Supplementary Material (ESI) for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 2008

Electronic Supporting Information (ESI)

Kinetics and mechanism of $\mathrm{O}-\mathrm{O}$ bond cleavage in the reaction of $\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{edta})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$ with hydroperoxides in aqueous solution

Debabrata Chatterjee,* Anindita Sikdar, Vidya R. Patnam, Alexander Theodoridis and Rudi van Eldik*

Table S1 Effect of the $\mathrm{KHSO}_{5} /{ }^{\prime} \mathrm{BuOOH}$ concentration on k^{\prime} obs for the formation of $\mathrm{ABTS}^{\bullet+}$ at $25^{\circ} \mathrm{C} .\left[\mathrm{Ru}^{\text {III }}(\mathrm{edta})\right]=1 \times 10^{-6} \mathrm{M},[\mathrm{ABTS}]=1 \times 10^{-3} \mathrm{M}, \mathrm{pH}=6.1(0.2 \mathrm{M}$ acetate buffer).

[POH], (M)	k^{\prime} obs, $\left(\mathrm{s}^{-1}\right)$	
	KHSO_{5}	${ }^{t} \mathrm{BuOOH}$
0.0025	0.011 ± 0.002	0.004 ± 0.0002
0.005	0.017 ± 0.003	0.008 ± 0.0003
0.0075	0.02 ± 0.004	0.012 ± 0.003
0.01	0.022 ± 0.042	0.015 ± 0.003
0.0125	0.024 ± 0.003	0.019 ± 0.004

For the rate constants that are directly obtained from the slope, the uncertainty was taken as it was obtained by linear fit using Origin 6.0 program. In other cases the uncertainty calculation was carried out as per following example:
$\mathrm{A}=1.67 \pm 0.05 ; \mathrm{B}=5.23 \pm 0.09$ and $\mathrm{C}=1.88 \pm 0.07$. Now to compute standard deviation (dx) for $\mathrm{X}=(\mathrm{AxB}) / \mathrm{C}$, we proceed as follows. Here, $\mathrm{X}=(1.67 \times 5.23) / 1.88=4.65$
Now dx/4.65 $=\left\{(0.05 / 1.67)^{2}+(0.09 / 5.23)^{2}+(0.07 / 1.88)^{2}\right\}^{1 / 2}=0.508$
$\mathrm{dx}=4.65 \mathrm{x} 0.508=0.235$.
So, the value of X with standard deviation would be $\mathbf{4 . 6 5} \pm \mathbf{0 . 2 3}$

Figure S1. Plot of $1 / \mathrm{k}_{\mathrm{obs}} v s .1 /\left[\mathrm{HSO}_{5}{ }^{-}\right]$for the reaction between $\left[\mathrm{Ru}(\mathrm{edta}) \mathrm{H}_{2} \mathrm{O}\right]^{-}\left(1.0 \times 10^{-4}\right.$ $\mathrm{M})$ and KHSO_{5} at different temperatures and $\mathrm{pH}=6.0(0.2 \mathrm{M}$ acetate buffer), followed at 391 nm .

Figure S2. Eyring plot of $\ln \left(\mathrm{k}_{1} / T\right)$ versus $1 / T$ for the data in Table 1: $\left[\mathrm{Ru}^{\mathrm{III}}\right]=1 \times 10^{-4} \mathrm{M}$, $\mathrm{pH}=6.1$ (0.2 M acetate buffer).

Figure S3. Plot of $\mathrm{k}_{\text {obs }}$ vs. [$\left.{ }^{t} \mathrm{BuOOH}\right]$ for the reaction between $\left[\mathrm{Ru}(\text { edta }) \mathrm{H}_{2} \mathrm{O}\right]^{-}\left(1.0 \times 10^{-4}\right.$ $\mathrm{M})$ and ${ }^{t} \mathrm{BuOOH}$ at different temperatures and $\mathrm{pH}=6.0(0.2 \mathrm{M}$ acetate buffer).

