0.628	0.378
0	-3.419	-1.617	-2.108	0	4.124	-0.644	0.765	0	4.132	-0.862	0.561
С	-0.056	-1.969	-0.900	С	0.802	-0.161	1.895	С	0.902	-0.243	1.872
0	0.523	-2.931	-1.171	0	0.652	-0.098	3.033	0	0.801	-0.199	3.018
С	-1.934	-1.001	0.927	С	1.127	-2.009	-0.140	С	1.053	-2.058	-0.199
0	-2.524	-1.261	1.884	0	1.069	-3.124	-0.409	0	0.960	-3.174	-0.467
С	0.538	-1.253	2.584	С	-1.606	-2.196	0.800	С	-1.713	-2.161	0.722
0	0.321	-1.978	3.454	0	-1.790	-3.246	1.227	0	-1.942	-3.227	1.091
С	2.197	-1.128	0.633	С	-1.890	0.199	1.617	С	-1.828	0.160	1.700
0	3.090	-1.740	0.234	0	-2.291	0.745	2.543	0	-2.166	0.643	2.688
н	3.499	2.974	-1.007	н	-2.768	3.555	-1.140	н	-2.587	3.774	-0.960
н	3.983	1.281	-0.789	Н	-2.942	2.938	0.509	Н	-2.796	3.117	0.674
Н	3.609	1.887	-2.416	Н	-1.858	4.302	0.194	Н	-1.617	4.413	0.393

Table S-3-1 ground state structures of complex 3

Electronic Supplementary Information for Dalton Transactions This journal is The Royal Society of Chemistry 2008

			1				1				
Н	-2.261	1.407	-2.123	Н	2.807	1.169	-1.536	Н	2.797	1.089	-1.600
Н	-0.987	1.582	2.645	Н	-0.891	-1.957	-2.314	Н	-1.115	-1.801	-2.388
С	-2.569	2.186	0.371	С	1.512	-0.617	-2.982	С	1.360	-0.575	-3.052
Н	-2.806	1.779	1.364	Н	1.211	-1.670	-2.931	Н	0.990	-1.609	-3.054
Н	-2.451	3.278	0.486	Н	1.170	-0.225	-3.952	Н	1.023	-0.105	-3.991
Н	-3.439	2.001	-0.276	Н	2.608	-0.587	-2.963	Н	2.458	-0.619	-3.063
С	-0.596	0.146	-3.725	С	2.538	2.600	0.647	С	2.692	2.476	0.635
Н	-0.369	0.927	-4.474	Н	2.675	3.619	0.252	Н	2.853	3.503	0.263
Н	-0.001	-0.740	-3.992	Н	2.334	2.694	1.721	Н	2.537	2.545	1.722
Н	-1.657	-0.120	-3.830	Н	3.487	2.063	0.534	Н	3.616	1.908	0.465

Table S-3-2 transition state structures of complex **3**

	Fe(TS) (3)											
	B	3LYP			В	1B95		PBE1PBE				
	х	У	Z		х	У	z		х	У	z	
Fe	-0.431	-1.567	0.000	Fe	-0.348	-1.539	0.000	Fe	-0.390	-1.525	0.000	
Fe	-0.698	1.189	0.000	Fe	-0.665	1.104	0.000	Fe	-0.634	1.106	0.000	
С	0.945	-3.170	0.000	С	1.013	-3.092	0.000	С	0.923	-3.137	0.000	
С	1.253	1.990	0.000	С	1.165	2.049	0.000	С	1.203	2.002	0.000	
С	1.187	-2.361	1.147	С	1.234	-2.280	1.142	С	1.162	-2.327	1.145	
С	1.187	-2.361	-1.147	С	1.234	-2.280	-1.142	С	1.162	-2.327	-1.145	
С	1.530	-1.038	0.729	С	1.539	-0.955	0.724	С	1.529	-1.011	0.724	
С	1.530	-1.038	-0.729	С	1.539	-0.955	-0.724	С	1.529	-1.011	-0.724	
С	1.695	1.387	1.270	С	1.603	1.464	1.268	С	1.667	1.410	1.265	
С	1.695	1.387	-1.270	С	1.603	1.464	-1.268	С	1.667	1.410	-1.265	
С	1.827	0.075	1.628	С	1.778	0.161	1.623	С	1.797	0.102	1.628	
С	1.827	0.075	-1.628	С	1.778	0.161	-1.623	С	1.797	0.102	-1.628	
Н	0.663	-4.219	0.000	Н	0.756	-4.146	0.000	Н	0.595	-4.174	0.000	
Н	1.088	-2.686	-2.179	Н	1.140	-2.604	-2.172	Н	1.089	-2.653	-2.180	
Н	1.876	2.114	-2.070	Н	1.725	2.190	-2.076	н	1.825	2.138	-2.068	
С	2.162	-0.276	-3.056	С	2.062	-0.182	-3.052	С	2.097	-0.247	-3.054	
Н	2.487	0.610	-3.618	Н	2.348	0.707	-3.625	н	2.432	0.635	-3.615	
Н	2.959	-1.036	-3.111	Н	2.864	-0.928	-3.136	Н	2.870	-1.026	-3.129	
н	1.281	-0.692	-3.578	н	1.168	-0.613	-3.531	Н	1.194	-0.632	-3.560	
С	2.162	-0.276	3.056	С	2.062	-0.182	3.052	С	2.097	-0.247	3.054	

