Palladium catalysed alkyne hydrogenation and oligomerisation: A Parahydrogen based NMR investigation

Joaquín López-Serrano, Simon B. Duckett*, John P. Dunne, Cyril Godard and Adrian C. Whitwood

Supporting information

Ligand Synthesis

Synthesis of unsymmetrical phosphine Ph2PCH2CH2PCy2

Scheme S1. Synthesis of Cy₂PCH₂CH₂PPh₂ (cppe).

Synthesis of ethylene sulphate(1,3,2-dioxathioalane,2,2-dioxide).¹

A 2 litre 3 necked flask equipped with a dropping funnel and a sodium hydroxide trap was charged with 12.4 g (0.20 mol) of 1,2-ethanediol in 150 mL of CCl₄. 20 mL (0.27 mol) of thionyl chloride was added to this solution dropwise over 1 h. The solution was then stirred for a further hour and the solvent evaporated under reduced pressure. The resulting yellow liquid was distilled under reduced pressure (water pump) to afford a colourless liquid of the sulphite ester (15 g 70 %). Pure by GC/MS and NMR.

10.8 g (0.1 mol) of the sulphite ester was dissolved in 100 mL of acetonitrile and cooled on an ice bath. Then 200 mg (0.76 mmol) of RuCl₃·3H₂0, 32 g (0.15 mol) of sodium periodate and 150 ml of cold water were added sequentially. The green mixture was stirred for 15 minutes. Then 800 mL of ethyl acetate and 80 mL of saturated sodium bicarbonate solution were added and the organic phase separated. The aqueous phase was extracted with 2 x 100 mL of ethyl acetate and the combined organic layers then washed with 50 mL of water. The organic phase was then dried over sodium sulphate, filtered and the solvent removed under reduced pressure to yield a white solid. Yield 11.2 g, 70 %. Pure by GCMS and NMR. Mp 96-97 °C.

Synthesis of cppe (Ph₂PCH₂CH₂PCy₂).²

2.9 mL (4.89 mmol) of Cy₂PH was dissolved in 40 mL of dry THF. This solution was cooled to -78 °C and 12 mL of 1.5 M BuLi were added dropwise. The solution turns from colourless to orange red. This solution was slowly allowed to warm up to room temperature and it was then stirred for a further 1 h.

2.46 mL (4.89 mmol) of Ph_2PH were dissolved in 40 mL of dry THF. The reaction mixture was cooled to -78 °C and 12 mL of 1.5 M BuLi were added slowly. This solution was allowed to warm up to room temperature and stirred for a further 1 h.

The THF solution of Cy₂PLi was then added dropwise at -78 °C, to a solution of 0.59 g (4.89 mmol) of ethylene sulphate in 20 ml of dry THF. This colourless solution was then allowed to warm up to room temperature and stirred for 30 minutes. This mixture was then cooled to -78 °C and the THF solution of Ph₂PLi added dropwise. This pale red solution was allowed to warm up to room temperature over 20 min and then refluxed for 4 h. (Note: the solution goes a pale yellow and turns jelly like due to the presence of LiSO₄). Upon cooling to r.t., 20 mL of degassed H₂0 were added; the organic phase was separated and washed with 2 x 10 mL of degassed H₂0. The THF layer was dried over MgSO₄, filtered and dried in vacuum to leave a white gummy solid. After prolonged drying under vacuum, the gummy solid was recrystallised from hot degassed methanol to leave a white air-sensitive solid.

³¹P{1H} NMR (161.9 MHz, C₆D₆): δ –12.28 (d, J_{PP} = 30 Hz, PPh₂); 0.93 (d, J_{PP} = 30 Hz, PCy₂). The NMR data agrees with that reported in the literature.

Fig S1. Molecular structure of [Pd(Ph₂PCH₂CH₂PCy₂)(Cl)₂]·2CH₂Cl₂, ortep view showing 50 % probability ellipsoids, and selected bond lengths (Å) and angles (°). Hydrogen atoms and crystallization CH₂Cl₂ molecules have been omitted for clarity.

Synthesis of [Pd(dppm)(OTf)₂]

To a suspension of $[Pd(dppm)(Cl)_2]$ (250 mg, 0.44 mmol) in dry, degassed dichloromethane (20 mL) was added AgOTf (178 mg, 0.67 mmol). The new suspension was stirred overnight (14 h) in the absence of light, after which time it was filtered off. The yellow solution was concentrated to ca. 2 mL under reduced pressure and diethyl ether was then added (10 mL). The resulting solid was collected by filtration, washed with diethyl ether (3 x 3 mL) and dried under vacuum for 1 h to yield a bright yellow fine powder. Yield: 285 mg, 85 % for C₂₇H₂₂F₆O₆P₂PdS₂. ³¹P{¹H} NMR (161.9 MHz, CDCl₃): δ -52.44 (s, PPh₂). The spectroscopic data matches that reported in the literature.⁴

Synthesis of [Pd(dppe)(OTf)₂]

To a solution of $[Pd(dppe)(Cl)_2]$ (200 mg, 0.30 mmol) in dry, degassed dichloromethane (20 mL) was added AgOTf (247 mg, 0.90 mmol). The resulting suspension was stirred for 72 h with the exclusion of light, after which time it was filtered off. The yellow solution was concentrated to dryness under reduced pressure and n-pentane was then added (10 mL). The resulting solid was collected by filtration, washed with n-pentane (3 x 3 mL) and dried in vacuo for 1 h to yield a white powder. Yield: 180 mg, 68 % for C₂₈H₂₄F₆O₆P₂PdS₂. ³¹P{¹H} NMR (161.9 MHz, CDCl₃): δ 74.24 in methanol (s, PPh₂). The spectroscopic data matches that reported in the literature.⁸

