Supporting information

General Procedures

All experimental manipulations were carried out under a dry nitrogen or argon atmosphere, using standard Schlenk techniques unless otherwise stated. Solvents were dried and distilled prior to use by conventional methods. The precursors cis-[('BuNH)₂(μ -N'BuP)₂],¹ cis-[(MeNC₄H₈N)₂(μ -N'BuP)₂],² cis-[(μ -N'BuP)₂(OCH₂CH₂NMe₂)₂],³ trans-[(μ -N'BuPO)₂(SeCH₂CH₂NMe₂)₂]⁴ and [(Me₂S)AuCl]⁵ were prepared according to the literature procedures. The ¹H and ³¹P{¹H} NMR (δ in ppm) spectra were obtained on a Varian VXR 400 spectrometer operating at frequencies of 400 and 162 MHz, respectively. The tetramethylsilane and 85% H₃PO₄ were used as internal and external standards for ¹H and ³¹P{¹H} NMR respectively. Positive shifts lie downfield of the standard in all the cases. Microanalyses were carried out on a Carlo Erba Model 1106 elemental analyzer. Melting points of all compounds were determined on Veego melting point apparatus and are uncorrected.

Synthesis of cis-[{^tBuN(H)P(μ -N^tBu)₂P(CH₃)N(H)^tBu}(I)] (2).

To a solution of *cis*-[(^tBuNH)₂(μ -N^tBuP)₂] (0.50 g, 1.43 mmol) in petroleum ether (10 mL) added 1 mL of MeI also in petroleum ether (15 mL) dropwise over a period of 10 minutes at room temperature during which time the solution turns turbid. The reaction mixture was heated under reflux condition for 2 h. The solution was brought to room temperature and the product was separated by filtration. The product was washed several times with cold petroleum ether and dissolved in dichloromethane, layered with 2 mL of petroleum ether, and placed at -25 °C for 18 h to afford **1** as white crystalline compound. Yield: 90% (0.633 g, 1.29 mmol). Mp: 198-200 °C. ¹H NMR (400 MHz, CDCl₃, δ):

7.05 (d, ${}^{2}J_{PH} = 14.4$ Hz, *NH*, 1H), 2.30 (d, ${}^{2}J_{PH} = 13.2$ Hz, *NH*, 1H), 1.65 (s, *CH*₃, 3H), 1.60 (s, ${}^{t}Bu$, 9H), 1.34 (s, ${}^{t}Bu$, 18H), 1.32 (s, ${}^{t}Bu$, 9H). ${}^{31}P\{{}^{1}H\}$ NMR (161.8 MHz, CDCl₃, δ): 80.4 (s), 19.6 (s). Anal. Calcd. for C₁₇H₄₁N₄P₂I: C, 41.63; H, 8.42; N, 11.42%. Found: C. 41.47; H, 8.58; N, 11.72%.

Synthesis of *cis*-[{(Me₂NC₄H₈N)P(μ -N^tBu)₂P(CH₃)(NC₄H₈NMe₂)}(I)₃] (4).

Added 2 mL of MeI in 15 mL of dichloromethane to a stirred solution of *cis*-[(μ -N^tBuP)₂(NC₄H₈NMe)₂] (0.90 g, 2.23 mmol) in 10 mL of dichloromethane over a period of 10 min. The clear solution turns turbid immediately after the addition of methyl iodide. The reaction mixture was allowed to stir at room temperature for further 4 h during which time the compounds get precipitated. The residue was separated by filtration, was washed several times with dichloromethane and dried under vacuum to afford **2** as white crystalline solid. Yield: 85% (1.57 g, 1.90 mmol). Mp: 212-214 °C. ¹H NMR (400 MHz, D₂O, δ): 3.80-3.29 (m, *C*₄H₈, 16H), 3.27 (s, *NMe*₂, 6H), 3.19 (s, *NMe*₂, 6H), 1.38 (s, ^{*t*}Bu, 18H), 1.37 (s, *CH*₃, 3H). ³¹P{¹H} NMR (161.8 MHz, D₂O, δ): 87.1 (s), 35.1 (s). Anal. Calcd. for C₂₁H₄₉P₂N₆I₃: C, 30.45; H, 5.96; N, 10.15%. Found: C. 30.86; H, 5.68; N, 10.72%.

Synthesis of cis-[{(μ -N^tBuP)₂(OCH₂CH₂NMe₃)₂}(I)₂] (6).

In a manner identical to that used for the synthesis of 7, *cis*-[(μ -N^tBuP)₂(OCH₂CH₂NMe₂)₂] (1.12 g, 2.94 mmol) and MeI of 3 mL were allowed to react. Yield: 95% (1.86 g, 2.79 mmol). Mp: 148-150 °C. ¹H NMR (400 MHz, D₂O, δ): 4.35 (t, $J_{\text{HH}} = 9.8$ Hz, *OCH*₂, 4H), δ 3.62 (t, $J_{\text{HH}} = 8.4$ Hz, *NCH*₂, 4H), 3.21 (s, *Nme*, 18H), 1.31 (s, ^tBu, 18H). ³¹P{¹H} NMR (161.8 MHz, D₂O, δ): 132.9 (s). Anal. Calcd. for C₁₈H₄₄N₄P₂O₂I₂: C, 32.54; H, 6.67; N, 8.43%. Found: C. 32.86; H, 6.86; N, 8.72%.