н	2.487	0.610	3.618	н	2.348	0.707	3.625	н	2.432	0.635	3.615
Н	1.281	-0.692	3.578	н	1.168	-0.613	3.531	н	1.194	-0.632	3.560
н	2.959	-1.036	3.111	н	2.864	-0.928	3.136	н	2.870	-1.026	3.129
С	1.410	3.511	0.000	С	1.231	3.564	0.000	С	1.300	3.517	0.000
Н	0.944	3.962	-0.889	н	0.738	3.981	-0.886	Н	0.812	3.944	-0.888
н	0.944	3.962	0.889	Н	0.738	3.981	0.886	Н	0.812	3.944	0.888
н	2.478	3.799	0.000	Н	2.275	3.916	0.000	Н	2.352	3.852	0.000
Н	1.088	-2.686	2.179	н	1.140	-2.604	2.172	Н	1.089	-2.653	2.180
Н	1.876	2.114	2.070	н	1.725	2.190	2.076	н	1.825	2.138	2.068
С	-1.005	0.963	-1.794	С	-0.982	0.873	-1.781	С	-0.929	0.918	-1.787
0	-1.304	0.887	-2.905	0	-1.274	0.730	-2.883	0	-1.219	0.870	-2.900
С	-1.651	-1.791	-1.264	С	-1.573	-1.782	-1.242	С	-1.628	-1.718	-1.239
С	-1.651	-1.791	1.264	С	-1.573	-1.782	1.242	С	-1.628	-1.718	1.239
С	-1.005	0.963	1.794	С	-0.982	0.873	1.781	С	-0.929	0.918	1.787
С	-1.519	2.738	0.000	С	-1.574	2.582	0.000	С	-1.575	2.562	0.000
0	-2.428	-2.018	2.088	0	-2.354	-2.017	2.052	0	-2.430	-1.923	2.039
0	-2.428	-2.018	-2.088	0	-2.354	-2.017	-2.052	0	-2.430	-1.923	-2.039
0	-1.304	0.887	2.905	0	-1.274	0.730	2.883	0	-1.219	0.870	2.900
0	-2.101	3.735	0.000	0	-2.193	3.551	0.000	0	-2.229	3.508	0.000

Table S-3-3	ground	state	structures	of	complex	4

	Ru (4)												
	B	3LYP		B1B95					PBE1PBE				
	x	У	z		x	У	z		x	У	z		
Ru	1.018	-0.143	1.296	Ru	1.521	-0.488	-0.025	Ru	-1.541	-0.466	0.060		
Ru	-1.169	-0.505	-0.683	Ru	-1.351	-0.334	-0.132	Ru	1.360	-0.366	0.087		
С	0.010	1.809	0.572	С	0.519	0.673	1.645	С	-0.574	0.731	-1.614		
С	0.040	1.804	2.014	С	1.385	-0.330	2.204	С	-1.491	-0.226	-2.177		
С	1.396	1.825	2.457	С	2.727	-0.054	1.829	С	-2.811	0.069	-1.735		
С	2.227	1.821	1.307	С	2.716	1.100	1.012	С	-2.736	1.196	-0.878		
С	1.404	1.782	0.125	С	1.362	1.552	0.854	С	-1.364	1.611	-0.762		
С	1.928	1.688	-1.239	С	0.959	2.644	-0.025	С	-0.901	2.674	0.127		
С	1.180	1.264	-2.286	С	-0.294	2.756	-0.504	С	0.376	2.752	0.558		
С	-0.247	0.927	-2.385	С	-1.507	1.982	-0.217	С	1.564	1.963	0.206		
С	-1.269	1.551	-1.591	С	-1.802	1.446	1.080	С	1.792	1.434	-1.110		

С	-1.228	1.812	-0.203	С	-0.918	0.690	1.874	С	0.858	0.714	-1.886
Н	1.730	1.861	3.491	н	3.605	-0.615	2.133	Н	-3.716	-0.460	-2.022
Н	3.313	1.847	1.315	н	3.589	1.574	0.576	н	-3.581	1.677	-0.390
С	3.399	1.977	-1.427	С	2.038	3.579	-0.485	С	-1.941	3.620	0.653
Н	1.716	1.147	-3.234	н	-0.454	3.558	-1.230	н	0.580	3.535	1.297
С	-2.679	-1.003	-1.775	С	-3.235	-0.580	-0.355	С	3.238	-0.651	0.238
0	-3.578	-1.367	-2.396	0	-4.351	-0.787	-0.521	0	4.356	-0.888	0.359
С	-0.095	-2.119	-1.026	С	-0.856	-0.674	-1.990	С	0.932	-0.723	1.951
0	0.418	-3.109	-1.310	0	-0.713	-0.889	-3.106	0	0.830	-0.959	3.070
С	-2.109	-1.082	0.926	С	-1.138	-2.137	0.554	С	1.111	-2.149	-0.614
0	-2.706	-1.394	1.859	0	-1.035	-3.184	1.005	0	0.996	-3.195	-1.070
С	0.530	-1.432	2.618	С	1.780	-2.340	-0.377	С	-1.837	-2.317	0.339
0	0.256	-2.175	3.459	0	1.975	-3.458	-0.561	0	-2.060	-3.438	0.480
С	2.288	-1.377	0.577	С	1.934	-0.104	-1.842	С	-1.893	-0.153	1.895
0	3.124	-2.064	0.173	0	2.255	0.169	-2.911	0	-2.185	0.082	2.984
Н	3.666	2.982	-1.058	Н	2.572	4.029	0.363	Н	-2.494	4.110	-0.164
Н	4.027	1.254	-0.876	Н	2.788	3.055	-1.098	Н	-2.684	3.094	1.278
Н	3.679	1.917	-2.487	Н	1.619	4.386	-1.095	Н	-1.483	4.402	1.273
Н	-0.831	1.829	2.662	Н	1.069	-1.142	2.851	Н	-1.224	-1.026	-2.864
Н	-2.223	1.760	-2.083	Н	-2.833	1.505	1.434	Н	2.810	1.482	-1.508
С	-0.649	0.579	-3.816	С	-2.705	2.524	-0.973	С	2.803	2.474	0.921
Н	-0.435	1.424	-4.495	н	-2.868	3.587	-0.733	Н	2.974	3.540	0.689
Н	-0.078	-0.287	-4.186	Н	-2.550	2.455	-2.057	Н	2.689	2.391	2.012
Н	-1.716	0.336	-3.904	Н	-3.625	1.978	-0.734	Н	3.707	1.917	0.640
С	-2.453	2.430	0.446	С	-1.426	0.113	3.170	С	1.307	0.159	-3.216
Н	-2.678	1.987	1.426	Н	-1.063	-0.906	3.343	Н	0.916	-0.850	-3.403
Н	-2.301	3.512	0.602	Н	-1.094	0.728	4.020	Н	0.959	0.805	-4.039
Н	-3.341	2.294	-0.188	Н	-2.521	0.079	3.174	Н	2.403	0.100	-3.262