Synthesis of [Pd(dppp)(OTf)₂]

A solution of $[Pd(dppp)(Cl)_2]$ (250 mg, 0.42 mmol) in dry, degassed dichloromethane (10 mL) was added AgOTf (325 mg, 1.26 mmol) and the resulting suspension stirred overnight (16 h) in the absence of light. The resulting suspension was filtered off, the solution concentrated to ca. 5 mL and n-pentane (10 mL) added to precipitate a solid which was washed with n-pentane (2 x 2 mL) and dried under vacuum to give the title compound as a pale yellow solid. Yield 170 mg, 64 % for C₂₉H₂₆F₆O₆P₂PdS₂. ³¹P{¹H} NMR (161.9 MHz, CD₂Cl₂): δ 17.4 (s, PPh₂). The spectroscopic data matches that reported in the literature.⁴

Fig S2. Molecular structure of *cis,cis*-1,2,3,4-tetraphenyl-1,3-butadiene, ortep view showing 50 % probability ellipsoids. Selected bond lengths (Å) and angles (°): $C(7)-C(7)_3 = 1.483(2)$, C(8)-C(7) = 1.3534(15), $C(8)-C(7)-C(7)_3 = 120.76(12)$. The atoms with labels ending by _3 where generated using symmetry operations.

Relative signal intensity of species 2 and 4 vs. T

		δ	295 K	323 K
dcpe	2a	4.38	1.75	4.28
	2b	4.24	0.05	0.14
dppe	3b	3.70	0.1	0.03
	4b	5.10	0.18	0.01
dppm	2c	4.96	-	0.01
dnnn	2d	3.71	1.37	2.53
uppp	4d	4.87	-	0.02
	2e	4.49	0.45	13.27
cppe	2e'	3.70	0.60	2.53
	4e	5.42	0.06	0.31

Table S1 Relative signal intensity (CHD₂ resonance of the deuterated methanol used as solvent = 1) for the indicated alkyl resonances of species 2 and 4 vs. T. (The integrals were measured from spectra processed in magnitude calculation).

The NMR data shows a good qualitative agreement with the conversion rates and even with the organic product speciation seen by GC/MS. It should be said however, that a higher signal intensity does not necessarily infers a higher conversion into the final product as has been shown for the cases of **2e** and **2e**'.

Note Cis,cis-1,2,3,4-tetraphenyl-1,3-butadiene appears in the CSD 4 times under the reference codes TEPBUT, TEPBUT01, TEPBUT02 & TEPBUT03.

References.

1. Caron, G.; Tseng, G. W.-M.; Kazlaiskas, R. J., *Tetrahedron: Asymmetry* **1994**, 5, (1), 83-92.

2. Fries, G.; Wolf, J.; Pfeiffer, M.; Stalke, D.; Werner, H., *Angew. Chem. Int. Ed.* **2000**, 39, 564-566.

3. Stang, P. J.; Cao, D. H.; Saito, S.; Arif, A. M., *J. Am. Chem. Soc.* **1995**, 117, 6273-6283.

- 4. Oliver, D. L.; Anderson, G. K., *Polyhedron* **1992**, 11, 2415-2420.
- 5. Bianchini, C.; Mantovani, G.; Meli, A.; Oberhauser, W.; Bruggeller, P.; Stampfl, T., J. Chem. Soc., Dalton Trans. **2001**, 690-698.
- 6. Broadwood-Strong, G. T. L.; Chaloner, P. A.; Hitchcock, P. B., *Polyhedron* **1993**, 12, 721-729.
- 7. Murata, S.; Ido, Y., Bull. Chem. Joc. Jpn. 1994, 67, 1746-1748.
- 8. Fallis, S.; Anderson, G. K.; Nigam, P. R., Organometallics 1991, 10, 3180-3184.
- 9. Klarte, I. L.; Dragonette, K. S., Acta Crystallographica 1965, 19, 500.

Crystal data and structure refinement for [Pd(Ph₂PCH₂CH₂PCy₂)Cl₂]·2CH₂Cl₂.

Empirical formula	C28 H40 C16 P2 Pd	
Formula weight	757.64	
Temperature	120(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 12.0021(10) Å	α= 90°.
	b = 17.4753(15) Å	β=109.045(2)°.
	c = 16.5180(14) Å	$\gamma = 90^{\circ}$.
Volume	3274.9(5) Å ³	
Ζ	4	
Density (calculated)	1.537 Mg/m ³	
Absorption coefficient	1.172 mm ⁻¹	
F(000)	1544	
Crystal size	0.30 x 0.07 x 0.07 mm ³	
Theta range for data collection	1.75 to 28.31°.	
Index ranges	-15<=h<=13, -23<=k<=23, -22	2<=1<=22
Reflections collected	32946	
Independent reflections	8132 [R(int) = 0.0478]	
Completeness to theta = 28.31°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.000 and 0.857	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	8132 / 0 / 372	
Goodness-of-fit on F ²	1.027	
Final R indices [I>2sigma(I)]	R1 = 0.0343, $wR2 = 0.0759$	
R indices (all data)	R1 = 0.0436, $wR2 = 0.0795$	
Largest diff. peak and hole	0.749 and -0.677 e.Å ⁻³	

Table S2.	Atomic coordinates	$(x 10^4)$ and equivalent	isotropic displacement pa	trameters (Å 2x 10 3).
U(eq) is de	fined as one third of	the trace of the orthogo	onalized U ^{ij} tensor.	

