Assembly of Tetra, Di and Mononuclear Molecular Cadmium Phosphonates using 2,4,6-Tri*iso*propylphenylphosponic acid and Ancillary Ligands

Vadapalli Chandrasekhar*, Palani Sasikumar, and Ramamoorthy Boomishankar

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India

e-mail: vc@iitk.ac.in

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India. Tel: 91-512-2597259, Fax: 91-512-2590007/2597436. e-mail: <u>vc@iitk.ac.in</u>

Figure S1(a): Molecular structure of 1

Figure S1(b): Plane representation of 1

Figure S1(c): Immediate coordination environment around Cd(1) in 1

Figure S1(d): Immediate coordination environment around Cd(2) in 1

This journal is (c) The Royal Society of Chemistry 2008

Figure S2(a): Molecular structure of 2

Figure S2(b): Plane representation of 2

Figure S2(c): Immediate coordination environment around Cd(1) in 2

Figure S2(d): Immediate coordination environment around Cd(2) in 2

Figure S3(a): Molecular structure of 3

Figure S3(b): Plane representation of 3

Figure S3(c): Immediate coordination environment around Cd(1) in 3

This journal is (c) The Royal Society of Chemistry 2008

Figure S3(d): Immediate coordination environment around Cd(2) in 3

Figure S4(a): Plane representation of 4

Figure S4(b): Immediate coordination environment around Cd(1) in 4

Figure S6: Infrared spectrum of 1 recorded as a KBr pellet

Figure S7: Infrared spectrum of 2 recorded as a KBr pellet

This journal is (c) The Royal Society of Chemistry 2008

Figure S10: Infrared spectrum of 5 recorded as a KBr pellet

Figure S11(a) : Infrared spectrum of the char residue of 1 recorded as a KBr pellet

Figure S11(b) : Infrared spectrum of $Cd_2P_2O_7^{-1}$

Figure S12(a): ESI-MS of 1 of fragmented species. The possible fragments are shown below.

Figure S12(b): ESI-MS of 1 of fragmented species. The possible fragments are shown below.

This journal is (c) The Royal Society of Chemistry 2008

 ${Cd_2[(ArP(O)_2(OH)]_4[(ArPO(OH)_2]_2]_-H}$

Figure S13(a): ESI-MS of **5** shows parent ion peak [M-H]⁺

This journal is (c) The Royal Society of Chemistry 2008

Figure S13(c): ESI-MS of 5 of fragmented species. The possible fragments are shown below.

{Cd[(ArP(O)₂(OH)](DMPZH)(MeOH)₃}

Figure S14(a): EDX analysis of char residue obtained from 1

Figure S14(b): EDX analysis of char residue obtained from 4

Element	Wt %	At %
O K	28.70	64.05
РК	16.22	18.69
CdL	55.08	17.26

Figure S15: SEM picture of the char residue obtained in the TGA of 1

Bond distances Å				
Geometry	1		2	
O(a)	Cd(1)-O(7)	2.260(3)	Cd(1)-O(7)	2.270(5)
O (e)	Cd(1)-O(10)	2.365(3)	Cd(1)-O(10)	2.424(8)
(e)OCd	Cd(1)-O(1)	2.154(3)	Cd(1)-O(1)	2.094(6)
O(e)	Cd(1)-O(4)	2.183(3)	Cd(1)-O(4)	2.068(6)
O(a)	Cd(1)-O(8)*	2.206(3)	Cd(1)-O(9)*	2.171(5)
O(a)	Cd(2)-O(9)	2.263(3)	Cd(2)-O(8)*	2.286(4)
(e)O////////////////////////////////////	Cd(2)-O(11)	2.356(4)	Cd(2)-O(11)	2.310(5)
Cd	Cd(2)-O(3)*	2.235(3)	Cd(2)-O(3)*	2.180(5)
(e)O	Cd(2)-O(6)	2.181(3)	Cd(2)-O(6)	2.210(5)
O(a)	Cd(2)-O(7)*	2.358(3)	Cd(2)-O(7)	2.509(5)
	Cd(2)-O(8)*	2.441(3)	Cd(2)-O(9)	2.347(5)

Table S1(a): Selected bond distance data (Å) for 1 and 2

Bond angles °				
Geometry	1		2	
O(a)	O(7)-Cd(1)-O(10)	175.67(12)	O(7)-Cd(1)-O(10)	163.3(2)
$\theta 1 \qquad \theta 2 \qquad \qquad$	O(1)-Cd(1)-O(8)*	129.90(12)	O(4)-Cd(1)-O(1)	135.4(2)
	O(4)-Cd(1)-O(8)*	99.14(12)	O(1)-Cd(1)-O(9)*	100.1(2)
O(a)	O(1)-Cd(1)-O(4)	129.76(13)	O(4)-Cd(1)-O(9)*	122.7(2)
O(a)	O(9)-Cd(2)-O(11)	176.68(14)	O(8)*-Cd(2)-O(11)	173.84(18)
$(e)O_{M_{M_{M_{M_{M_{M_{M_{M_{M_{M_{M_{M_{M_$	O(6)-Cd(2)-O(8)*	91.49(12)	O(6)-Cd(2)-O(7)	92.21(18)
φ <u></u>	O(6)-Cd(2)-O(3)*	108.71(13)	$O(3)^{*}-Cd(2)-O(6)$	111.0(2)
$(e)O^{\bullet} \phi 4 / \phi 4$	O(3)*-Cd(2)-O(7)*	97.68(12)	O(3)*-Cd(2)-O(9)	96.67(18)
U(a)	O(7)*-Cd(2)-O(8)*	61.14(10)	O(9)-Cd(2)-O(7)	59.81(15)

 Table S1(b): Selected bond angle data (°) for 1 and 2

This journal is (c) The Royal Society of Chemistry 2008

Table S2: Comparison of Infrared spectral data of char residue obtained from 1 with that of $Cd_2P_2O_7^{-1}$

TGA residue of 1	$Cd_2P_2O_7$	Stretching vibration v
1160 (s)	1154 (s)	PO ₂ (asym)
1079 (s)	1094 (vs)	i oʻş (usyili)
1030 (s)	1030 (s)	PO ₂ (sym)
1010 (s)	1010 (s)	
940 (s)	934 (s)	POP (asym)
	861 (sh)	()
724 (m)	721 (m)	POP (sym)

TGA residue of 1	$Cd_2P_2O_7$	Bending vibration δ
608 (m)	607 (m)	
571 (s)	565 (s)	PO ₃ (asym)
546 (sh)	545 (sh)	
529 (m)	528 (m)	
518 (m)		
489 (m)	488 (m)	PO ₃ (sym)
437 (w)	435 (w)	
408 (w)	409 (vw)	

References

This journal is (c) The Royal Society of Chemistry 2008

(1) D. D. Waal and C. Hutter, *Mater. Res. Bull.* 1994, **29**, 1129.