	Ru(TS) (4)											
	B	3LYP		B1B95				PBE1PBE				
	x	У	z		х	У	z		х	У	z	
Ru	-0.350	-1.657	0.000	Ru	-0.415	-1.604	0.000	Ru	-0.446	-1.598	0.000	
Ru	-0.724	1.248	0.000	Ru	-0.578	1.242	0.000	Ru	-0.587	1.261	0.000	
С	1.423	-3.199	0.000	С	1.170	-3.244	0.000	С	1.121	-3.269	0.000	

С	1.428	2.028	0.000	С	1.530	1.955	0.000	С	1.525	1.926	0.000
С	1.558	-2.369	1.148	С	1.367	-2.430	1.139	С	1.333	-2.455	1.146
С	1.558	-2.369	-1.148	С	1.367	-2.430	-1.139	С	1.333	-2.455	-1.146
С	1.776	-1.013	0.732	С	1.672	-1.098	0.726	С	1.666	-1.127	0.729
С	1.776	-1.013	-0.732	С	1.672	-1.098	-0.726	С	1.666	-1.127	-0.729
С	1.807	1.422	1.277	С	1.843	1.323	1.275	С	1.865	1.294	1.274
С	1.807	1.422	-1.277	С	1.843	1.323	-1.275	С	1.865	1.294	-1.274
С	1.970	0.109	1.634	С	1.905	0.006	1.631	С	1.937	-0.024	1.630
С	1.970	0.109	-1.634	С	1.905	0.006	-1.631	С	1.937	-0.024	-1.630
Н	1.262	-4.274	0.000	н	0.943	-4.305	0.000	Н	0.869	-4.326	0.000
Н	1.514	-2.711	-2.179	н	1.295	-2.759	-2.178	Н	1.256	-2.790	-2.178
Н	1.917	2.146	-2.091	н	1.974	2.040	-2.090	Н	2.023	2.008	-2.090
С	2.246	-0.223	-3.081	С	2.069	-0.331	-3.080	С	2.166	-0.374	-3.071
Н	2.473	0.682	-3.661	н	2.330	0.554	-3.670	Н	2.457	0.510	-3.653
Н	3.092	-0.923	-3.181	н	2.842	-1.096	-3.232	Н	2.950	-1.139	-3.182
Н	1.369	-0.705	-3.549	н	1.126	-0.733	-3.486	Н	1.246	-0.781	-3.526
С	2.246	-0.223	3.081	С	2.069	-0.331	3.080	С	2.166	-0.374	3.071
Н	2.473	0.682	3.661	н	2.330	0.554	3.670	Н	2.457	0.510	3.653
Н	1.369	-0.705	3.549	Н	1.126	-0.733	3.486	Н	1.246	-0.781	3.526
Н	3.092	-0.923	3.181	н	2.842	-1.096	3.232	Н	2.950	-1.139	3.182
С	1.575	3.548	0.000	С	1.750	3.454	0.000	С	1.782	3.423	0.000
Н	1.112	3.998	-0.890	н	1.307	3.920	-0.882	Н	1.350	3.903	-0.889
Н	1.112	3.998	0.890	Н	1.307	3.920	0.882	Н	1.350	3.903	0.889
Н	2.645	3.827	0.000	Н	2.827	3.685	0.000	Н	2.867	3.626	0.000
Н	1.514	-2.711	2.179	н	1.295	-2.759	2.178	Н	1.256	-2.790	2.178
Н	1.917	2.146	2.091	н	1.974	2.040	2.090	Н	2.023	2.008	2.090
С	-1.050	1.070	-1.954	С	-0.910	1.055	-1.934	С	-0.922	1.106	-1.935
0	-1.297	1.018	-3.077	0	-1.145	0.985	-3.054	0	-1.174	1.070	-3.055
С	-1.696	-1.852	-1.333	С	-1.792	-1.695	-1.306	С	-1.805	-1.679	-1.312
С	-1.696	-1.852	1.333	С	-1.792	-1.695	1.306	С	-1.805	-1.679	1.312
С	-1.050	1.070	1.954	С	-0.910	1.055	1.934	С	-0.922	1.106	1.935
С	-1.489	2.971	0.000	С	-1.300	2.966	0.000	С	-1.273	2.995	0.000
0	-2.486	-2.042	2.155	0	-2.622	-1.741	2.102	0	-2.620	-1.796	2.119
0	-2.486	-2.042	-2.155	0	-2.622	-1.741	-2.102	0	-2.620	-1.796	-2.119
0	-1.297	1.018	3.077	0	-1.145	0.985	3.054	0	-1.174	1.070	3.055
	-2.010	4.003	0.000	0	-1.790	4.007	0.000	0	-1.747	4.046	0.000