Synthesis of cis-[{^tBuN(H)P(AuI)(μ -N^tBu)₂P(CH₃)N(H) ^tBu}(Cl)] (7).

To a solution of *cis*-[{^{*t*}BuN(H)P(μ -N^{*t*}Bu)₂P(CH₃)N(H)^{*t*}Bu}(I)] (0.034 g, 0.069 mmol) in 4 mL of dichloromethane added a solution of [(Me₂S)AuCl] (0.020 g, 0.069 mmol) also in dichloromethane (8 mL) at room temperature. The reaction mixture was stirred for 4 h. The clear solution obtained was concentrated to a small bulk under reduced pressure and layered with petroleum ether to get **11** as colorless crystalline solid. Yield: 85% (0.043 g, 0.059 mmol). Mp: 190-192 °C (dec). ¹H NMR (400 MHz, CDCl₃, δ): 8.11 (d, ²*J*_{PH} = 9.6 Hz, *NH*, 1H), 2.23 (d, ²*J*_{PH} = 15.2 Hz, *NH*, 1H), 1.69 (s, *CH*₃, 3H), 1.63 (s, ^{*t*}*Bu*, 18H), 1.60 (s, ^{*t*}*Bu*, 9H), 1.52 (s, ^{*t*}*Bu*, 9H). ³¹P{¹H} NMR (161.8 MHz, CDCl₃, δ): 82.4 (s), 30.0 (d, ²*J*_{PP} = 5.5 Hz). ES (EI): 687.1 (m/e – Cl). Anal. Calcd. for C₁₇H₄₁N₄P₂AuICl : C, 28.24; H, 5.71; N, 7.75%. Found: C. 27.91; H, 5.88; N, 7.43%.

Synthesis of *cis*-[{ $(Me_2NC_4H_8N)P(AuI)(\mu-N^tBu)_2P(CH_3)(NC_4H_8NMe_2)$ }(I)₂(Cl)] (8).

To a solution of *cis*-[{(Me₂NC₄H₈N)P(μ -N^{*t*}Bu)₂P(CH₃)(NC₄H₈NMe₂)}(I₃)] (0.034 g, 0.041 mmol) in 6 mL of methanol was added a solution of [(Me₂S)AuCl] (0.012 g, 0.041 mmol) in dichloromethane (4 mL). The reaction mixture was stirred at room temperature for 4 h. All the volatiles were removed under vacuum and the residue obtained was extracted with 5 mL dichloromethane and cooled to 0 °C to afford **6** as analytically pure crystalline solid. Yield: 78% (0.034 g, 0.0319 mmol). Mp: 190-192 °C (dec). ¹H NMR (400 MHz, DMSO-d₆): δ 3.66-3.44 (m, *C*₄H₈, 16H), 2.44 (s, *NMe*₂, 6H), 2.43 (s, *NMe*₂, 6H), 1.52 (s, *CH*₃, 3H), 1.36 (s, ^{*t*}Bu, 18H). ³¹P{¹H} NMR (161.8 MHz, DMSO-d₆): δ 88.5 (s), 37.7 (s). Anal. Calcd. for C₂₁H₄₉P₂N₆AuClI₃: C, 23.77; H, 4.65; N, 7.92%. Found: C. 23.58; H, 5.96; N, 8.51%.

Synthesis of *cis*-[{(μ -N^tBuP)₂(OCH₂CH₂NMe₃)₂Au₂I₂}(Cl)₂] (9).

In a manner identical to that used for the synthesis of **12**, *cis*-[{(μ -N^tBuP)_2(OCH_2CH_2NMe_3)_2}(I)_2] (0.025 g, 0.038 mmol) and [(Me_2S)AuCl] (0.022 g, 0.075 mmol) were allowed to react. Yield: 88% (0.038 g, 0.034 mmol). Mp: 168-170 °C (dec). ¹H NMR (400 MHz, D₂O, δ): 4.70 (t, *J*_{HH} = 8.2 Hz, *OCH*₂, 4H), 3.82 (t, *J*_{HH} = 9.6 Hz, *NCH*₂, 4H), 3.18 (s, *Nme*, 18H), 1.57 (s, ^{*t*}*Bu*, 18H). ³¹P{¹H} NMR (161.8 MHz, DMSO-d₆, δ): 110.3 (s). Anal. Calcd. for C₁₈H₄₄N₄P₂O₂Au₂Cl₂I₂: C, 19.14; H, 3.92; N, 4.96%. Found: C. 19.25; H, 3.78; N, 4.72%.

Cell culture and cell proliferation assay.

