Heteroleptic Platinum(II) Complexes of 8-Quinolinolates Bearing Electron Withdrawing Groups in 5 Position

Fabian Niedermair,^a Ohyun Kwon,^b Karin Zojer,^c Stefan Kappaun,^d Gregor Trimmel,^a Kurt Mereiter,^e and Christian Slugovc ^{a,*}

^a Institute for Chemistry and Technology of Organic Materials (ICTOS), Graz University of Technology, Stremayrgasse 16, A-8010 Graz, Austria

^b School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA

^c Institute of Theoretical and Computational Physics, Graz University of Technology, Petersgasse16, A-8010 Graz, Austria

^d NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler Strasse 32, A 8160 Weiz, Austria

^e Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, A-1060 Vienna, Austria

Electronic Supplementary Information

Labelling Mode – Example

 $\kappa^{2}(N,C^{2})$ -(2-phenylpyridine)- $\kappa^{2}(N,O)$ -(5-nitro-8-quinolinolato)platinum(II) (4a)

Synthesis

 $\kappa^{2}(N,C^{2})$ -(2-phenylpyridine)- $\kappa^{2}(N,O)$ -(5-formyl-8-quinolinolato) **Synthesis** of platinum(II) (4b) was prepared similarly to 4a, using 1 (102.4 mg, 0.190 mmol), 3b (48.3 mg, 0.279 mmol) and K_2CO_3 (160.9 mg, 1.164 mmol) as the starting materials. Purification was accomplished by washing the orange residue with MeOH. The precipitate was filtered off, dried, suspended in CHCl₃ and filtered over Na₂SO₄/Celite. The orange residue was recrystallized from CHCl₃/EtOH. Yield: 42.3 mg (43 %) orange crystals, $R_f \approx 0.3$ in CH₂Cl₂. Anal. Calcd for C₂₁H₁₄N₂O₂Pt: C, 48.37; H, 2.71; N, 5.37. Found: C, 48.54; H, 2.66; N, 5.24. ¹H-NMR (δ, 20°C, DMSOd₆, 500 MHz): 10.00 (s, 1H, CHO), 9.76 (d, 1H, ${}^{3}J_{HH} = 8.5 Hz$, Q⁴), 9.28 (d, 1H, ${}^{3}J_{HH} =$ 3.7 Hz, Q²), 9.08 (d, 1H, ${}^{3}J_{HH} = 4.9$ Hz, Py⁶), 8.07-7.98 (m, 3H, Q⁶, Ph⁶, Py⁴), 7.85 (m, 1H, Q³), 7.68 (d, 1H, ${}^{3}J_{HH} = 7.3 Hz$, Py³), 7.52 (d, 1H, ${}^{3}J_{HH} = 7.1 Hz$, Ph³), 7.40 (t, 1H, ${}^{3}J_{HH} = 6.1 \text{ Hz}, \text{Py}^{5}$, 7.22 (t, 1H, ${}^{3}J_{HH} = 7.3 \text{ Hz}, \text{Ph}^{4}$), 7.13 (t, 1H, ${}^{3}J_{HH} = 7.3 \text{ Hz}, \text{Ph}^{5}$), 6.94 (d, 1H, ${}^{3}J_{HH} = 8.3 Hz$, Q⁷). ${}^{13}C{}^{1}H{}-NMR$ (δ , 20°C, CDCl₃, 125 MHz): 190.6 (1C, CHO), 174.1 (1C, Q⁸), 167.1 (1C, Ph²), 149.5 (1C, Py⁶), 148.3 (1C, Py²), 147.0 (1C, Q^{8a}), 146.3 (1C, Q²), 143.4 (1C, Ph³), 139.2 (1C, Ph⁶), 137.9, 137.8 (2C, Py⁴, Ph¹), 131.9 (1C, Q⁴), 130.5 (1C, Q^{4a}), 129.8 (1C, Q⁶), 124.3, 124.2, 124.1 (3C, Q³, Py³, Ph⁵), 122.0 (1C, Ph⁴), 118.5 (1C, Py⁵), 117.6 (1C, Q⁵), 115.2 (1C, Q⁷). IR (film on KBr-window cast from CH₂Cl₂-solution, cm⁻¹): 2921 (w), 2850 (w), 2714 (w), 2322 (w), 1661 (s), 1609 (m), 1588 (m), 1562 (s), 1505 (s), 1472 (s), 1426 (m), 1365 (m), 1341 (s), 1243 (s), 1209 (m), 1150 (m), 1109 (w), 1062 (w), 841 (w), 751 (m).

Figure S1. ¹H-NMR spectrum of 4b in DMSO-d₆.