<u>S-4</u> Thermodynamic parameters for **3** and **4** by DFT calculation with three functionals.

The estimation for the thermodynamic parameters of DFT calculation

The calculated thermodynamic parameters for the target complexes were obtained by DFT methodologies using Gaussian 03. Introduction for these calculations was reported by *"Thermochemistry in Gaussian"* on their web site; <u>http://www.gaussian.com/g_whitepap/thermo/thermo.pdf</u>. The Gaussian's output using option (Freq=anal) offers the thermodynamic parameters at 298.15 K temperature under 1 atm pressure. The following in an example of the output files showing the thermodynamic data under these conditions for the ground state of complex **3**, which was obtained by using B3LYP functional.

^^^^ - Thermochemistry -Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 6 and mass 12.00000 Atom 2 has atomic number 6 and mass 12.00000 Atom 3 has atomic number 6 and mass 12.00000 Atom 4 has atomic number 6 and mass 12.00000 12.00000 Atom 5 has atomic number 6 and mass Atom 6 has atomic number 6 and mass 12.00000 Atom 7 has atomic number 6 and mass 12.00000 Atom 8 has atomic number 12.00000 6 and mass Atom 9 has atomic number 6 and mass 12.00000 Atom 10 has atomic number 6 and mass 12.00000 Atom 11 has atomic number 1 and mass 1.00783 Atom 12 has atomic number 1 and mass 1.00783 Atom 13 has atomic number 6 and mass 12.00000 Atom 14 has atomic number 1 and mass 1.00783 Atom 15 has atomic number 26 and mass 55.93494 Atom 16 has atomic number 26 and mass 55 93494 Atom 17 has atomic number 12.00000 6 and mass Atom 18 has atomic number 8 and mass 15.99491 Atom 19 has atomic number 6 and mass 12.00000 Atom 20 has atomic number 8 and mass 15.99491 12.00000 Atom 21 has atomic number 6 and mass Atom 22 has atomic number 8 and mass 15.99491 Atom 23 has atomic number 12 00000 6 and mass 8 and mass Atom 24 has atomic number 15.99491 Atom 25 has atomic number 6 and mass 12.00000 Atom 26 has atomic number 8 and mass 15.99491 Atom 27 has atomic number 1 and mass 1.00783 Atom 28 has atomic number 1 and mass 1.00783 Atom 29 has atomic number 1 and mass 1.00783 Atom 30 has atomic number 1.00783 1 and mass Atom 31 has atomic number 1 and mass 1.00783 Atom 32 has atomic number 6 and mass 12.00000 Atom 33 has atomic number 1 and mass 1.00783