	Х	у	Z	U(eq)
C(1)	6330(2)	2869(1)	8173(1)	17(1)
C(2)	5921(2)	2096(1)	8403(1)	18(1)
C(3)	6041(2)	938(1)	7131(1)	19(1)
C(4)	6788(2)	1411(1)	6722(2)	26(1)
C(5)	7639(2)	915(2)	6427(2)	31(1)
C(6)	6971(2)	284(2)	5828(2)	32(1)
C(7)	6277(2)	-202(2)	6253(2)	32(1)
C(8)	5403(2)	280(1)	6540(2)	26(1)
C(9)	4044(2)	958(1)	7818(1)	18(1)
C(10)	3093(2)	1433(1)	8021(2)	22(1)
C(11)	2281(2)	921(2)	8330(2)	30(1)
C(12)	2992(2)	439(2)	9101(2)	34(1)
C(13)	3907(2)	-43(2)	8888(2)	31(1)
C(14)	4745(2)	453(1)	8584(2)	25(1)
C(15)	5787(2)	4000(1)	6803(1)	17(1)
C(16)	5283(2)	4716(1)	6557(2)	23(1)
C(17)	5776(2)	5215(2)	6104(2)	30(1)
C(18)	6751(2)	4998(2)	5892(2)	32(1)
C(19)	7241(2)	4283(2)	6124(2)	33(1)
C(20)	6759(2)	3781(2)	6573(2)	26(1)
C(21)	4281(2)	3849(1)	7879(1)	17(1)
C(22)	3144(2)	3620(1)	7818(1)	20(1)
C(23)	2538(2)	4003(1)	8290(2)	26(1)
C(24)	3059(3)	4617(2)	8803(2)	31(1)
C(25)	4178(3)	4855(1)	8858(2)	31(1)
C(26)	4802(2)	4468(1)	8408(2)	25(1)
Cl(1)	2912(1)	1459(1)	5538(1)	22(1)
Cl(2)	3039(1)	3413(1)	5504(1)	20(1)
P(1)	5112(1)	3316(1)	7324(1)	14(1)
P(2)	5020(1)	1570(1)	7446(1)	14(1)
Pd(1)	4040(1)	2423(1)	6448(1)	12(1)
C(27A)	5524(3)	2497(2)	802(2)	53(1)
Cl(3A)	4484(3)	3006(2)	-33(2)	30(1)

Cl(4A)	5111(6)	2200(6)	1640(4)	74(2)
C(27B)	5524(3)	2497(2)	802(2)	53(1)
Cl(3B)	4389(10)	2923(7)	25(7)	73(3)
Cl(4B)	4829(6)	1933(4)	1349(8)	51(2)
C(28A)	-9(3)	2490(2)	9478(2)	49(1)
Cl(5A)	-636(2)	2311(2)	8409(1)	52(1)
Cl(6A)	1574(2)	2587(1)	9757(1)	42(1)
C(28B)	-9(3)	2490(2)	9478(2)	49(1)
Cl(5B)	-542(4)	2730(8)	8238(3)	69(2)
Cl(6B)	1248(14)	2336(9)	9806(4)	123(5)

Tuble 55. Dona lengths [11] und ungles [].

C(1)-C(2)	1.528(3)
C(1)-P(1)	1.838(2)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(2)-P(2)	1.844(2)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(4)	1.530(3)
C(3)-C(8)	1.540(3)
C(3)-P(2)	1.846(2)
C(3)-H(3)	1.0000
C(4)-C(5)	1.535(3)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-C(6)	1.524(4)
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(6)-C(7)	1.513(4)
C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(7)-C(8)	1.535(3)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(10)	1.533(3)
C(9)-C(14)	1.546(3)
C(9)-P(2)	1.834(2)
C(9)-H(9)	1.0000
C(10)-C(11)	1.528(3)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)-C(12)	1.532(4)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-C(13)	1.514(4)

C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)-C(14)	1.531(3)
C(13)-H(13A)	0.9900
C(13)-H(13B)	0.9900
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-C(16)	1.393(3)
C(15)-C(20)	1.394(3)
C(15)-P(1)	1.810(2)
C(16)-C(17)	1.399(3)
C(16)-H(16)	0.9500
C(17)-C(18)	1.380(4)
С(17)-Н(17)	0.9500
C(18)-C(19)	1.381(4)
C(18)-H(18)	0.9500
C(19)-C(20)	1.391(3)
C(19)-H(19)	0.9500
C(20)-H(20)	0.9500
C(21)-C(22)	1.394(3)
C(21)-C(26)	1.403(3)
C(21)-P(1)	1.815(2)
C(22)-C(23)	1.398(3)
C(22)-H(22)	0.9500
C(23)-C(24)	1.383(4)
C(23)-H(23)	0.9500
C(24)-C(25)	1.381(4)
C(24)-H(24)	0.9500
C(25)-C(26)	1.390(3)
C(25)-H(25)	0.9500
C(26)-H(26)	0.9500
Cl(1)-Pd(1)	2.3662(6)
Cl(2)-Pd(1)	2.3767(5)
P(1)-Pd(1)	2.2297(6)
P(2)-Pd(1)	2.2486(6)
C(27A)-Cl(4A)	1.697(4)
C(27A)-Cl(3A)	1.770(5)
C(27A)-H(27A)	0.9900