HeLa cells were grown in minimal essential medium (Hi Media, Mumbai) supplemented with 10 % (v/v) fetal bovine serum and sodium bicarbonate (2.0 mg/mL) in the presence of antibiotics.⁶ HCT-116 (Human colon carcinoma cell line containing wild type p53) cells were grown in DMEM containing 10% (v/v) fetal bovine serum and sodium bicarbonate (2.0 mg/mL) in the presence of antibiotics. The effects of different compounds on HeLa cell proliferation were determined in 96-well tissue culture plates by SRB assay. DMSO (0.1 %) alone was used as a vehicle control.

Immunofluorescence microscopy.

HCT-116 cells (6 X 10^4 cells/mL) were seeded on glass coverslips in 24- well tissue culture plates and treated with different drugs dissolved in 100 % DMSO. The final DMSO concentration in all the experiments was 0.1 %. After 24 h of the drug treatment, cells were fixed in 3.7 % formaldehyde for 30 minutes at 25 °C and processed for immunofluorescence microscopy to visualize p53.⁷ The processed coverslips were observed by using a 40 X objective in a Nikon Eclipse TE 2000U microscope

(Kanagawa, Japan). The images were analyzed by using Image Pro-Plus software (Media Cybernetics, Silver Spring, MD).

Annexin V/Propidium iodide staining.

HeLa cells (6 X 10^4 cells/mL) were seeded on glass coverslips in 24- well tissue culture plates. Twenty four hours after seeding the old media was replaced with fresh media containing no compound or 20 μ M of compound 411 and 320 and incubated for an additional 24 h. The cells were then centrifuged in a Labofuge 400R cytospin (Heraeus, Hanau/Germany) for 10 min to attach the floating cells on the coverslips. The cells were stained using the annexin V apoptosis kit (Santa Cruz Biotechnology, CA, USA) according to the instructions provided with the kit and observed immediately using the Nikon Eclipse TE-2000 U microscope.⁸

Fig 1. Ball and stick representation of one-dimensional polymeric sheet like structure of 7 due to inter- and intramolecular hydrogen bonding.

	2	7
formula	$C_{17}H_{41}N_4P_2$, I	$C_{17}H_{41}AuIN_4P_2$, Cl
fw	490.38	722.80
crystal system	Orthorhombic	Monoclinic
space group	Pbca (No. 61)	P2 ₁ /a (No. 14)
<i>a</i> , Å	14.090(3)	15.5625(7)
b, Å	25.9449(18)	11.9084(13)
<i>c</i> , Å	27.452(3)	15.895(2)
a, deg	90	90
β , deg	90	118.376(3)
γ, deg	90	90
V, Å ³	<mark>10036(3)</mark>	2591.9(5)
Ζ	16	4
$ ho_{ m calc}$, g cm ⁻³	1.298	1.852
μ (MoKa), mm ⁻¹	1.411	7.104
F (000)	4064	1400
crystal size mm ³	$0.09 \times 0.16 \times 0.33$	$0.21 \times 0.26 \times 0.33$
Т, К	150	293
2θ range, deg	3.0, 25.0	3.1, 25.0
Total no. reflns	61951	14699
No. of indep. reflns	8818, $[R_{(int)} = 0.060]$	4359, [R _(int) =0.085]
R1 ^a	<mark>0.0296</mark>	0.0432
wR_2^b	<mark>0.0606</mark>	0.1229
$GOF(F^2)$	<mark>0.831</mark>	1.071

^{*a*}R = $\Sigma ||F_{o}| - |Fc|| / \Sigma |F_{o}|$.

 ${}^{b}wR_{2} = \{ [\Sigma w(F_{o}^{2} - F_{c}^{2})/\Sigma w(F_{o}^{2})^{2}] \}^{1/2}; w = 1/[\sigma^{2}(F_{o}^{2}) + (xP)^{2}] \text{ where } P = (F_{o}^{2} + 2F_{c}^{2})/3$

Reference:

- 1. I. Schranz, L. Stahl and R. J. Staples, *Inorg. Chem.*, 1998, **37**, 1493-1498.
- 2. D. Suresh, M. S. Balakrishna and J. T. Mague, *unpublished results*.
- P. Chandrasekaran, J. T. Mague and M. S. Balakrishna, *Inorg. Chem.*, 2005, 44, 7925-7932.
- P. Chandrasekaran, J. T. Mague and M. S. Balakrishna, *Inorg. Chem.*, 2006, 45, 5893-5897.
- 5. M. C. Brandys, M. C. Jennings and R. J. Puddephatt, J. Chem. Soc., Dalton Trans., 2000, 4601–4606.
- 6. K. Rathinasamy and D. Panda, *FEBS J.*, 2006, **273**, 4114-4128.
- S. Ray, R. Mohan, J. K. Singh, M. K. Samantaray, M. M. Shaikh, D. Panda and P. Ghosh, *J. Am. Chem. Soc.*, 2007, **129**, 15042-15053.
- 8. P. Srivastava and D. Panda, *FEBS J.*, 2007, **274**, 4788.