Preparation of HBOCO and HQCO ligands from respective substituted acetonitriles that are not commercially available.

A
$$\begin{array}{c}
 & \text{OH} \\
 & \text{NH}_2
\end{array}$$

$$\begin{array}{c}
 & \text{CI} \\
 & \text{R.T. ether,} \\
 & + \text{N(C}_2\text{H}_5)_3,
\end{array}$$

$$\begin{array}{c}
 & \text{90°C} \\
 & + \text{NaCN; DMF}
\end{array}$$

$$\begin{array}{c}
 & \text{HBOCO}
\end{array}$$

Results of  $^{13}\text{C}\{^1\text{H}\}$  NMR spectroscopic investigations of benz(2-heteroaryl) cyanoximes.

| Cyanoxime                                              | Chemical shift, ppm    |
|--------------------------------------------------------|------------------------|
| 75 % anti- and 25% syn- isomers in dmso-d <sub>6</sub> | 1a 109.92              |
| solution at 298 K                                      | 2a 127.05              |
|                                                        | 3a 143.76              |
| HBIMCO                                                 | 4a 137.44              |
|                                                        | 5a 111.52              |
| 1a 8a                                                  | 6a 120.55              |
| NC 2a N 7a                                             | 7a 123.55              |
| HO—N 3a N 6a                                           | 8a 125.09              |
| 110 IN 14 4a 5                                         | 9a 142.58              |
| CH₃                                                    | 10a 33.01              |
| 10a ~                                                  | 35.01                  |
|                                                        | 1s 115.08              |
| 1s 9s 8s                                               | 2s 127.71              |
| NC 2s N 7s                                             | 3s 141.95              |
| N 3s N 4s 6s                                           | 4s 136.18              |
| 5s                                                     | 5s 111.76              |
| OH CH <sub>3</sub>                                     | 6s 120.60              |
| 10s                                                    | 7s 123.61              |
|                                                        | 8s 124.87              |
|                                                        | 9s 142.58              |
|                                                        | 10s 32.59              |
| 90 % anti- and 10% syn- isomers in dmso-d <sub>6</sub> | 108 32.37<br>1a 109.08 |
| solution at 298 K                                      | 2a 160.17              |
| Solution at 278 K                                      | 3a 152.97              |
| НВТСО                                                  | 4a 134.25              |
| 112100                                                 | 5a 123.17              |
| 1a 0 8a                                                | 6a 127.81              |
| NC N <sub>2</sub> 98                                   | 7a 127.75              |
| 2a / / / / / / / / / / / / / / / / / / /               | 8a 124.31              |
| HO-N $3a$ $S$ $4a$ $5a$ $6a$                           | 9a 129.31              |
| 4a 5a                                                  | ya 127.51              |
|                                                        | 1s 129.26              |
| 1s 8s                                                  | 2s 114.39              |
| NC 2s N 9s 7s                                          | 3s 150.96              |
| 38                                                     | 4s 136.24              |
| N                                                      | 5s 123.31              |
| OH 35                                                  | 6s 128.10              |
|                                                        | 7s 127.93              |
|                                                        | 8s 124.71              |
|                                                        |                        |
|                                                        | 9s 131.93              |

Results of  $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$  NMR spectroscopic investigations of benz(2-heteroaryl) cyanoximes (continued).

| Cyanoxime                                                                                                                                                                                     | Chemical shift, ppm                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 70 % <i>anti-</i> and 30% <i>syn-</i> isomers in dmso-d <sub>6</sub> solution at 298 K; anti- isomer exhibits dynamic proton exchange (tautomerism) between nitrogen atoms of the heterocycle | 10 112.72                                       |
| нвінсо                                                                                                                                                                                        | 1a 112.72<br>2a 135.17                          |
|                                                                                                                                                                                               | 3a 143.76                                       |
| 1a H 8a 7a N 4a 6a 5a                                                                                                                                                                         | 4a, 9a 123.16<br>5a, 8a 120.38<br>6a, 7a 124.79 |
| u                                                                                                                                                                                             | 1s 109.70                                       |
| 1s \\ 9s \&s                                                                                                                                                                                  | 2s 140.74                                       |
| NC 2s N 7s                                                                                                                                                                                    | 3s 144.26                                       |
| N 3s N 6s                                                                                                                                                                                     | 4s, 9s 128.59                                   |
| N N 4s 5s                                                                                                                                                                                     | 5s, 8s 114.79                                   |
| О-н                                                                                                                                                                                           | 6s, 7s 125.99                                   |
| 50 % anti- and 50% syn- isomers in dmso-d <sub>6</sub>                                                                                                                                        | 1a 109.11                                       |
| solution at 298 K                                                                                                                                                                             | 2a 129.33                                       |
|                                                                                                                                                                                               | 3a 160.24                                       |
| НВОСО                                                                                                                                                                                         | 4a 134.25                                       |
|                                                                                                                                                                                               | 5a 124.32                                       |
| 1a 9a 8a NC 20 N 7a                                                                                                                                                                           | 6a 127.86                                       |
| NC 2a N 7a                                                                                                                                                                                    | 7a 127.81                                       |
| HO-N 3a O 6a                                                                                                                                                                                  | 8a 123.23                                       |
| 4a 5a                                                                                                                                                                                         | 9a 152.98                                       |
|                                                                                                                                                                                               | 1s 114.66                                       |
| 1s 8s                                                                                                                                                                                         | 2s 128.11                                       |
| NC 2s N 9s 7s                                                                                                                                                                                 | 3s 152.82                                       |
| / 36                                                                                                                                                                                          | 4s 132.00                                       |
| N = 0                                                                                                                                                                                         | 5s 124.60                                       |
| OH 5s                                                                                                                                                                                         | 6s 127.27                                       |
|                                                                                                                                                                                               | 7s 126.34                                       |
|                                                                                                                                                                                               | 8s 123.18                                       |
|                                                                                                                                                                                               | 9s 150.96                                       |