Atom 34 has atomic number

Atom 35 has atomic number 1 and mass

1 and mass

1.00783

1.00783

Atom 36 has atomic number 6 at	nd mass	12.00000					
Atom 38 has atomic number 1 at	nd mass	1.00783					
Atom 39 has atomic number 1 at	nd mass	1.00783					
Molecular mass: 421.95400 am	iu.	11007.00					
Principal axes and moments of ine	rtia in ato	mic units:	3				
FIGENVALUES 6506 70	0107921	$\frac{2}{64284912'}$	2 56765				
X 1.000	000 0.0	0104 - 0.0	00277				
Y -0.000	88 0.99	0834 0.0	05752				
Z 0.002	-0.05	751 0.9	99834				
This molecule is an asymmetric to	p.						
Rotational symmetry number 1.							
Warning assumption of classical	l behavior	for rotatio	n				
may cause significant	error						
Rotational temperatures (Kelvin)	0.01	.331	0.01093	0.0094	.9		
Rotational constants (GHZ):	0.1	27737	0.22782	0.197	783		
Zero-point vibrational energy	721238.9	(Joules/N					
Warning availation of	1/2 f 17 dec	2.38024 (K	cal/Mol)				
vibrations may cause	significant	error	euom as				
Vibrational temperatures: 50	11 57	80 90	9 35 108	8 98 113	3 27		
(Kelvin)	120.02	140.10	141.19	151.34	172.19		
(itervili)	180.88	202.37	234.80	240.57	248.18		
	258.50	275.10	285.79	309.55	349.14		
	403.44	425.87	445.25	457.53	478.82		
	521.59	541.17	557.17	588.79	615.58		
	637.66	647.50	669.63	673.06	707.61		
	709.94	720.37	735.99	751.69	771.49		
	787.31	795.69	814.57	822.35	840.84		
	864.92	876.01	896.43	906.83	928.02		
	940.98	998.72	1029.48	1196.98	1233.83		
	1238.63	1248.36	1300.96	1320.39	1354.64		
	151611	1430.75	1453.90	1501.01	1505.09		
	1705.69	1316.90	1341.53	1040.09	1004.40		
	1963.87	1977 70	2011.95	2014 17	2019.47		
	2035.28	2065.96	2011.55	2014.17	2102.06		
	2107.28	2113.32	2117.04	2147.08	2171.49		
	2233.59	2436.14	2905.81	2910.78	2947.58		
	2952.48	3017.81	4337.62	4341.42	4354.82		
	4419.82	4441.99	4460.77	4491.22	4499.86		
	4502.80	4517.64	4529.96	4660.43	4681.26		
	4692.36						
Zero-point correction=			0.27470	5 (Hartree/I	Particle)	2	
Thermal correction to Energy=			0.300116	(1141100)	(unitered)		
Thermal correction to Enthalpy=			0.301061				
Thermal correction to Gibbs Free l	Energy=	().220745			\succ	Table S-4-A
Sum of electronic and zero-point E	Energies=		-1317.03	6267			
Sum of electronic and thermal Ene	ergies=		-1317.0	10856			
Sum of electronic and thermal Ent	halpies=		-1317.00	9911		J	
Sum of electronic and thermal Free	e Energies	=	-1317.09	0228			
E (Therm	al)	C	Cv		S	2	
KCal/M	ol	Cal/Mol	-Kelvin	Cal/Mol-	-Kelvin		
<u>T</u> otal 188.32	26	95	.212	16	59.039	l	Table S 1 D
Electronic 0.000		0.00	00	0.	000	ح	1aule 5-4-B
Iranslational 0.889	`	2.9	81	44.	010		
Vibrational 186.549	,	2.9	201 250	34 QA	+.307	J	
	~~~~			, , , , , , , , , , , , , , , , , , ,	~~~~~	~~~~	~~~~~

From the above Gaussian's output, we obtained the thermodynamic parameters as shown in Table S-4-A.

Table S-4-A							
entry		the values of energy (Hartree/Particle)					
0	The total electronic energy	-1317.310972					
1	Zero-point correction	0.274705					
2	Thermal correction to Energy	0.300116					
3	Thermal correction to Enthalpy	0.301061					
4	Thermal correction to Gibbs Free Energy	0.220745					
5	Sum of electronic and zero-point Energies	-1317.036267					
6	Sum of electronic and thermal Energies	-1317.010856					
7	Sum of electronic and thermal Enthalpies	-1317.009911					
8	Sum of electronic and thermal Free Energies	-1317.090228					

The data summarized in entries 1-8 are those described in the output file shown in page 14. The content of entry 0 is listed in the other part of the same output file, which is not described in this supporting information.

Each entry on this table shows the following value:

- 1: The zero-point energy is calculated using only the non-imaginary frequencies.
- 2: Internal thermal correction to energy  $(E_{tot})$  collects the internal thermal energies from translation, rotation, molecular vibration and electronic motion partition functions:

$$E_{tot} = E_t + E_r + E_v + E_e \tag{eq.S-1}$$

 $E_t$ : internal thermal energy due to translation

- $E_r$ : internal thermal energy due to rotation (for non linear polyatomic molecule)
- $E_{v}$ : internal thermal energy due to molecular vibration
- $E_e$ : internal thermal energy due to electronic motion

We demonstrate the each internal thermal energy on Table S-4-B.

Thermal correction to entropy  $(S_{tot})$  can also be obtained from corresponding four contributions:

$$S_{tot} = S_t + S_r + S_v + S_e \tag{eq.S-2}$$

 $S_t$ : the entropy contribution due to translation

- $S_r$ : the entropy contribution due to rotation (for non linear polyatomic molecule)
- $S_{v}$ : the entropy contribution due to molecular vibration

 $S_e$ : the entropy contribution due to electronic motion

3: Internal thermal correction to Enthalpy  $(H_{corr})$  summate thermal correction to energy  $E_{tot}$  and Boltzmann's temperature  $(k_BT)$  where  $k_B$  is Boltzmann's constant.

$$H_{corr} = E_{tot} + k_B T \tag{eq.S-3}$$

