Oxidation of *p*-chlorotoluene and cyclohexene catalysed by polymeranchored oxovanadium(IV) and copper(II) complexes of amino acid derived tridentate ligands

M. R. Maurya,* M. Kumar, A. Kumar and J. Costa Pessoa*

Supplementary material

Table - S1 Semi-quantitative (wt. %) information about the elements present on the surface ofpolymer beads obtained by EDAX.

Sample	С	N	0	V/Cu	Cl
Polymer bead	80.67				18.30
PS-H ₂ fsal-DL-Ala	68.72	1.99	8.35		0.34
PS-[VO(fsal-DL-Ala) H ₂ O]	62.97	1.22	11.99	3.34	0.15
PS-[Cu(fsal-DL-Ala) H ₂ O]	64.81	0.93	10.53	4.80	0.39
PS-H ₂ fsal-L-Ile	70.93	2.12	8.27		0.30
PS-[VO(fsal-L-Ile) H ₂ O]	47.60	1.29	12.24	3.71	0.17
PS-[Cu(fsal-L-Ile) H ₂ O]	62.38	1.65	10.08	3.01	0.20

 Table S2 - IR spectral data of ligands and complexes.

v(C=N)	v(V=O)
1635	
1630	
1602	984
1601	
1638	
1630	
1608	955
1600	
1605	960
1614	
1610	977
1611	
	v(C=N) 1635 1630 1602 1601 1638 1630 1608 1600 1605 1614 1610 1611

Table S3 - Spin Hamiltonian parameters obtained from the experimental EPR spectra recorded forpowdered samples of 2 and 4, and of the corresponding non-polymer-bound complex 8 dissolved inDMF.

Catalyst	Sample	g∥	$\begin{array}{c} A \\ (\times 10^4 \text{cm}^{-1}) \end{array}$	$g \ / A \ $
PS-[Cu(fsal-DL-Ala)(X)], 2 1 st species 2 nd species	Fresh	2.272 2.295	181 171	126 134
PS-[Cu(fsal-DL-Ala)(X)], 2 -DMF 1 st species 2 nd species	Fresh	2.276 2.305	182 178	125 130
PS-[Cu(fsal-DL-Ala)(X)], 2	Used			
At least 3 distinct species present, one apparently corresponding to a highly distorted geometry. Approximate g values are given for this species.		$\begin{array}{l} g_z \sim 2.34 \\ g_y \sim 2.07 \\ g_x \sim 1.94 \end{array}$		
PS-[Cu(fsal-DL-Ala)(X)], 2 -DMF	Used			
At least 3 distinct species present, one apparently corresponding to a highly distorted geometry. Approximate g values given for this species.		$\begin{array}{l} g_z \sim 2.35 \\ g_y \sim 2.07 \\ g_x \sim 1.95 \end{array}$		
[Cu(fsal-L-Ile)(X)], 8	In DMF			
1 st species		2.285	175	130
2 nd species		2.361	154	153
PS-[Cu(fsal-L-Ile)(X)], 4	Fresh			
1 st species		2.272	177	129
2 rd species		2.314	160	144
3 species	Fresh	2.254	162	139
PS-[Cu(tsal-L-IIe)(X)], 4-DMF	110511	2 212	161	142
¹ Species		2.313	101	145 124
PS-[Cu(fsal-L-Ile)(X)], 4	Used	2.2/4	105	124
At least 3 distinct species present, one apparently corresponding to a highly distorted geometry. Approximate g values are given for this species.		$\begin{array}{l} g_z\sim 2.34\\ g_y\sim 2.07\\ g_x\sim 1.94 \end{array}$		
PS-[Cu(fsal-L-Ile)(X)] 4 -DMF	Used			
At least 3 distinct species present, one apparently corresponding to a highly distorted geometry Approximate g values are given for		$g_z \sim 2.35$ $g_y \sim 2.07$ $g_z \sim 1.95$		

this species.