## Results of $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectroscopic investigations of benz(2-heteroaryl) cyanoximes (continued).

| Cyanoxime                                           | Chemical shift, ppm |
|-----------------------------------------------------|---------------------|
| Mixture of 87.5 % anti- and 12.5% syn-              |                     |
| isomers in acetone-d <sub>6</sub> solution at 298 K | 1a 109.11           |
|                                                     | 2a 137.68           |
|                                                     | 3a 149.73           |
|                                                     | 4a 147.71           |
| HQCO                                                | 5a 128.18           |
|                                                     | 6a 128.21           |
| 6a                                                  | 7a 130.65           |
| 5a 7a                                               | 8a 129.71           |
| 4a 8a                                               | 9a 128.68           |
| 1a N 9a                                             | 10a 117.21          |
| NC 2a                                               | 11a 137.48          |
| 3a 10a                                              |                     |
| HO N                                                | 1s not found        |
|                                                     | 2s not found        |
| 65                                                  | 3s 150.30           |
| 5s 7s                                               | 4s 148.05           |
| 45 88                                               | 5s 127.01           |
| 1s N 9s                                             | 6s 128.06           |
| NC 2s 10s                                           | 7s 130.20           |
| 11s                                                 | 8s 129.09           |
| NOH                                                 | 9s not found        |
| ОП                                                  | 10s 120.58          |
|                                                     | 11s 134.68          |
|                                                     |                     |

Table. Data of IR spectroscopic studies of synthesized benz(2-heteroaryl)cyanoximes and their Tl(I) complexes.

| Ligand studied | Compound  |             |                    |        | Observed and   |                         |        |                   |
|----------------|-----------|-------------|--------------------|--------|----------------|-------------------------|--------|-------------------|
|                |           | ν(Ο-Η)      | $\nu (C-H)^{arom}$ | ν(C≡N) | $v(C=N)^{het}$ | v(C=N) <sup>oxime</sup> | ν(C=C) | v(N-O)            |
| NCO            | НВОСО     | 3433        | 3101               | 2243   | 1612           | 1585                    | 1460   | 1045              |
| HO-N N         | Tl(BOCO)  | -           | 3094               | 2220   | 1610           | 1407                    | 1455   | 1160              |
|                | нвтсо     | 3240        | 3075               | 2236   | 1590           | 1575                    | 1510   | 1063              |
| NC S           | Cs(BTCO)  | -           | 3054               | 2207   | 1590           | 1372                    | 1506   | 1209              |
|                | Tl(BTCO)  | -           | 3060               | 2207   | 1590           | 1415                    | 1507   | 1148              |
| NC H           | НВІНСО    | 3345, 3284* | 3061               | 2239   | 1614           | 1533                    | 1441   | 1065              |
| HO-N N         | Tl(BIHCO) | 3411, 3287* | 3054               | 2211   | 1610           | 1540, 1522              | 1449   | 1185, 110<br>1103 |