4: Internal thermal correction to Gibbs Free Energy  $(G_{corr})$  can be derived as following standard relation:

$$G_{\rm corr} = H_{\rm corr} - TS_{\rm tot}$$
 (eq. S-4)

The total electronic energy ( $\varepsilon_0$ ) added to zero-point Energies (1), internal thermal energies (2), internal enthalpies (3) and internal thermal Gibbs free energies (4) make entries 5-8, respectively.

Table S-4-A2 Total electronic energies	, zero-point energies, thermal energies, thermal enthalpies and							
thermal Gibbs free energies on ground state for complexes <b>3</b> using B3LYP functional at 298.15K under 1atm.								
	Ground state (B3LYP)							
$\varepsilon_0$ (au.)	-1317.31097							
ZP (au.)	-1317.03627							
E _{thrm} (au.)	-1317.01086							
H(au.)	-1317.00991							
G(au.)	-1317.09023							

Table S-4-B shows the each internal energy in eq. S-1. These energies convert to KCal/Mol or Cal/Mol-Kelvin unit using the relation of physical constant; 1Hartree = 627.50959 kcal.

Table S-4	Table S-4-B											
entry	Motion	E(Thermal)	Cv	S								
		KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin								
1	<u>T</u> otal	188.326	95.212	169.039								
2	Electronic	0.000	0.000	0.000								
3	Translational	0.889	2.981	44.010								
4	Rotational	0.889	2.981	34.507								
5	Vibrational	186.548	89.250	90.522								

These data show the parameters which are necessary for the estimation of  $\Delta E_{therm}$ ,  $\Delta H$ ,  $\Delta G$  and  $\Delta S$ . In similar fashion, the data of **3** and **4** on ground states and transition states calculated by using B3LYP, B1B95 and PBE1PBE functionals are summarized in Table S-4-1 and Table S-4-2, which includes the data of **3** described above for comparison. Estimated  $\Delta E_{therm}$ ,  $\Delta H$ ,  $\Delta G$  and  $\Delta S$  by these data are summarized in Table S-4-3.

			Ground state	(298.15K)			Transition state(298K)					
Complex	<b>3</b> (Fe)			4 (Ru)				<b>3</b> (Fe)		<b>4</b> (Ru)		
Function	B3LYP	B1B95	PBE1PBE	B3LYP	B1B95	PBE1PBE	B3LYP	B1B95	PBE1PBE	B3LYP	B1B95	PBE1PBE
$S_{tot}$ (cal/mol·K)	169.039	166.454	166.821	176.134	173.238	173.285	167.747	167.851	165.222	179.970	176.249	178.433
$S_t$ (cal/mol·K)	44.010	44.010	44.010	44.597	44.597	44.597	44.010	44.010	44.010	44.597	44.597	44.597
$S_{\rm r}$ (cal/mol·K)	34.507	34.386	34.417	34.940	34.826	34.850	34.532	34.415	34.423	34.952	34.826	34.862
$S_v$ (cal/mol·K)	90.522	88.059	88.395	96.597	93.815	93.837	89.205	89.427	86.790	100.421	96.826	98.974
$S_{\rm e}$ (cal/mol·K)	0	0	0	0	0	0	0	0	0	0	0	0

Table S-4-1. Internal thermal total entropy (S_{tot}) for complexes 3 and 4 using three density functional; B3LYP, B1B95 and PBE1PBE at 298.15K under 1atm.

Table S-4-2. Total electronic energies, zero-point energies, thermal energies, thermal enthalpies and thermal Gibbs free energies on ground states and transition states for complexes 3 and 4 using three density functional; B3LYP, B1B95 and PBE1PBE at 298.15K under 1atm.

			3 (	Fe)					4 (1	Ru)		
	<u>B3LYP</u>		BIB95		PBE1PBE		<u>B3LYP</u>		BII	<u>395</u>	PBE1PBE	
	Ground	Transition	Ground	Transition	Ground	Transition	Ground	Transition	Ground	Transition	Ground state	Transition
	state	state	state	state	state	state	state	state	state	state		state
$\varepsilon_0$ (au.)	-1317.31097	-1317.26772	-1316.87649	-1316.82412	-1316.00850	-1315.95542	-1258.62056	-1258.59021	-1258.11341	-1258.07308	-1257.38182	-1257.34276
ZP (au.)	-1317.03627	-1316.99459	-1316.59815	-1316.54801	-1315.73043	-1315.67942	-1258.34841	-1258.31896	-1257.83786	-1257.79873	-1257.10646	-1257.06847
E _{thrm} (au.)	-1317.01086	-1316.96953	-1316.57333	-1316.52319	-1315.70553	-1315.65481	-1258.32196	-1258.29206	-1257.81195	-1257.77291	-1257.08056	-1257.04202
H (au.)	-1317.00991	-1316.96859	-1316.57238	-1316.52224	-1315.70459	-1315.65386	-1258.32102	-1258.29111	-1257.81100	-1257.77196	-1257.07962	-1257.04107
G (au.)	-1317.09023	-1317.04829	-1316.65147	-1316.60197	-1315.78385	-1315.73236	-1258.40471	-1258.37662	-1257.89331	-1257.85571	-1257.16195	-1257.12585

Complex         3 (Fe)         4 (Ru)						
	<u>B3LYP</u> <u>BIB95</u>		PBE1PBE	<u>B3LYP</u>	<u>BIB95</u>	PBE1PBE
K	298.15	298.15	298.15	298.15	298.15	298.15
$\Delta E_{thrm}$ (kcal/mol.)	25.93	31.46	31.83	18.77	24.50	24.19
$\Delta H$ (kcal/mol.)	25.93	31.46	31.83	18.77	24.50	24.19
$\Delta G$ (kcal/mol.)	26.32	31.06	32.31	17.62	23.60	22.65
$\Delta S$ (cal/mol.)	-1.29	1.35	-1.60	3.84	3.01	5.15

Table S-4-3. Thermodynamic parameters for 3 and 4 by DFT calculation with three functionals.(at 298.15K)

In similar ways, the following procedures gave the thermodynamic parameters at 373K, which is in our experimental condition on the present study, using freqchk utility program.

Then, we used the total electronic energy ( $\varepsilon_0$ ), which is not related to thermal factor, was obtained at the result of condition at 298.15K.

A representative freqchk's output file is shown in p19-20, tables of parameters are summarized in p21-23.