Table S4 - Vanadium-containing species (in ppm relative to VOCl₃) detected in the ⁵¹V NMR spectra of 4 mM methanolic solutions (80% MeOH and 20% MeOD) of [V^{IV}O(fsal-DL-Ala)(H₂O)] (5) upon progressive additions of H₂O₂, followed by additions of styrene^a

Treatment of complex 5	⁵¹ V NMR signals ^a	Assignement of V species		
Oxidation of 5 with air	-553 (~55%) [-562 and -566] (~45%)	[V ^V O(fsal-DL-Ala)(MeO)(MeOH)]		
Addition of 2 equiv. of H_2O_2 . Global increase in intensity of the ⁵¹ V NMR signals.	-553 (~40%) [-562 and -566] (~60%)	[V ^V O(fsal-DL-Ala)(MeO)(MeOH)]		
Total of 4 equiv. of H ₂ O ₂ added	-535 (15%) [-562 and -566] (~68%) -581 (~17%)	? ^b [V ^V O(fsal-DL-Ala)(MeO)(MeOH)] [V ^V O(fsal-DL-Ala)(O ₂)(MeOH)]		
Total of 6 equiv. of H ₂ O ₂ added	-535 (10%) [-562 and -566] (~70%) -581 (~20%)	? ^b [V ^V O(fsal-DL-Ala)(MeO)(MeOH)] [V ^V O(fsal-DL-Ala)(O ₂)(MeOH)]		
Total of 7 equiv. of H ₂ O ₂ added	-535 (8%) [-562 and -566] (~60%) -581 (~22%)	? ^b [V ^V O(fsal-DL-Ala)(MeO)(MeOH)] [V ^V O(fsal-DL-Ala)(O ₂)(MeOH)]		
Total of 8 equiv. of H ₂ O ₂ added	[-562 and -566] (~15%) -581 (~77%) -658 (8%)	[V ^V O(fsal-DL-Ala)(O ₂)(MeOH)] [V ^V O(fsal-DL-Ala)(O ₂)(MeOH)] Product of alcoholysis ^c ?		
Total of 9 equiv. of H ₂ O ₂ added	-581 (~53%) -658 (47%)	[V ^V O(fsal-DL-Ala)(O ₂)(MeOH)[
Addition of 2 equiv. of styrene (the global intensity of ⁵¹ V NMR decreases).	-581 (~48%) -658 (52%)	[V ^V O(fsal-DL-Ala)(O ₂)(MeOH)] Product of alcoholysis ^c ?		
Total of 3 equiv. of styrene up to 15 equiv. of styrene added (the global intensity of ⁵¹ V NMR decreased)	-581 (~65%) -658 (35%)	[V ^V O(fsal-DL-Ala)(O ₂)(MeOH)] Product of alcoholysis ^c ?		
From a total of 18 equiv. of styrene up to 35 equiv. of styrene(the global intensity of ⁵¹ V NMR decreased)	-553 (~25 to ~60%) -582 (~75 to ~40%)	V ^V O(fsal-DL-Ala)(MeO)(MeOH) V ^V O(fsal-DL-Ala)(O ₂)(MeOH)		
Total of 40 equiv. of styrene	Almost no ⁵¹ V NMR signal; very weak peaks at ca553 and -583	No vanadium(V) species		

^a The corresponding relative areas of the vanadium peaks detected are given in the bracket. ^b The peak at ca. -553 ppm possibly corresponds to VO₂⁺ (V₁), indicating some significant hydrolysis of the V^V complexes after one week of contact of the solution with air. ^c The peak at -658 ppm in the ⁵¹V NMR spectra may be a product of alcoholysis eg. V^VO(MeO)₃ or V^VO(O)₂(MeO).

Fig. S1 Left: Electronic spectra of $[VO(fal-DL-Ala)(H_2O)]$ (a), $[Cu(fsal-L-Ile)(H_2O)]$ (b), $[VO(fsal-L-Ile)(H_2O)]$ (c) and [Cu(fal-DL-Ala)] (d); right: Electronic spectra of polymer-bound ligands and metal complexes: PS- $[Cu(fsal-L-Ile)(H_2O)]$ (a), PS- $[Cu(fal-DL-Ala)(H_2O)]$ (b), PS- $[VO(fal-DL-Ala)(H_2O)]$ (c), PS- $H_2fsal-L-Ile$ (d), PS- $[VO(fsal-L-Ile)(H_2O)]$ (e) and PS- $H_2fsal-DL-Ala$ (f).