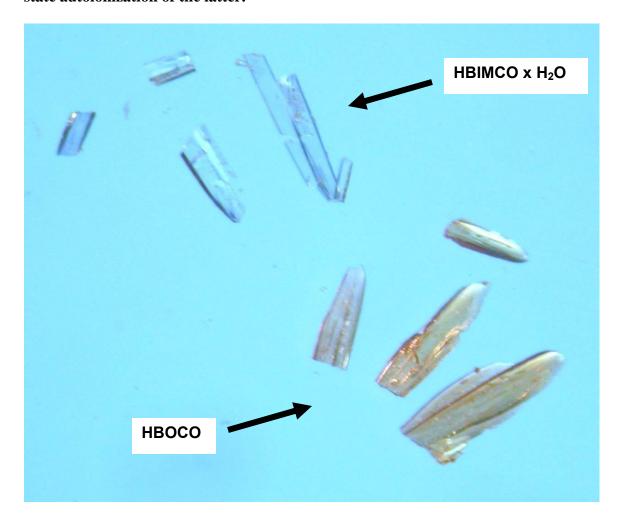
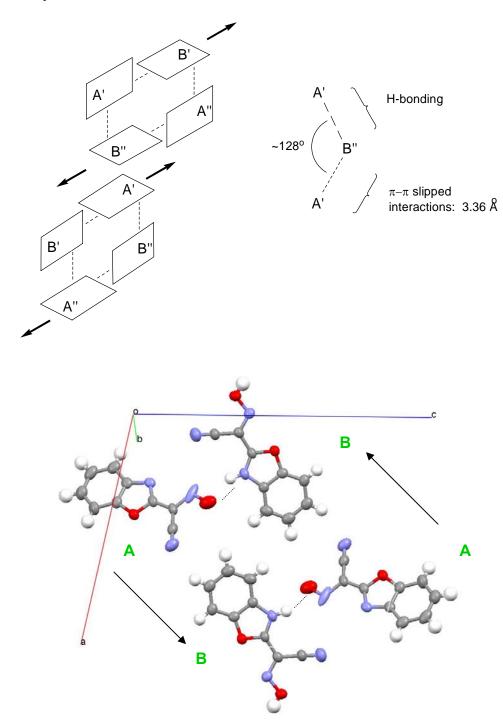

 $<sup>* -</sup> v^{as} \overline{(NH)}$  and  $v^s (NH)$  respectively

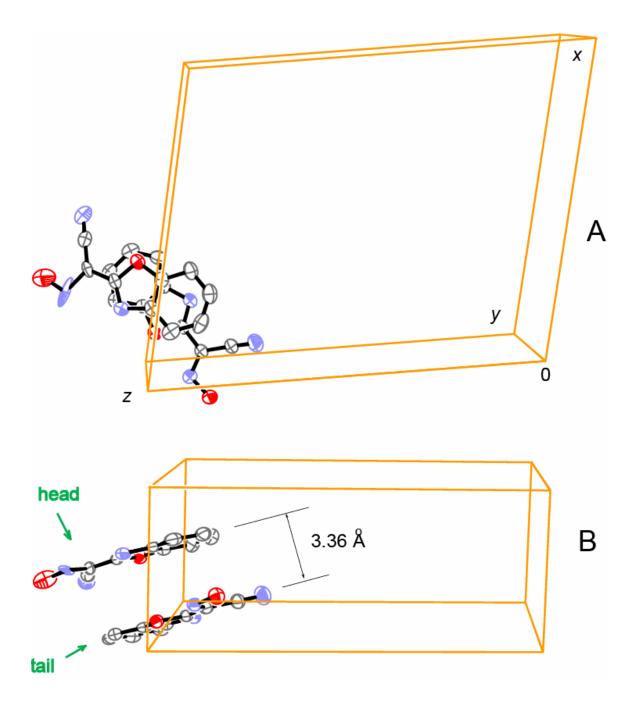
Table. Data of IR spectroscopic studies of synthesized benz(2-heteroaryl)cyanoximes and their Tl(I) complexes (continued).

|      | Ligand                |           |        |                    | Obser      | ved and assign | ed frequencies,         | cm <sup>-1</sup> |        |
|------|-----------------------|-----------|--------|--------------------|------------|----------------|-------------------------|------------------|--------|
|      |                       |           | ν(Ο-Η) | $\nu (C-H)^{arom}$ | ν(C≡N)     | $v(C=N)^{het}$ | v(C=N) <sup>oxime</sup> | v(C=C)           | v(N-O) |
| NC.  | H <sub>3</sub> C<br>N | нвімсо    | 3550   | 3023               | 2236       | 1610           | 1596                    | 1478, 1451       | 1090   |
| HO-N | N                     | Tl(BIMCO) | -      | 3050               | 2210       | 1610           | 1500, 1468              | 1468, 1447       | 1220,  |
|      |                       | HQCO      | 3570   | 3030               | 2230       | 1596           | 1615                    | 1508             | 1030   |
| NC   | N                     | Cs(QCO)   | -      | 3042               | 2200       | 1604           | 1328                    | 1505             | 1210   |
| HO N |                       | Tl(QCO)   | -      | 3060, 3042         | 2217, 2210 | 1596           | 1429                    | 1503             | 1188   |