C(27A)-H(27B)	0.9900
C(28A)-Cl(5A)	1.708(4)
C(28A)-Cl(6A)	1.811(4)
C(28A)-H(28A)	0.9900
C(28A)-H(28B)	0.9900
C(2)-C(1)-P(1)	109.01(14)
C(2)-C(1)-H(1A)	109.9
P(1)-C(1)-H(1A)	109.9
C(2)-C(1)-H(1B)	109.9
P(1)-C(1)-H(1B)	109.9
H(1A)-C(1)-H(1B)	108.3
C(1)-C(2)-P(2)	111.96(14)
C(1)-C(2)-H(2A)	109.2
P(2)-C(2)-H(2A)	109.2
C(1)-C(2)-H(2B)	109.2
P(2)-C(2)-H(2B)	109.2
H(2A)-C(2)-H(2B)	107.9
C(4)-C(3)-C(8)	111.41(19)
C(4)-C(3)-P(2)	109.87(16)
C(8)-C(3)-P(2)	112.77(16)
C(4)-C(3)-H(3)	107.5
C(8)-C(3)-H(3)	107.5
P(2)-C(3)-H(3)	107.5
C(3)-C(4)-C(5)	112.4(2)
C(3)-C(4)-H(4A)	109.1
C(5)-C(4)-H(4A)	109.1
C(3)-C(4)-H(4B)	109.1
C(5)-C(4)-H(4B)	109.1
H(4A)-C(4)-H(4B)	107.9
C(6)-C(5)-C(4)	110.6(2)
C(6)-C(5)-H(5A)	109.5
C(4)-C(5)-H(5A)	109.5
C(6)-C(5)-H(5B)	109.5
C(4)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	108.1
C(7)-C(6)-C(5)	110.9(2)
C(7)-C(6)-H(6A)	109.5

C(5)-C(6)-H(6A)	109.5
C(7)-C(6)-H(6B)	109.5
C(5)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	108.0
C(6)-C(7)-C(8)	111.8(2)
C(6)-C(7)-H(7A)	109.3
C(8)-C(7)-H(7A)	109.3
C(6)-C(7)-H(7B)	109.3
C(8)-C(7)-H(7B)	109.3
H(7A)-C(7)-H(7B)	107.9
C(7)-C(8)-C(3)	110.9(2)
C(7)-C(8)-H(8A)	109.5
C(3)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8B)	109.5
C(3)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	108.0
C(10)-C(9)-C(14)	112.02(18)
C(10)-C(9)-P(2)	111.08(15)
C(14)-C(9)-P(2)	111.70(16)
С(10)-С(9)-Н(9)	107.2
С(14)-С(9)-Н(9)	107.2
P(2)-C(9)-H(9)	107.2
C(11)-C(10)-C(9)	110.9(2)
С(11)-С(10)-Н(10А)	109.5
C(9)-C(10)-H(10A)	109.5
С(11)-С(10)-Н(10В)	109.5
C(9)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	108.0
C(10)-C(11)-C(12)	110.8(2)
С(10)-С(11)-Н(11А)	109.5
C(12)-C(11)-H(11A)	109.5
С(10)-С(11)-Н(11В)	109.5
C(12)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	108.1
C(13)-C(12)-C(11)	111.2(2)
C(13)-C(12)-H(12A)	109.4
C(11)-C(12)-H(12A)	109.4
C(13)-C(12)-H(12B)	109.4

C(11)-C(12)-H(12B)	109.4
H(12A)-C(12)-H(12B)	108.0
C(12)-C(13)-C(14)	111.4(2)
C(12)-C(13)-H(13A)	109.3
C(14)-C(13)-H(13A)	109.3
С(12)-С(13)-Н(13В)	109.3
C(14)-C(13)-H(13B)	109.3
H(13A)-C(13)-H(13B)	108.0
C(13)-C(14)-C(9)	110.5(2)
C(13)-C(14)-H(14A)	109.5
C(9)-C(14)-H(14A)	109.5
C(13)-C(14)-H(14B)	109.5
C(9)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	108.1
C(16)-C(15)-C(20)	119.3(2)
C(16)-C(15)-P(1)	120.88(18)
C(20)-C(15)-P(1)	119.55(18)
C(15)-C(16)-C(17)	119.8(2)
C(15)-C(16)-H(16)	120.1
C(17)-C(16)-H(16)	120.1
C(18)-C(17)-C(16)	120.4(2)
С(18)-С(17)-Н(17)	119.8
С(16)-С(17)-Н(17)	119.8
C(17)-C(18)-C(19)	119.9(2)
C(17)-C(18)-H(18)	120.1
C(19)-C(18)-H(18)	120.1
C(18)-C(19)-C(20)	120.4(3)
C(18)-C(19)-H(19)	119.8
С(20)-С(19)-Н(19)	119.8
C(19)-C(20)-C(15)	120.2(2)
С(19)-С(20)-Н(20)	119.9
С(15)-С(20)-Н(20)	119.9
C(22)-C(21)-C(26)	119.5(2)
C(22)-C(21)-P(1)	120.17(17)
C(26)-C(21)-P(1)	120.25(18)
C(21)-C(22)-C(23)	119.8(2)
С(21)-С(22)-Н(22)	120.1
C(23)-C(22)-H(22)	120.1

