Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2008

Acylmethyl(aryl)tellurium(IV, II) Derivatives: Intramolecular Secondary Bonding and Steric Rigidity

Ashok K. S. Chauhan,^{a1} Puspendra Singh,^a Ramesh C. Srivastava,^a Andrew Duthie^b, and Andreea Voda^b

^aDepartment of Chemistry, University of Lucknow, Lucknow 226007, India, ^bSchool of Life and Environmental Sciences, Deakin University, Geelong 3217, Australia. E-mail address: akschauhan@hotmail.com

Tel: 91 (522) 2740421 (Off.)

Mobile : 91 9415010763

Contents

		Page. No.			
1. Figures depicting supramolecular architectures					
	Figures S1-S3	2-4			
2.					
	Figures S4, S5	5			
3. Bond parameters for D –H···A Interactions					
	Table S1	6			

¹ Corresponding author. E-mail address: <u>akschauhan2003@yahoo.co.in</u> (A.K.S. Chauhan).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2008

Figure S2. 1-D Supramolecular motif via C—H…O H-Bonds in the lattices of **1Ba** (A) and **1Bb** (B). Only relevant H atoms are shown for clarity.

Figure S3. Centrosymmetric pair of **1Cc** molecules realized by means of a supramolecular synthon provided by isopropyl fragments.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2008

Figure S4. Molecular structure of 1Ac showing 50% probability displacement ellipsoids and the atom numbering scheme. Hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°): Te—C1 = 2.131(5), Te—C11 = 2.141(5), Te—I1 = 2.8951(5), Te—I2 = 2.9499(4), Te…O = 2.958(4); C1—Te—C11 = 93.5(2), I1—Te—I2 = 169.01(2).

Figure S5. Molecular structure of 1Cc showing 50% probability displacement ellipsoids and the atom numbering scheme. Hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°): Te-C1 = 2.103(4), Te-C11 = 2.129(4), Te-I1 = 2.9513(4), Te-I2 = 2.8690(4), Te···O = 2.874(3); C1-Te-C11 = 98.4(2), I1-Te-I2 = 173.26(1).

	D–H…A	d(D-H) (Å)	$d(H \cdot \cdot \cdot A)(A)$	$d(D \cdot \cdot \cdot A)$ (Å)	<(DHA) (°)
1Aa	C4A—H4A… OA ⁱ	0.95	2.611	3.448	147.3
	C5A—H5A… OA ⁱ	0.95	2.688	3.505	144.4
1Ac	С3—Н3… О ^{іі}	0.95	2.561	3.397	146.9
1Ba	C5–H5····O ⁱⁱⁱ	0.95	2.499	3.402	158.9
	C9–H9A…O ⁱⁱⁱ	0.98	2.656	3.577	156.7
	C3–H3····Cl1 ^{iv}	0.95	2.904	3.741	147.6
1Bb	С5 — Н5…О ^v	0.95	2.567	3.449	154.8
	С9—Н9В…О ^v	0.98	2.519	3.472	163.9
	C7–H7A…Br1 ^{vi}	0.98	3.124	3.650	115.1
	C14–H14C…Br2 ^{vii}	0.98	3.147	4.093	162.6
1Ca	C2A–H2A…O2A ^{viii}	0.95	2.733	3.550	144.6
	C7B–H7B1… O2A ^{viii}	0.98	2.547	3.350	139.2
	C2B–H2B····O2B ^{ix}	0.95	2.635	3.395	137.2
	$C14A-H14A\cdots O2B^{x}$	0.98	2.768	3.642	148.8
	C2B–H2B····Cl1B ^{xi}	0.95	2.921	3.463	117.4
	C5B–H5B····Cl2A ^{xii}	0.95	2.937	3.864	165.1
	C11B–H11C…Cl1A ⁱⁱⁱ	0.99	2.839	3.816	169.1
	C11B–H11D…Cl1B ^{xiii}	0.99	2.874	3.646	135.4
	C14B–H14F…Cl1A ⁱⁱⁱ	0.98	2.930	3.805	149.2
1Cc	C14—H14C····O2 ^{iv}	0.98	2.678	3.498	141.5
	C7–H7B····O1 ^{xiv}	0.98	2.700	3.380	127.0
	C2—H2…I2 ^{xiv}	0.95	3.153	4.020	152.6
	$C7-H7A\cdots I2^{xv}$	0.98	3.159	3.912	134.7
	C11–H11A…I1 ^{xvi}	0.99	3.068	4.005	158.4
	C11–H11B…I1 ^{xvii}	0.99	3.151	3.995	144.1

Table S1. Bond parameters for D-H…A interactions^a

^a Symmetry operations used to generate equivalent atoms: (i) 1.5-x, y, 1.5+z; (ii) 1.5+x, 1.5-y, 1.5+z; (iii) 1+x, y, z; (iv) 2-x, -y, -z; (v) -1+x, y, z; (vi) -x, -1.5+y, 1.5-z; (vii) -x, 1-y, -z; (viii) - 1.5+x, 1.5-y, 2-z; (ix) -1.5+x, 1.5-y, 2-z; (xi) 1-x, 1.5+y, 1.5-z; (xi) -1.5+x, 1.5-y, 2-z; (xii) 1/2+x, 1.5-y, 2-z; (xiii) 1.5+x, 1.5-y, 2-z; (xiv) x, 1.5-y, 1.5+z; (xv) -1.5+x, 1.5-y, -½+z; (xvi) x, y, 1+z; (xvii) 1-x, -y, -z;.