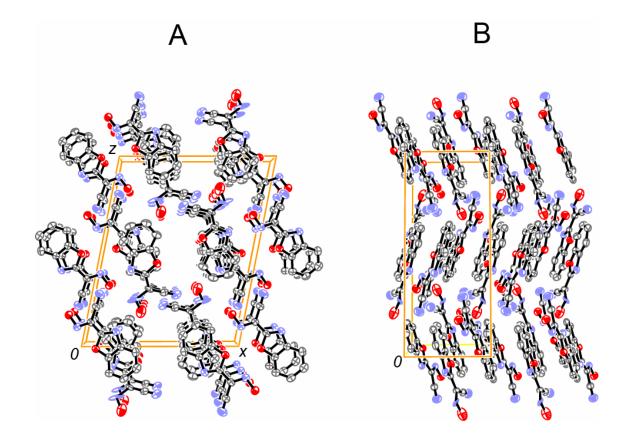

for the paper "Benz(2-heteroaryl)cyanoximes and their TI(I) salts: new room temperature blue emitters."

Side by side photographs of crystals of HBIMCO x  $H_2O$  and HBOCO showing difference in color between the two 2-benz(heteroarylcyanoximes) attributed to solid state autoionization of the latter.

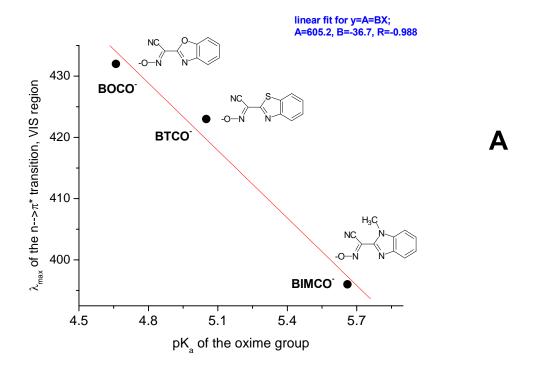


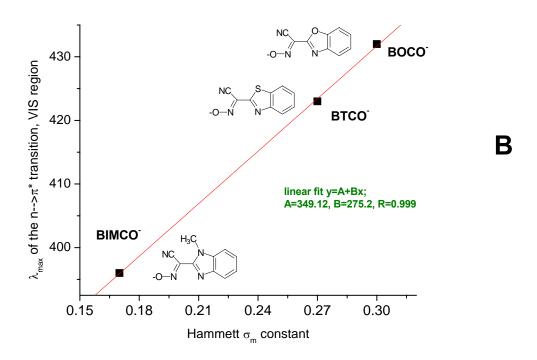

Picture taken at ×60 magnification on the Nikon microscope equipped with digital camera.

Crystal packing diagram for the structure of HBOCO: schematic representation, where A and B represent anionic (BOCO') and cationic  $(H_2BCO^+)$  portions respectively.

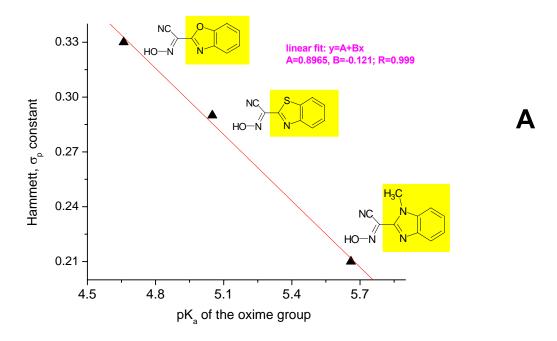


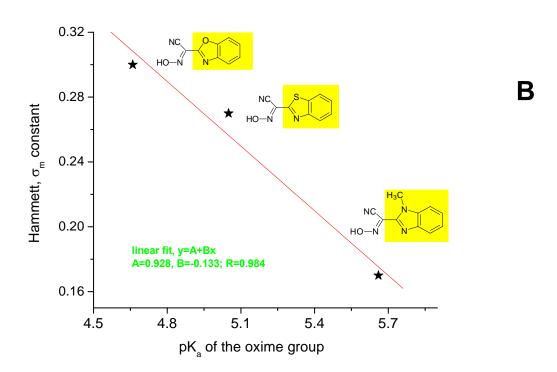

View along *b* direction showing only two isolated **HBOCO** dimers forming A-B "head-to-tail" H-bonded polymeric sheets.


Fragment of crystal structure of HBOCO showing two isolated molecules (cationic  $H_2BCO^+$  and anionic BCO $^-$ ) from two adjacent layers engaged into short "slipped"  $\pi-\pi$  interactions. Displayed are two orthogonal views (A and B) of the unit cell.