C(24)-C(23)-C(22)	120.0(2)
C(24)-C(23)-H(23)	120.0
C(22)-C(23)-H(23)	120.0
C(23)-C(24)-C(25)	120.6(2)
C(23)-C(24)-H(24)	119.7
C(25)-C(24)-H(24)	119.7
C(24)-C(25)-C(26)	120.0(2)
C(24)-C(25)-H(25)	120.0
C(26)-C(25)-H(25)	120.0
C(25)-C(26)-C(21)	120.0(2)
C(25)-C(26)-H(26)	120.0
С(21)-С(26)-Н(26)	120.0
C(15)-P(1)-C(21)	107.83(10)
C(15)-P(1)-C(1)	105.98(10)
C(21)-P(1)-C(1)	105.29(10)
C(15)-P(1)-Pd(1)	113.97(7)
C(21)-P(1)-Pd(1)	113.00(8)
C(1)-P(1)-Pd(1)	110.17(7)
C(9)-P(2)-C(2)	105.28(10)
C(9)-P(2)-C(3)	107.50(10)
C(2)-P(2)-C(3)	106.40(10)
C(9)-P(2)-Pd(1)	113.18(7)
C(2)-P(2)-Pd(1)	108.58(7)
C(3)-P(2)-Pd(1)	115.25(7)
P(1)-Pd(1)-P(2)	86.30(2)
P(1)-Pd(1)-Cl(1)	179.03(2)
P(2)-Pd(1)-Cl(1)	92.75(2)
P(1)-Pd(1)-Cl(2)	88.69(2)
P(2)-Pd(1)-Cl(2)	174.39(2)
Cl(1)-Pd(1)-Cl(2)	92.25(2)
Cl(4A)-C(27A)-Cl(3A)	118.1(3)
Cl(4A)-C(27A)-H(27A)	107.8
Cl(3A)-C(27A)-H(27A)	107.8
Cl(4A)-C(27A)-H(27B)	107.8
Cl(3A)-C(27A)-H(27B)	107.8
H(27A)-C(27A)-H(27B)	107.1
Cl(5A)-C(28A)-Cl(6A)	110.63(19)
Cl(5A)-C(28A)-H(28A)	109.5

Cl(6A)-C(28A)-H(28A)	109.5
Cl(5A)-C(28A)-H(28B)	109.5
Cl(6A)-C(28A)-H(28B)	109.5
H(28A)-C(28A)-H(28B)	108.1

Symmetry transformations used to generate equivalent atoms:

Table S4.	Anisotropic d	isplacement paramet	ers (Å $^{2}x \ 10^{3}$).	The anisotropic	displacement factor
exponent ta	kes the form:	$-2\pi^2$ [h ² a* ² U ¹¹ +	+ 2 h k a* b*	U ¹²]	

	T 111	I 122	I 133	L 123	I 113	I 112
	0	0	U	U	0	0
C(1)	14(1)	21(1)	15(1)	-1(1)	2(1)	-1(1)
C(2)	19(1)	22(1)	13(1)	3(1)	3(1)	1(1)
C(3)	18(1)	22(1)	15(1)	2(1)	3(1)	6(1)
C(4)	23(1)	29(1)	29(1)	0(1)	14(1)	2(1)
C(5)	23(1)	43(2)	30(1)	0(1)	14(1)	9(1)
C(6)	28(1)	47(2)	20(1)	-2(1)	7(1)	20(1)
C(7)	33(2)	30(1)	32(1)	-5(1)	9(1)	11(1)
C(8)	25(1)	21(1)	33(1)	-7(1)	10(1)	3(1)
C(9)	20(1)	19(1)	14(1)	2(1)	5(1)	-1(1)
C(10)	21(1)	25(1)	24(1)	-1(1)	11(1)	-3(1)
C(11)	28(1)	38(2)	29(1)	-7(1)	17(1)	-11(1)
C(12)	43(2)	41(2)	22(1)	-3(1)	17(1)	-21(1)
C(13)	43(2)	29(1)	17(1)	4(1)	6(1)	-14(1)
C(14)	29(1)	24(1)	20(1)	6(1)	6(1)	-2(1)
C(15)	16(1)	21(1)	12(1)	-1(1)	1(1)	-6(1)
C(16)	22(1)	24(1)	21(1)	2(1)	4(1)	-2(1)
C(17)	43(2)	23(1)	22(1)	5(1)	5(1)	-7(1)
C(18)	40(2)	37(2)	19(1)	-1(1)	10(1)	-20(1)
C(19)	33(2)	40(2)	32(1)	-1(1)	19(1)	-6(1)
C(20)	27(1)	28(1)	27(1)	2(1)	14(1)	-1(1)
C(21)	20(1)	18(1)	14(1)	1(1)	6(1)	2(1)
C(22)	21(1)	21(1)	19(1)	0(1)	7(1)	3(1)
C(23)	28(1)	29(1)	25(1)	6(1)	13(1)	11(1)
C(24)	44(2)	31(1)	19(1)	4(1)	15(1)	17(1)
C(25)	49(2)	22(1)	19(1)	-5(1)	8(1)	3(1)
C(26)	28(1)	23(1)	21(1)	-4(1)	5(1)	-2(1)
Cl(1)	25(1)	17(1)	19(1)	-2(1)	-1(1)	-2(1)
Cl(2)	21(1)	18(1)	18(1)	4(1)	0(1)	0(1)
P(1)	13(1)	15(1)	14(1)	0(1)	3(1)	-2(1)
P(2)	15(1)	16(1)	12(1)	1(1)	4(1)	1(1)
Pd(1)	11(1)	13(1)	10(1)	0(1)	2(1)	0(1)
C(27A)	26(2)	80(3)	54(2)	31(2)	14(1)	14(2)
Cl(3A)	26(1)	43(1)	20(1)	6(1)	6(1)	10(1)

Supplementary Material (ESI) for Dalton Transactions
This journal is (c) The Royal Society of Chemistry 2008

