Supplementary Information

High-resolution transmisson electron microscope image of CeO₂ nanoparticles that were synthesized in the presence of hexanedioic acid

Figure S1a shows a magnified TEM image that is identical to Fig. 4f in the main text. Figures S1b and S1c respectively show the unit cell structure of CeO₂ crystal and atomic structure of CeO₂ octahedral nanocrystals from the [110] direction. Figure S1a shows that the cubic products were assembled from smaller (ca. 7 nm) CeO₂ octahedral nanocrystals. In addition, a comparison between Figs. S1a and S1c suggests that the primary octahedral nanocrystals share the same crystallographic orientation, aligning in the [110] direction to the electron beam of TEM.

Figure S1 (a) Magnified TEM image of CeO_2 nanoassemblies that were synthesized in the presence of hexanedioic acid (HOOC(CH₂)₄COOH), (b) unit cell structure of CeO₂, and (c) atomic structure of CeO₂ octahedral nanocrystals from the [110] direction.

Thermogravimetry

Figure S2 shows the thermogravimetry spectra of the synthesized CeO₂ products. The results show that the cubic CeO₂ nanoassemblies that were synthesized with HOOC(CH₂)₄COOH had larger weight loss than the octahedral CeO₂ nanocrystals that were synthesized without HOOC(CH₂)₄COOH. The difference in the weight loss corresponds to the weight of attached HOOC(CH₂)₄COOH. Based on the weight loss and the diameter of primary CeO₂ octahedral nanocrystals, the coverage of HOOC(CH₂)₄COOH on CeO₂ surface was estimated as 1.3 molecules / nm².

Figure S2 Thermogravimetric spectra of CeO_2 products that were synthesized (a) with and (b) without hexanedioic acid (HOOC(CH₂)₄COOH).