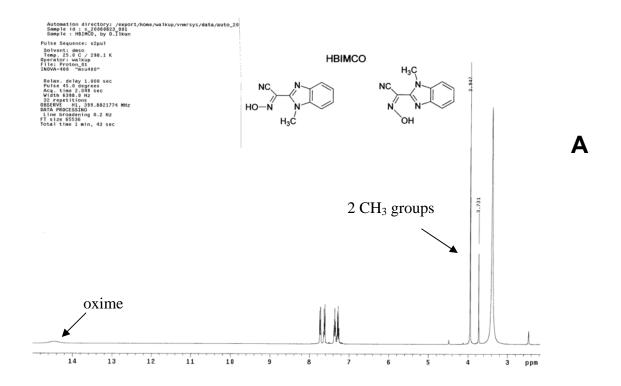


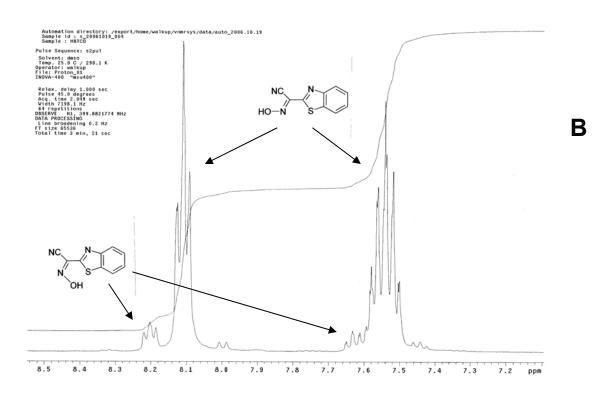

Organization of the crystal structure of HBOCO: views down y axis (A) and x axis (B) showing  $\pi$ - $\pi$  stacking interactions between sheets of HBOCO dimers. Coloring scheme: C – grey, O – red, N – blue; hydrogen atoms are omitted for clarity.



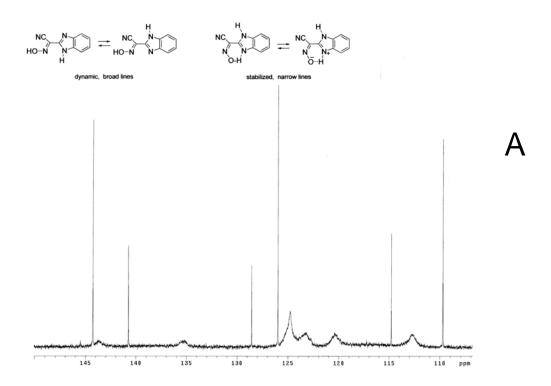


- A linear correlations between visible spectra of L and pKa values of HL;
- B-linear correlation between visible spectra of  $L^{\mbox{\tiny $^{\circ}$}}$  and Hammett  $\sigma$  constant for heteroaryl fragment.

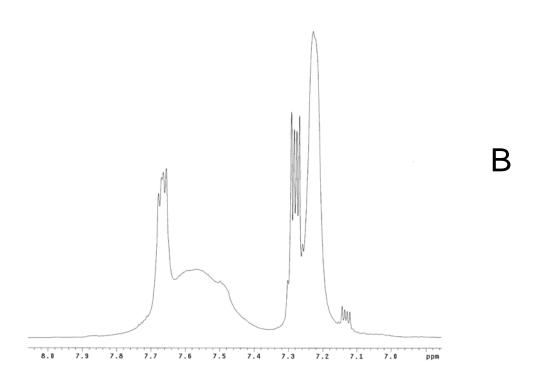






Linear correlations between  $pK_a$  of the cyanoxime and Hammett constants  $\sigma_p(A)$  and  $\sigma_m(B)$  of the 2-heteroaryl group highlighted in yellow.