Cl(4A)	53(2)	127(4)	48(2)	42(2)	25(2)	36(2)
C(27B)	26(2)	80(3)	54(2)	31(2)	14(1)	14(2)
Cl(3B)	65(4)	118(6)	40(3)	21(3)	23(3)	33(4)
Cl(4B)	46(2)	55(3)	50(3)	24(2)	12(2)	-4(2)
C(28A)	59(2)	55(2)	49(2)	-13(2)	37(2)	-15(2)
Cl(5A)	33(1)	80(2)	38(1)	0(1)	3(1)	16(1)
Cl(6A)	35(1)	57(1)	36(1)	-14(1)	16(1)	-15(1)
C(28B)	59(2)	55(2)	49(2)	-13(2)	37(2)	-15(2)
Cl(5B)	31(2)	122(7)	47(2)	17(3)	4(2)	2(2)
Cl(6B)	165(8)	129(8)	38(2)	-18(3)	-18(4)	117(7)

			_	LI(cc)
	Х	у	Z	U(eq)
H(1A)	7016	2797	7973	21
H(1B)	6574	3204	8685	21
H(2A)	5454	2177	8791	22
H(2B)	6619	1784	8713	22
H(3)	6587	703	7665	22
H(4A)	7246	1793	7141	31
H(4B)	6261	1692	6223	31
H(5A)	8058	1239	6128	37
H(5B)	8234	684	6933	37
H(6A)	6427	515	5300	39
H(6B)	7537	-44	5665	39
H(7A)	6829	-463	6758	38
H(7B)	5839	-600	5847	38
H(8A)	5003	-50	6847	32
H(8B)	4795	494	6030	32
H(9)	3631	606	7336	21
H(10A)	3474	1814	8469	27
H(10B)	2622	1713	7501	27
H(11A)	1834	578	7858	36
H(11B)	1708	1242	8492	36
H(12A)	3388	782	9587	41
H(12B)	2451	101	9278	41
H(13A)	3506	-414	8434	37
H(13B)	4367	-335	9402	37
H(14A)	5296	121	8410	29
H(14B)	5215	783	9060	29
H(16)	4607	4867	6697	28
H(17)	5437	5706	5942	36
H(18)	7084	5339	5586	38
H(19)	7911	4133	5976	40
H(20)	7094	3287	6723	32
H(22)	2782	3204	7457	24
H(23)	1769	3842	8258	31

Table S5.	Hydrogen coordinates	$(x \ 10^4)$) and isotropic	displacement	parameters	(Å ² x 1	0 3).
-----------	----------------------	--------------	-----------------	--------------	------------	---------------------	-----	----

H(24)	2643	4876	9122	37
H(25)	4522	5283	9202	37
H(26)	5580	4623	8458	30
H(27A)	5768	2040	548	64
H(27B)	6230	2824	1032	64
H(27C)	6034	2884	1186	64
H(27D)	6010	2182	547	64
H(28A)	-192	2065	9811	59
H(28B)	-342	2966	9628	59
H(28C)	-194	2926	9795	59
H(28D)	-443	2037	9577	59

Table S6. Torsion angles [°].

P(1)-C(1)-C(2)-P(2)	40.89(19)
C(8)-C(3)-C(4)-C(5)	-53.1(3)
P(2)-C(3)-C(4)-C(5)	-178.78(17)
C(3)-C(4)-C(5)-C(6)	54.8(3)
C(4)-C(5)-C(6)-C(7)	-56.7(3)
C(5)-C(6)-C(7)-C(8)	57.8(3)
C(6)-C(7)-C(8)-C(3)	-55.5(3)
C(4)-C(3)-C(8)-C(7)	52.6(3)
P(2)-C(3)-C(8)-C(7)	176.73(17)
C(14)-C(9)-C(10)-C(11)	-54.4(3)
P(2)-C(9)-C(10)-C(11)	179.93(16)
C(9)-C(10)-C(11)-C(12)	55.5(3)
C(10)-C(11)-C(12)-C(13)	-57.3(3)
C(11)-C(12)-C(13)-C(14)	57.4(3)
C(12)-C(13)-C(14)-C(9)	-55.2(3)
C(10)-C(9)-C(14)-C(13)	53.9(3)
P(2)-C(9)-C(14)-C(13)	179.21(16)
C(20)-C(15)-C(16)-C(17)	-1.7(3)
P(1)-C(15)-C(16)-C(17)	-175.69(18)
C(15)-C(16)-C(17)-C(18)	0.7(4)
C(16)-C(17)-C(18)-C(19)	0.3(4)
C(17)-C(18)-C(19)-C(20)	-0.1(4)
C(18)-C(19)-C(20)-C(15)	-0.9(4)
C(16)-C(15)-C(20)-C(19)	1.8(4)
P(1)-C(15)-C(20)-C(19)	175.9(2)
C(26)-C(21)-C(22)-C(23)	-0.6(3)
P(1)-C(21)-C(22)-C(23)	175.96(17)
C(21)-C(22)-C(23)-C(24)	1.2(3)
C(22)-C(23)-C(24)-C(25)	-0.2(4)
C(23)-C(24)-C(25)-C(26)	-1.3(4)
C(24)-C(25)-C(26)-C(21)	1.9(4)
C(22)-C(21)-C(26)-C(25)	-0.9(3)
P(1)-C(21)-C(26)-C(25)	-177.45(18)
C(16)-C(15)-P(1)-C(21)	-26.9(2)
C(20)-C(15)-P(1)-C(21)	159.14(18)
C(16)-C(15)-P(1)-C(1)	-139.24(18)

