Electronic Supplementary Information

$[\text{Re}_2(\mu-1,2,4-\text{triazolate})_2(\mu-\text{OH})(\text{CO})_6]^-$: a novel metalloligand for the construction of flexible porous coordination networks

Elisa Barea,^a Antonio Rodríguez-Diéguez,^b Jorge A. R. Navarro,^c Giuseppe D'Alfonso^a and Angelo Sironi^b

^a Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Università degli Studi di Milano, Via Venezian 21, 20133 Milano.
^b Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Università degli Studi di Milano, Via Venezian 21, 20133 Milano.

^c Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.

Characterization and Physical Measurements.

Elemental (C,H,N) analyses were obtained at a CHNS/O Perkin Elmer 2400 analyzer and ¹H NMR spectra were recorded on a Bruker DRX400 spectrometer (University of Milan); thermogravimetric analyses were registered on a NETZSCH STA 409 PC/PG equipment, at heating rate of 20 °C min⁻¹, respectively (University of Insubria) in the presence of a dinitrogen atmosphere. Sorption isotherms were measured on a Micromeritics Tristar 3000 (University of Granada) volumetric instruments under continuous adsorption conditions. Prior to measurement, powder samples were heated at 60 °C for 2 h and outgassed to 10⁻³ Torr using a Micromeritics Flowprep. X-ray powder diffractometric experiments were performed on a Bruker AXS Advance D8 diffractometer (University of Milan), by employing a background free sample holder. Typically, a sequence of scans in the 5-40° 2θ range was performed.

General characterization:

[Et₄N]**2**. Anal. Calcd for Re₂C₁₈H₂₅N₇O₇: C, 26.24; H, 3.06; N, 11.90. Found: C, 26.18; H, 3.05; N, 12.25. ¹H NMR (CD₃CN, 298 K). δ (ppm) = 8.12 (s, 4 H); 3.18 (q, 8 H, J_{HH} = 7.3 Hz, CH₂CH₃); 1.23 (tt, 12 H, J_{HH} = 7.3 Hz, J_{HN}= 1.8 Hz, CH₂CH₃). IR (CH₃CN). v (C=O, cm⁻¹) = 2019 (vw), 2007 (vs), 1900 (vs), 1886 (s).

Ag@2. Anal. Calcd for AgRe₂C₁₀H₅N₆O₆·(CH₃OH)_{0.33}: C, 15.59; H, 0.80; N, 10.56. Found: C, 15.42; H, 0.80; N, 10.54.

Ag@2_D. Anal. Calcd for AgRe₂C₁₀H₅N₆O₆⋅((CH₂CH₂OH)₂O)_{1.5}: C, 20.00; H, 2.10; N, 8.75. Found: C, 19.89; H, 2.17; N, 9.08.

Fig. S1 Asymmetric unit in $\{[Et_4N][Re_2(\mu-trz-\kappa N^1:\kappa N^2)_2(\mu-OH)(CO)_6]\}_n \cdot nCH_3OH$. Re (green), C (grey), N (blue), O (red).

Fig. S2 Perspective view of one of the layers containing solvation MeOH molecules in the $Ag_4(Re_2)_4$ voids. Re (green), Ag (light blue), C (grey), N (blue), O (red).

Fig. S3 TGA curves of (a) **Ag@2** (calc. per 0.33 MeOH molecules, -1.3 %; found, -1.3 %) and (b) **Ag@2**_D (calc. per 1.5 (CH₂CH₂OH)₂O) molecules, -16.6 %; found, -17.8 %).

Fig. S4 Evolution of the XRPD traces of $Ag@2_M$ during desolvation in the 10.5-12.5° range, collected using a Position Sensitive Detector with a window of 2° on a drop of $Ag@2_M$ slurry deposited on a free background sample holder. It can be observed that the 020 reflection of the solvated phase disappears in only 2.5 minutes.

Fig. S5 Evolution of the XRP diffractograms during the $Ag@2_E \leftrightarrow Ag@2$ ' transformation. In this case, it should be noted that the desolvation process occurs in a few hours and not in a few seconds as in $Ag@2_M$ A drop of $Ag@2_E$ slurry was deposited on a free background sample holder and, then, we started to record a set of XRPD patterns (5-40° 20, step 0.02°, 1s per step). The t₀ diffractogram corresponds to the first trace lacking of the solvent bump.

Fig. S6 XRPD traces of the desolvated Ag@2 (blue) and Ag@2' (pink) phases.

Fig. S7 XRP diffractogram of $Ag@2_D$ (green) in comparison with the XRPD traces of the Ag@2 phase (blue) and the simulated spectrum of $Ag@2_M$ (red).

Fig. S8 N₂ (a) and CO₂ (b) sorption isotherms of Ag@2 measured at 77 and 293 K, respectively. The open symbols denote desorption.