## <sup>1</sup>H NMR spectra of HBIMCO (A) and HBTCO (B) in dmso-d<sub>6</sub> at 298 K.



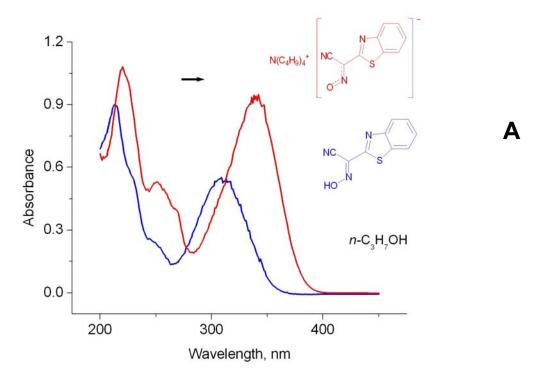


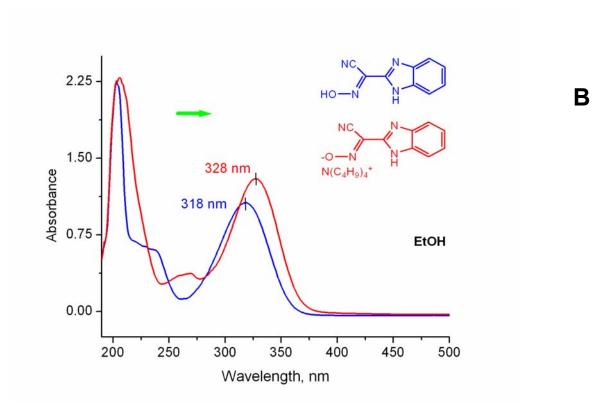
Fragments of  $^{13}C\ (A)$  and  $^1H\ (B)$  NMR spectra of benz(2-imidazolyl)cyanoxime in dmso-d\_6 at 298K.



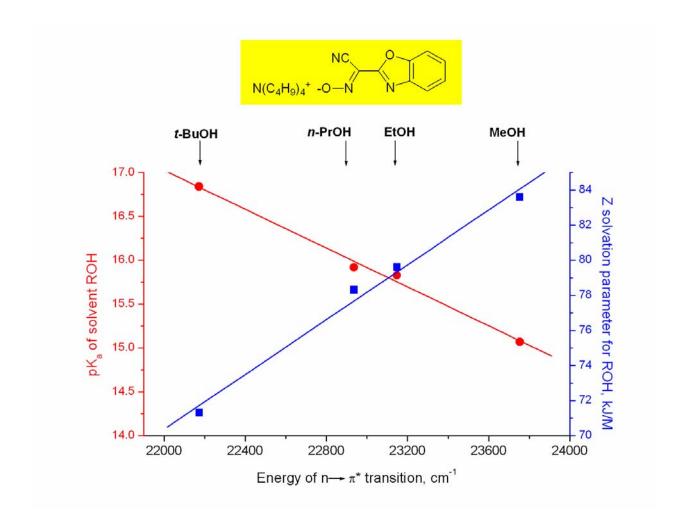


## Results of solutions electric conductivity measurements for synthesized benz(2-heteroaryl)cyanoximes and organic salts used as standards.


| Compound                                      | Conductivity of 1 mM solutions $\Lambda_{\rm M}$ (cm <sup>2</sup> /mol $\Omega$ ) |                      |                  |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------------------|----------------------|------------------|--|--|
|                                               |                                                                                   | Solvent              |                  |  |  |
|                                               | $\mathrm{DMSO}^a$                                                                 | acetone <sup>b</sup> | DMF <sup>c</sup> |  |  |
| NBu <sub>4</sub> <sup>+</sup> Br <sup>-</sup> | 21.1                                                                              | 130.7                | 73.3             |  |  |
| PPh <sub>4</sub> <sup>+</sup> Br <sup>-</sup> | 28.8                                                                              | 145.1                | 66.0             |  |  |
| НВОСО                                         | 0.90                                                                              | 1.7                  | 10.2             |  |  |
| HQCO                                          | 4.47                                                                              | 10.5                 | 14.2             |  |  |
| HBIHCO                                        | 0.37                                                                              | 0.5                  | 7.0              |  |  |
| HBIMCO                                        | 0.35                                                                              | 0.3                  | 3.4              |  |  |
| НВТСО                                         | 0.28                                                                              | 0.2                  | 3.1              |  |  |
|                                               |                                                                                   |                      |                  |  |  |

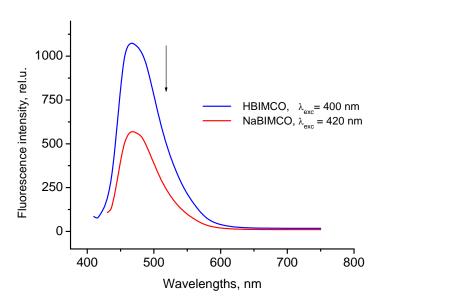

Tetrabutylammonium bromide and tetraphenylphosphonium bromide (both from ALDRICH) were used as standards for 1:1 type of electrolytes

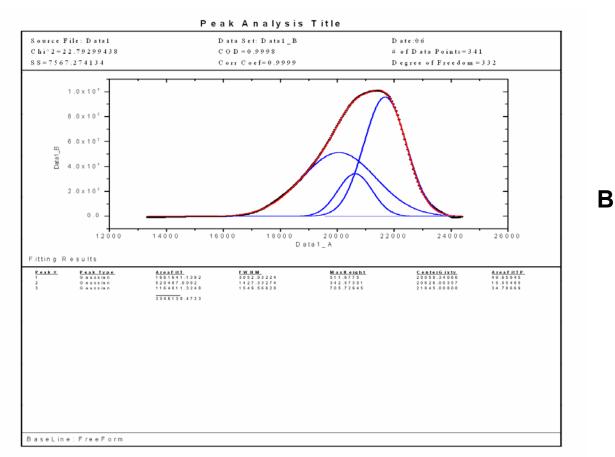
<sup>&</sup>lt;sup>a</sup> Conductivity of pure DMSO was 0.12 <sup>b</sup> Conductivity of pure acetone was 0.20