C(20)-C(15)-P(1)-C(1)	46.8(2)
C(16)-C(15)-P(1)-Pd(1)	99.44(18)
C(20)-C(15)-P(1)-Pd(1)	-74.54(19)
C(22)-C(21)-P(1)-C(15)	134.87(18)
C(26)-C(21)-P(1)-C(15)	-48.6(2)
C(22)-C(21)-P(1)-C(1)	-112.31(19)
C(26)-C(21)-P(1)-C(1)	64.2(2)
C(22)-C(21)-P(1)-Pd(1)	8.0(2)
C(26)-C(21)-P(1)-Pd(1)	-175.47(16)
C(2)-C(1)-P(1)-C(15)	-157.86(15)
C(2)-C(1)-P(1)-C(21)	88.03(17)
C(2)-C(1)-P(1)-Pd(1)	-34.12(16)
C(10)-C(9)-P(2)-C(2)	71.76(17)
C(14)-C(9)-P(2)-C(2)	-54.10(18)
C(10)-C(9)-P(2)-C(3)	-175.10(15)
C(14)-C(9)-P(2)-C(3)	59.04(18)
C(10)-C(9)-P(2)-Pd(1)	-46.67(17)
C(14)-C(9)-P(2)-Pd(1)	-172.54(13)
C(1)-C(2)-P(2)-C(9)	-152.40(16)
C(1)-C(2)-P(2)-C(3)	93.69(17)
C(1)-C(2)-P(2)-Pd(1)	-30.92(17)
C(4)-C(3)-P(2)-C(9)	173.77(15)
C(8)-C(3)-P(2)-C(9)	48.84(19)
C(4)-C(3)-P(2)-C(2)	-73.85(17)
C(8)-C(3)-P(2)-C(2)	161.22(16)
C(4)-C(3)-P(2)-Pd(1)	46.55(18)
C(8)-C(3)-P(2)-Pd(1)	-78.38(17)
C(15)-P(1)-Pd(1)-P(2)	131.46(8)
C(21)-P(1)-Pd(1)-P(2)	-104.97(8)
C(1)-P(1)-Pd(1)-P(2)	12.49(8)
C(15)-P(1)-Pd(1)-Cl(2)	-51.05(8)
C(21)-P(1)-Pd(1)-Cl(2)	72.51(8)
C(1)-P(1)-Pd(1)-Cl(2)	-170.02(8)
C(9)-P(2)-Pd(1)-P(1)	123.99(8)
C(2)-P(2)-Pd(1)-P(1)	7.49(8)
C(3)-P(2)-Pd(1)-P(1)	-111.71(8)
C(9)-P(2)-Pd(1)-Cl(1)	-55.80(8)
C(2)-P(2)-Pd(1)-Cl(1)	-172.30(8)

C(3)-P(2)-Pd(1)-Cl(1)

68.50(8)

Symmetry transformations used to generate equivalent atoms:

Crystal data and structure refinement for *cis,cis*-1,2,3,4-tetraphenyl-1,3-butadiene.

Empirical formula	C40 H36		
Formula weight	516.69		
Temperature	110(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/c		
Unit cell dimensions	a = 5.7583(6) Å	α= 90°.	
	b = 21.214(2) Å	β=96.165(2)°.	
	c = 7.8566(8) Å	$\gamma = 90^{\circ}$.	
Volume	954.20(17) Å ³		
Z	1		
Density (calculated)	0.899 Mg/m ³		
Absorption coefficient	0.051 mm ⁻¹		
F(000)	276		
Crystal size	0.26 x 0.11 x 0.04 mm ³		
Theta range for data collection	1.92 to 30.01°.		
Index ranges	-7<=h<=7, -29<=k<=29, -11<=	=1<=11	
Reflections collected	10569		
Independent reflections	2728 [R(int) = 0.0317]		
Completeness to theta = 30.01°	98.2 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2728 / 0 / 127		
Goodness-of-fit on F ²	1.025		
Final R indices [I>2sigma(I)]	R1 = 0.0484, wR2 = 0.1145		
R indices (all data)	R1 = 0.0652, wR2 = 0.1243		
Largest diff. peak and hole	0.486 and -0.208 e.Å ⁻³		

Table S2.	Atomic coordinates	$(x 10^4)$ and equivalent	isotropic displacement p	barameters (Å 2x 10 3).
U(eq) is de	fined as one third of	the trace of the orthogo	onalized U ^{ij} tensor.	

	Х	у	Z	U(eq)
 C(1)	5365(2)	4083(1)	-196(1)	14(1)
C(6)	7027(2)	3793(1)	-1097(2)	17(1)
C(8)	7425(2)	4884(1)	1708(2)	15(1)
C(7)	5735(2)	4747(1)	428(2)	14(1)
C(2)	3414(2)	3735(1)	161(2)	17(1)
C(14)	11179(2)	4673(1)	3442(2)	17(1)
C(11)	9858(2)	3470(1)	4280(2)	22(1)
C(3)	3180(2)	3107(1)	-327(2)	20(1)
C(9)	8983(2)	4451(1)	2762(1)	15(1)
C(5)	6769(2)	3166(1)	-1605(2)	20(1)
C(13)	12705(2)	4297(1)	4484(2)	19(1)
C(4)	4857(2)	2820(1)	-1214(2)	21(1)
C(10)	8345(2)	3841(1)	3209(2)	18(1)
C(12)	12050(2)	3694(1)	4915(2)	21(1)

Table S3. Bond lengths [Å] and angles [°].