~~~~~~	~~~~~	~~~~~	~~~~/	~~~~	~~~~~	~~~~~~	 
- Thermochemistry -							
Temperature 373.000 Ke	vin. Pressure	1.00000	Atm.				
Molecular mass: 421.954	00 amu.						
Principal axes and moments	of inertia in atom	ic units:					
	1 2		3				
EIGENVALUES 6	506.700107921.6	42849122.	56765				
Х	0.76711 -0.470	82 -0.43	574				
Y	0.18063 -0.493	23 0.85	094				
Z	0.61556 0.73	47 0.29	0333				
This molecule is an asymme	tric top.						
Rotational symmetry number	r 1.						
Warning assumption of cl	assical behavior f	or rotation					
may cause signi	ficant error						
Rotational temperatures (Ke	lvin) 0.013	31 0.	01093	0.0094	9		
Rotational constants (GHZ):	0.2	737	0.22782	0.197	783		
Zero-point vibrational energ	y 721238.9	(Joules/Mc	ol)				
	172.	38024 (Kca	al/Mol)				
Warning explicit consider vibrations may	ation of 53 degr cause significant of	ees of free error	dom as				
Vibrational temperatures:	50.11 57.	30 99.1	35 10	8.98 11	3.27		
(Kelvin)	120.02	40.10	41.19	151.34	172.19		
	180.88	202.37	234.80	240.57	248.18		
	258.50	275.10	285.79	309.55	349.14		
	403.44	425.87	445.25	457.53	478.82		
	521.59	541.17	557.17	588.79	615.58		