<sup>&</sup>lt;sup>c</sup> Conductivity of pure DMF was 1.60

Fragments of UV-visible spectra of protonated (blue) and deprotonated (red) forms of the HBTCO (A) and HBIHCO (B), in EtOH at 296 K and  $5x10^{-5}$  M concentration in 1 mm cuvettes. Clearly seen a batochromic shift of bands in anions.

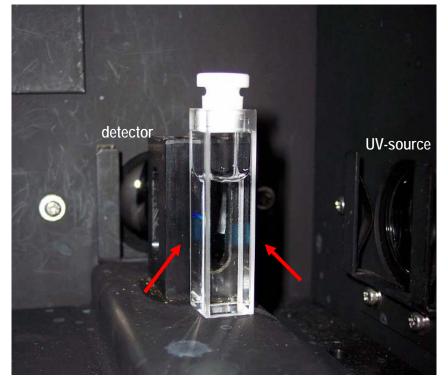






Linear correlations between the energy of  $n \to \pi^*$  transitions and solvent ROH parameters observed in UV-visible spectra of BOCO anion at 5 mM concentrations. Red: energy of transition vs pK<sub>a</sub> of the solvent; linear fir for y = A + Bx with A = 41.39, B = -0.001 and R = -0.996. Blue: energy of transition vs Kosover solvation energy Z; linear fit for y = A + Bx with A = -101.5, B = 0.0078, R = 0.995.



<sup>\* -</sup> Kosower, E.M.; Hoffmann, D.; Wallenfels, K. *J. Am. Chem. Soc.*, **1962**, *84*, p. 2755-2760; actual *Z* values taken from "*The chemist companion (Handbook)*", by Gordon, A.J.; Ford, R.A.; John Wiley & Sons: New York, 1972.


Fluorescence of 2.36 mM ethanol solutions of HBIMCO and NaBIMCO at 296 K in 1 cm cuvette (A), and deconvolution of spectroscopic envelope for HBIMCO as three Gaussian type lines which belong to  $\pi^* \to \pi$  transitions (B).

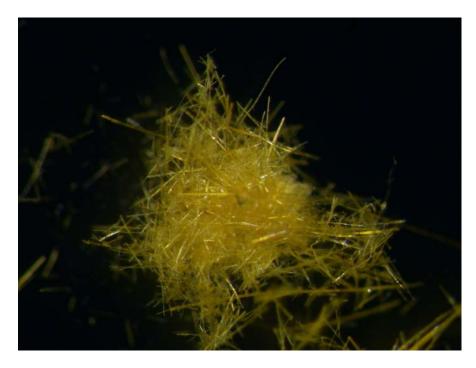




Photographs of 1 cm cuvette with bright blue fluorescent 2 mM solution of HBIHCO in EtOH;  $\lambda_{exc}$ =350 nm. A - in the dark; B - with open to a day light compartment (fluorescence is still visible and shown with red arrows)

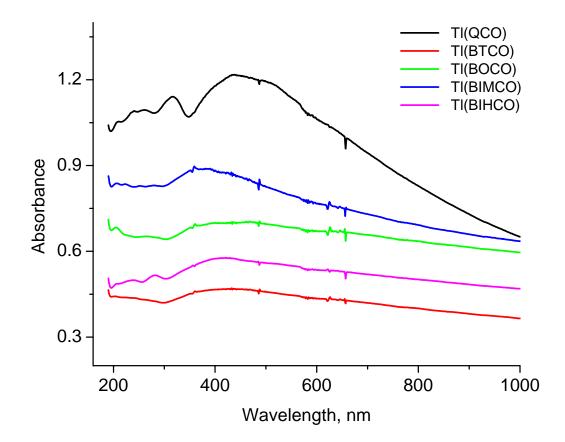





В

Α

Actual photographs of polycrystalline samples of synthesized thallium(I) cyanoximates taken in reflected light with dark background at  $60 \times \text{magnification}$ . Clearly seen very fine fibrous, almost wool-like, texture of the Tl(BIMCO) and needles of Tl(BOCO).