C(1)-C(6)	1.3935(16)
C(1)-C(2)	1.3979(16)
C(1)-C(7)	1.4987(15)
C(6)-C(5)	1.3913(16)
C(8)-C(7)	1.3534(15)
C(8)-C(9)	1.4748(15)
C(7)-C(7)#1	1.483(2)
C(2)-C(3)	1.3898(16)
C(14)-C(13)	1.3883(16)
C(14)-C(9)	1.4010(16)
C(11)-C(10)	1.3878(16)
C(11)-C(12)	1.3902(17)
C(3)-C(4)	1.3897(18)
C(9)-C(10)	1.4001(16)
C(5)-C(4)	1.3845(18)
C(13)-C(12)	1.3848(18)
C(6)-C(1)-C(2)	118.64(10)
C(6)-C(1)-C(7)	120.01(10)
C(2)-C(1)-C(7)	121.30(10)
C(5)-C(6)-C(1)	120.65(11)
C(7)-C(8)-C(9)	128.99(10)
C(8)-C(7)-C(7)#1	120.76(12)
C(8)-C(7)-C(1)	120.68(10)
C(7)#1-C(7)-C(1)	118.52(12)
C(3)-C(2)-C(1)	120.48(11)
C(13)-C(14)-C(9)	121.27(11)
C(10)-C(11)-C(12)	120.74(11)
C(4)-C(3)-C(2)	120.39(11)
C(10)-C(9)-C(14)	117.80(10)
C(10)-C(9)-C(8)	123.81(10)
C(14)-C(9)-C(8)	118.27(10)
C(4)-C(5)-C(6)	120.38(11)
C(12)-C(13)-C(14)	120.24(11)
C(5)-C(4)-C(3)	119.43(11)
C(11)-C(10)-C(9)	120.70(11)

C(13)-C(12)-C(11) 119.21(11)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z

Table S4.	Anisotropic d	isplacement parame	ters (Å $^{2}x \ 10^{3}$).	The anisotropic	displacement factor
exponent ta	kes the form:	$-2\pi^2$ [h ² a* ² U ¹¹ +	+ 2 h k a* b*	U ¹²]	

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	15(1)	12(1)	15(1)	1(1)	-2(1)	1(1)
C(6)	16(1)	16(1)	18(1)	2(1)	0(1)	1(1)
C(8)	15(1)	12(1)	17(1)	0(1)	-1(1)	1(1)
C(7)	12(1)	12(1)	16(1)	0(1)	1(1)	1(1)
C(2)	15(1)	16(1)	19(1)	-1(1)	0(1)	0(1)
C(14)	17(1)	17(1)	17(1)	0(1)	-1(1)	0(1)
C(11)	24(1)	16(1)	23(1)	4(1)	-2(1)	1(1)
C(3)	19(1)	17(1)	23(1)	1(1)	-3(1)	-4(1)
C(9)	15(1)	15(1)	14(1)	-1(1)	0(1)	2(1)
C(5)	23(1)	18(1)	20(1)	-2(1)	1(1)	6(1)
C(13)	15(1)	24(1)	18(1)	-3(1)	-2(1)	2(1)
C(4)	28(1)	13(1)	22(1)	-2(1)	-5(1)	2(1)
C(10)	16(1)	17(1)	20(1)	1(1)	-2(1)	0(1)
C(12)	21(1)	21(1)	19(1)	1(1)	-4(1)	6(1)

	Х	У	Z	U(eq)
H(6)	8350	4025	-1366	20
H(8)	7637	5319	1962	18
H(2)	2239	3929	743	20
H(14)	11632	5090	3185	20
H(11)	9391	3059	4582	26
H(3)	1867	2871	-53	24
H(5)	7910	2975	-2225	24
H(13)	14205	4453	4902	23
H(4)	4694	2391	-1549	26
H(10)	6861	3678	2775	22
H(12)	13086	3437	5637	25

Table 55. Trydrogen coordinates (X To) and isotropic displacement parameters (X X To	Table S5.	Hydrogen coordinates	(x 10 ⁴)	and isotropic	displacement	parameters	(Å ² x 10) 3).
--	-----------	----------------------	----------------------	---------------	--------------	------------	----------------------	-----	----

Table S6. Torsion angles [°].

C(2)-C(1)-C(6)-C(5)	-1.00(17)
C(7)-C(1)-C(6)-C(5)	176.55(11)
C(9)-C(8)-C(7)-C(7)#1	176.97(13)
C(9)-C(8)-C(7)-C(1)	-5.23(19)
C(6)-C(1)-C(7)-C(8)	-69.42(15)
C(2)-C(1)-C(7)-C(8)	108.06(13)
C(6)-C(1)-C(7)-C(7)#1	108.42(15)
C(2)-C(1)-C(7)-C(7)#1	-74.10(17)
C(6)-C(1)-C(2)-C(3)	1.94(17)
C(7)-C(1)-C(2)-C(3)	-175.57(11)
C(1)-C(2)-C(3)-C(4)	-1.52(18)
C(13)-C(14)-C(9)-C(10)	1.86(18)
C(13)-C(14)-C(9)-C(8)	178.20(11)
C(7)-C(8)-C(9)-C(10)	-31.8(2)
C(7)-C(8)-C(9)-C(14)	152.10(12)
C(1)-C(6)-C(5)-C(4)	-0.38(18)
C(9)-C(14)-C(13)-C(12)	-1.93(19)
C(6)-C(5)-C(4)-C(3)	0.83(18)
C(2)-C(3)-C(4)-C(5)	0.12(18)
C(12)-C(11)-C(10)-C(9)	-0.8(2)
C(14)-C(9)-C(10)-C(11)	-0.51(18)
C(8)-C(9)-C(10)-C(11)	-176.63(12)
C(14)-C(13)-C(12)-C(11)	0.61(19)
C(10)-C(11)-C(12)-C(13)	0.7(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z