637.66 647.50 669.63 673.06 707.61

709.94	720.37	735.99	751.69	771.49
787.31	795.69	814.57	822.35	840.84
864.92	876.01	896.43	906.83	928.02
940.98	998.72	1029.48	1196.98	1233.83
1238.63	1248.36	1300.96	1320.39	1354.64
1387.21	1436.75	1453.90	1501.61	1505.09
1516.11	1518.96	1541.35	1548.89	1604.40
1705.68	1711.12	1765.94	1817.06	1924.07
1963.87	1977.70	2011.95	2014.17	2019.47
2035.28	2065.96	2084.34	2089.36	2102.06
2107.28	2113.32	2117.04	2147.08	2171.49
2233.59	2436.14	2905.81	2910.78	2947.58
2952.48	3017.81	4337.62	4341.42	4354.82
4419.82	4441.99	4460.77	4491.22	4499.86
4502.80	4517.64	4529.96	4660.43	4681.26
4692.36				

Zero-point correction	n=	0.27470	5 (Hartree/Particle)	
Thermal correction t	o Energy=	0.312442	2	
Thermal correction t	o Enthalpy=	0.313624		
Thermal correction t	o Gibbs Free Energy=	0.199161		
	E (Thermal)	C_v	S	
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin	
Total	196.061	111.055	192.563	
Electronic	0.000	0.000	0.000	
Translational	1.112	2.981	45.122	
Rotational	1.112	2.981	35.175	
Vibrational	193.837	105.094	112.266	
~~~~~~~~	~~~~~~~	~~~~~~	^^^^^	~~~~~

			Ground	l state			Transition state					
Complex	<b>3</b> (Fe)			<b>4</b> (Ru)				<b>3</b> (Fe)		<b>4</b> (Ru)		
Function	B3LYP	B1B95	PBE1PBE	B3LYP	B1B95	PBE1PBE	B3LYP	B1B95	PBE1PBE	B3LYP	B1B95	PBE1PBE
E _{tot} (kcal/mol)	196.061	197.888	197.755	195.250	196.974	196.834	194.779	196.418	196.408	195.003	196.049	196.552
$E_t$ (kcal/mol)	1.112	1.112	1.112	1.112	1.112	1.112	1.112	1.112	1.112	1.112	1.112	1.112
$E_r$ (kcal/mol)	1.112	1.112	1.112	1.112	1.112	1.112	1.112	1.112	1.112	1.112	1.112	1.112
$E_v$ (kcal/mol)	193.837	195.664	195.531	193.026	194.750	194.610	192.555	194.195	194.184	192.779	193.825	194.329
$E_v$ (kcal/mol)	0	0	0	0	0	0	0	0	0	0	0	0

Table S-4-4. Internal thermal total energy (*E*_{tot}) for complexes 3 and 4 using three density functional; B3LYP, B1B95 and PBE1PBE at 373K under 1 atm.

**Table S-4-5.** Internal thermal total entropy (*S*_{tot}) for complexes **3** and **4** using three density functional; B3LYP, B1B95 and PBE1PBE at 373K under 1atm.

			Ground	d state			Transition state					
Complex		<b>3</b> (Fe) <b>4</b> (Ru)				<b>3</b> (Fe) <b>4</b> (Ru)						
Function	B3LYP	B1B95	PBE1PBE	B3LYP	B1B95	PBE1PBE	B3LYP	B1B95	PBE1PBE	B3LYP	B1B95	PBE1PBE
$S_{tot}$ (cal/mol·K)	192.563	189.735	190.059	200.086	196.960	196.980	190.997	190.933	188.240	204.009	199.636	202.255
$S_t$ (cal/mol·K)	45.122	45.122	45.122	45.710	45.710	45.710	45.122	45.122	45.122	45.710	45.710	45.710
$S_r$ (cal/mol·K)	35.175	35.053	35.084	35.607	35.493	35.518	35.200	35.083	35.090	35.619	35.493	35.529
$S_v$ (cal/mol·K)	112.266	109.559	109.852	118.769	115.756	115.752	110.674	110.728	108.028	122.680	118.433	121.016
$S_{\rm e}$ (cal/mol·K)	0	0	0	0	0	0	0	0	0	0	0	0

			3 (	Fe)			4 (Ru)						
	B3LYP BIB95			PBE1PBE		<u>B3LYP</u>		BI	<u> 395</u>	PBE1PBE			
	Ground	Transition	Ground	Transition	Ground	Transition	Ground	Transition	Ground	Transition	Ground state	Transition	
	state	state	state	state	state	state	state	state	state	state		state	
E _{tot} (au.)	0.312442	0.31040	0.315355	0.31301	0.31514	0.31300	0.31115	0.310757	0.31390	0.312424	0.31368	0.313226	
H _{corr} (au.)	0.313624	0.31158	0.316536	0.31419	0.31632	0.31418	0.31233	0.311938	0.31508	0.313605	0.31486	0.314407	
G _{corr} (au.)	0.199161	0.19805	0.203755	0.20070	0.20335	0.20228	0.19340	0.190673	0.19800	0.194938	0.19777	0.194184	

 Table S-4-6.
 Internal thermal total energies, enthalpies and thermal Gibbs free energies on ground states and transition states for complexes 3 and 4 using three density functional; B3LYP, B1B95

 and PBE1PBE at 373K under 1atm.

 Table S-4-7.
 Total thermal energies, thermal enthalpies and thermal Gibbs free energies on ground states and transition states for complexes 3 and 4 using three density functional; B3LYP, B1B95 and PBE1PBE at 373K under 1atm.

			3 (	Fe)			<b>4</b> (Ru)						
	<u>B3LYP</u>		BIB95		PBE1PBE		<u>B3LYP</u>		BII	<u>395</u>	PBE1PBE		
	Ground	Transition	Ground	Transition	Ground	Transition	Ground	Transition	Ground	Transition	Ground state	Transition	
	state	state	state	state	state	state	state	state	state	state		state	
Ethrm (au.)	-1316.99853	-1316.95732	-1316.56113	-1316.51111	-1315.69336	-1315.64242	-1258.30941	-1258.27946	-1257.79952	-1257.76066	-1257.06815	-1257.02953	
H (au.)	-1316.99735	-1316.95614	-1316.55995	-1316.50992	-1315.69218	-1315.64124	-1258.30823	-1258.27828	-1257.79834	-1257.75947	-1257.06697	-1257.02835	
G (au.)	-1317.11181	-1317.06967	-1316.67273	-1316.62342	-1315.80515	-1315.75313	-1258.42716	-1258.39954	-1257.91541	-1257.87814	-1257.18405	-1257.14857	

Complex		<b>3</b> (Fe)		<b>4</b> (Ru)				
	<u>B3LYP</u>	<u>BIB95</u>	PBE1PBE	<u>B3LYP</u>	<u>BIB95</u>	PBE1PBE		
K	373	373	373	373	373	373		
$\Delta E_{thrm}$ (kcal/mol.)	25.86	31.39	31.97	18.80	24.39	24.23		
$\Delta H$ (kcal/mol.)	25.86	31.39	31.97	18.80	24.39	24.23		
$\Delta G$ (kcal/mol.)	26.44	30.94	32.64	17.33	23.39	22.26		
ΔS (cal/mol.)	-1.57	1.20	-1.82	3.92	2.68	5.28		

**Table S-4-8.** Thermodynamic parameters for **3** and **4** by DFT calculation with three functionals at 373K under 1atm.

1 (au) = 627.50959 (kcal)

The  $\Delta E_{thrm}$ ,  $\Delta H$ ,  $\Delta G$  and  $\Delta S$  estimated for 3 and 4 by the theoretical study at 373K (Table S-4-8) can be compared with those determined experimentally (Table S-4-9).  $\Delta E_{thrm}$ ,  $\Delta H$  and  $\Delta G$  of the complex 3 and 4 calculated by using the B3LYP functionale are smaller than those estimated using the B1B95 or PBE1PBE functionale. The PBE1PBE method provided  $\Delta H$ ,  $\Delta G$  and  $\Delta S$  for 4 close to those determine experimentally; however, these are substantial difference in  $\Delta H$  and  $\Delta G$  for 3 between the calculations and experiments. Although  $\Delta H$  is often used as a standard for estimate the accuracy of the calculation, all of the  $\Delta Hs$  shown in Table S-4-8 are not very consistent with those determined experimentally. This may be attributed to the level of the calculation or solvent effect may be a part of the reasons. From the other standpoint, the  $\Delta H$ ,  $\Delta G$  and  $\Delta S$  of 4 calculated by using the PBE1PBE are roughly in accord with those determined experimentally; in contrast, the data of 3 determined experimentally are rather similar to those calculated by using the B3LYP. These seem to be attributed to the method to estimate the thermodynamic parameters of the iron and ruthenium complex.

At present stage, we concluded that the comparison in thermodynamic parameters between theory and experiment requires further investigation giving the calculation method guaranteed more accuracy.

Table S-4-9Thermodynamic parameters for the rearrangements of 3 and 4 obtained by experimental study.		
	3	4
$\Delta G^{\ddagger_{373}}(\text{kcal mol}^{-1})$	25±1	23±1
$\Delta H^{\ddagger}$ (kcal mol ⁻¹ )	$22 \pm 1$	25±1
$\Delta S^{\ddagger}$ (cal mol ⁻¹ K ⁻¹ )	-7±1	$7\pm1$

Determined by the SST experiments. Experimental errors were determined by the least squares of the Eyring plot. Note that the T1, which is the basis to calculate k, contains  $\sim$ 10% experimental errors.