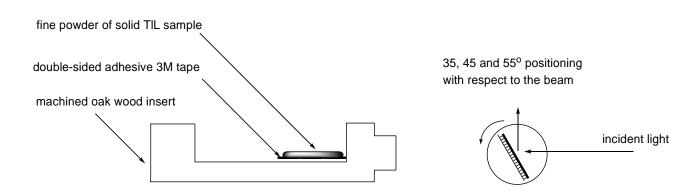



TI(BIMCO)

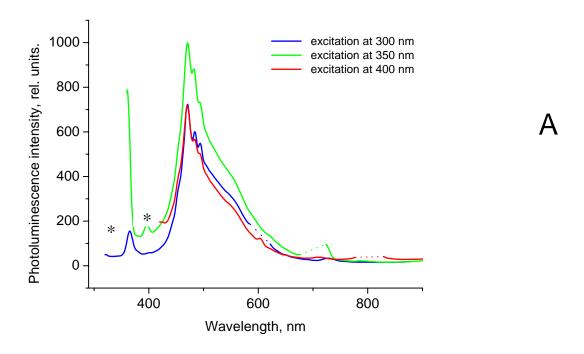


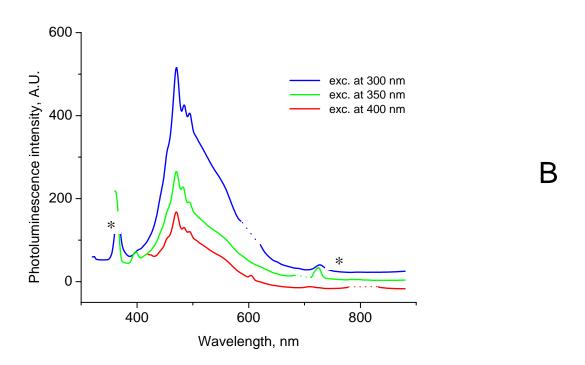
TI(BOCO)

UV-visible spectra of solid samples of monovalent thallium benz(2-heteroaryl) cyanoximates obtained from fine suspensions of compounds in silicon oil. Spectra recorded at room temperature from paste-like samples squeezed between two quartz plates of  $40 \times 10 \times 1$  mm dimensions.

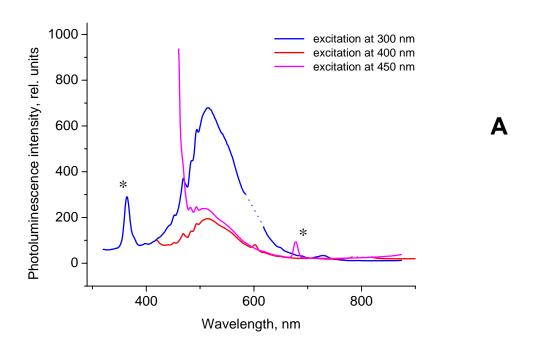


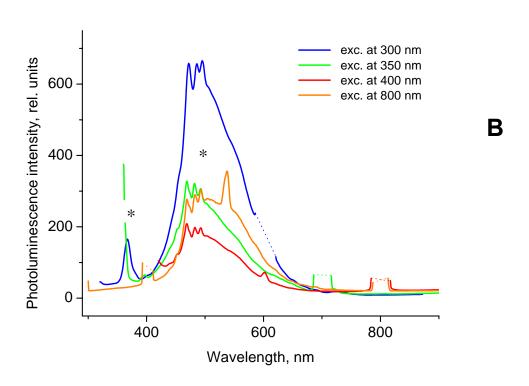

TlL samples preparation prior to room temperature photoluminescence measurements.



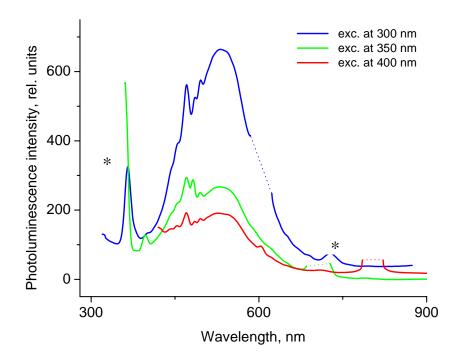




An insert (oak wood) into the cuvette holder for solid state photoluminescence measurements.





Solid state room temperature emission spectra of Tl(BIHCO) (A), and Tl(BIMCO), (B) obtained using different excitation wavelengths. Dotted lines indicate cut-offs the instrument emission/excitation lines including second harmonics, while asterisks show the instrument artifacts.






Solid state room temperature emission spectra of Tl(BOCO) (A), and Tl(BTCO), (B) obtained using different excitation wavelengths. Dotted lines indicate cut-offs the instrument emission/excitation lines including second harmonics, while asterisks show the instrument artifacts.





Solid state room temperature emission spectra of Tl(QCO) obtained using different excitation wavelengths. Dotted lines indicate cut-offs the instrument emission / excitation lines including second harmonics, while asterisks show the instrument artifacts.

