Electronic Supplementary Information (ESI)/Supporting information

for

 $^{2}_{\infty}$ [Cu₂(µ₅-btb)(µ-OH)(µ-H₂O)] a two-dimensional coordination polymer built from ferromagnetically coupled Cu₂ units (btb = benzene-1,2,3tricarboxylate)

Hesham A. Habib,^a Joaquin Sanchiz^{*b} and Christoph Janiak^{*a}

^a Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany. E-mail: <u>janiak@uni-freiburg.de</u>; Fax: 49 761 2036147; Tel: 49 761 2036127 ^b Departamento de Química Inorganíca, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain. E-mail: <u>jsanchiz@ull.es</u>; Fax 34 922 318461; Tel: 34 922 318458

Thermal stability: Compound **2** shows the first weight loss in the TGA (Fig. S2) from 80-140 °C which corresponds to the removal of the two coordinated and four crystal water molecules (obs. 17.3, calcd. 16.9%). The second weight loss in the temperature range 180-240 °C is assigned to a btb-ligand decarboxylation (obs. 8.5, calcd. for CO₂ 6.9%). A gradual weight loss due to ligand decomposition between 300-520 °C then leaves cadmium oxide, CdO (remaining mass obs. 21.9, calcd. 20.1%). An air-dried sample of compound **3** shows the first weight loss in the TGA (Fig. S3) in the temperature range 80-200 °C which is assigned to the removal of the six aqua ligands and the remaining crystal water (obs. 22.2, calcd. for 8H₂O 20.4%). This suggests that about two of the four crystal water molecules were lost upon air-drying or during the vacuum cycle in the TGA (hence calculations based on $[Zn(H_2O)_6](H_2btb)_2]\cdot 2H_2O$). A gradual weight loss due to decomposition of only *one* H₃btb molecule between 300-500 °C (obs. 34.6, calcd. 33.3%) apparently leaves a Zn-Hbtb species up to 640 °C (obs. 42.8, calcd. 43.4).

Fig. S1 Thermogravimetric analysis of ${}^{2}_{\infty}$ [Cu₂(μ_{5} -btb)(μ -OH)(H₂O)] (1) under nitrogen after a vacuum cycle. Thermogravimetric analyses were carried out on a simultaneous thermoanalysis apparatus STA 409 from Netzsch under nitrogen (heating rate: 10 K min⁻¹, N₂ flow rate: 75 ml/min).

Fig. S2 Thermogravimetric analysis of $[Cd(H_2btb)_2(H_2O)_4]\cdot 2H_2O$ (2) under nitrogen after a vacuum cycle. Thermogravimetric analyses were carried out on a simultaneous thermoanalysis apparatus STA 409 from Netzsch under nitrogen (heating rate: 10 K min⁻¹, N₂ flow rate: 75 ml/min).

Fig. S3 Thermogravimetric analysis of $[Zn(H_2O)_6](H_2btb)_2]\cdot 4H_2O$ (**3**) under nitrogen after a vacuum cycle. Thermogravimetric analyses on a simultaneous thermoanalysis apparatus STA 409 from Netzsch under nitrogen (heating rate: 10 K min⁻¹, N₂ flow rate: 75 ml/min).

The crystal packing of 2 is dictated by hydrogen bonding without any π interactions (Fig. S4). Adjacent molecular complexes of 2 are connected through strong hydrogen bonding into strands along *c* between the aqua ligands and from the aqua to the carboxylic groups. These hydrogen-bonded strands are extended along *b* into a 2D hydrogen-bonded network through H bonds from the crystal water molecule (O3) bridging between carboxylate groups (Table S1). The non-polar aromatic regions of the btb ligands separate the 2D nets along the *a* direction (not shown).

Fig. S4 Hydrogen bonding network (dashes) for the crystal packing of **2** (see Table S1 for details). Carbon atoms and C–C bonds depicted semi-transparent in stick representation with C-H bonds omitted for clarity.

D–H…A	D–H [Å]	H…A [Å]	D…A [Å]	D−H···A [°]
intramolecular				
$O1-H1A\cdots O14^2$	0.74(3)	2.07(3)	2.737(2)	152(3)
O1-H1B…O15	0.82(3)	2.00(3)	2.752(2)	153(3)
intermolecular - along c				
O2-H2B…O16	0.77(2)	2.13(2)	2.845(2)	155(3)
$O2-H2A\cdots O12^5$	0.81(3)	1.94(3)	2.737(2)	169(3)
O11–H11…O3 ⁶	0.84(3)	1.81(3)	2.647(2)	173(3)
O16–H16…O3 ^{6"}	0.82(3)	1.85(3)	2.662(2)	169(3)
intermolecular - along b				
O3–H5B····O13 ¹	0.75(3)	1.94(3)	2.687(2)	171(3)
O3–H5A…O14	0.79(3)	1.89(3)	2.679(2)	176(3)

Table S1 Hydrogen bonding interactions in [Cd(H₂btb)₂(H₂O)₄]·2H₂O (2).^a

^{*a*} D = Donor, A = acceptor. For found and refined atoms the standard deviations are given. Symmetry relations: 1 = x, 1+y, z; 2 = -x, y, 0.5-z; 5 = -x, -y, -z; 6 = x, -y, -0.5+z; 6' = x, 1-y, -0.5+z; 6'' = x, 1-y, 0.5+z

X-ray powder diffractograms

Fig. S5 X-ray powder diffractogram. Blue curve is simulated from single-crystal X-ray data of $^{2}{}_{\infty}$ [Cu₂(μ_{5} -btb)(μ -OH)(H₂O)] (1). Purple curve is measured on a microcrystalline sample of 1.

Fig. S6 X-ray powder diffractogram. Blue curve is simulated from single-crystal X-ray data of $[Cd(H_2btb)_2(H_2O)_4] \cdot 2H_2O$ (2). Purple curve is measured on a microcrystalline sample of 2.