 $\kappa^{2}(N,C^{2})$ -(3-hexyloxy-2-phenylpyridine)- $\kappa^{2}(N,O)$ -(5-formyl-8-**Synthesis** of quinolinolato) platinum(II) (5b) was prepared similarly to 4a, using 2 (100.0 mg, 0.135 mmol), 3b (35.4 mg, 0.204 mmol) and K₂CO₃ (120.0 mg, 0.868 mmol) as the starting materials. Purification was accomplished by washing the orange residue with EtOH. The precipitate was filtered off, dried, suspended in CHCl₃ and filtered over Na₂SO₄/Celite. The orange residue was recrystallized from CHCl₃/MeOH. Yield: 27.0 mg (32 %) orange crystals, $R_f \approx 0.3$ in CH₂Cl₂. Anal. Calcd for C₂₇H₃₆N₂O₃Pt: C, 52.17; H, 4.22; N, 4.51. Found: C, 51.96; H, 4.34; N, 4.66. ¹H-NMR (δ, 20°C, CDCl₃, 500 MHz): 10.00 (s, 1H, CHO), 9.97 (d, 1H, ${}^{3}J_{HH} = 8.5$ Hz, Q⁴), 9.22 (d, 1H, ${}^{3}J_{HH} = 4.9$ *Hz*, Q²), 9.04 (d, 1H, ${}^{3}J_{HH} = 5.6$ *Hz*, Py⁶), 8.36 (d, 1H, ${}^{3}J_{HH} = 8.1$ *Hz*, Ph⁶), 7.93 (d, 1H, ${}^{3}J_{HH} = 8.3 Hz, Q^{6}$, 7.65-7.62 (m, 1H, Q³), 7.47 (d, 1H, ${}^{3}J_{HH} = 7.8 Hz, Py^{4}$), 7.38 (d, 1H, ${}^{3}J_{HH} = 8.3 Hz$, Ph³), 7.26-7.23 (m, 1H, Py⁵), 7.17-7.09 (m, 2H, Ph⁴, Ph⁵), 7.03 (d, 1H, ${}^{3}J_{HH} = 8.3 Hz$, Q⁷), 4.16 (t, 2H, ${}^{3}J_{HH} = 6.3 Hz$, OHex¹), 1.99 (p, 2H, OHex²), 1.60-1.56 (m, 4H, OHex^{3,4}), 1.40 (m, 2H, OHex⁵), 0.94 (t, 3H, ${}^{3}J_{HH} = 6.8$ Hz, OHex⁶). ¹³C{¹H}-NMR (δ, 20°C, CDCl₃, 125 MHz): 190.5 (1C, CHO), 174.0 (1C, Q⁸), 156.3 (1C, Py³), 153.2 (1C, Ph²), 148.3 (1C, Py⁶), 147.1, 146.9 (2C, Py², Q^{8a}), 143.3 (1C, Q²), 141.5 (1C, Ph³), 138.3 (1C, Ph¹), 137.4 (1C, Py⁴), 131.4 (1C, Q⁴), 130.4 (1C, Q^{4a}), 128.70, 128.69 (2C, Ph⁶, Q⁶), 124.2, 123.8 (2C, Q³, Ph⁵), 121.62, 121.60 (2C, Ph⁴, Py⁵), 117.4 (1C, Q⁵), 115.1 (1C, Q⁷), 69.5 (1C, OHex¹), 31.6 (1C, OHex⁴), 29.1 (1C, OHex²), 26.0 (1C, OHex³), 22.7 (1C, OHex⁵), 14.2 (1C, OHex⁶). IR (film on KBrwindow cast from CH₂Cl₂-solution, cm⁻¹): 3094 (w), 3054 (w), 2924 (m), 2853 (m), 2712 (w), 1653 (s), 1590 (s), 1557 (s), 1506 (s), 1472 (m), 1425 (m), 1399 (w), 1366 (m), 1344 (s), 1308 (w), 1275 (m), 1245 (s), 1208 (s), 1148 (m), 1113 (w), 1081 (w), 1062 (m), 1024 (w), 837 (m), 781 (m), 726 (m).

Figure S2. ¹H-NMR spectrum of 5b in CDCl₃.

Synthesis of $\kappa^2(N,C^2)$ -(2-phenylpyridine)- $\kappa^2(N,O)$ -(5,7-dichloro-8-quinolinolato) platinum(II) (4c) was prepared similarly to 4a, using 1 (100.9 mg, 0.187 mmol), 3c (59.9 mg, 0.280 mmol) and K₂CO₃ (152.9 mg, 1.106 mmol) as the starting materials. Purification was accomplished by washing the orange residue with MeOH. The precipitate was filtered off and dried in vacuum. The dark red solid was then purified by column chromatography (silica, CH₂Cl₂ or acetone/ CH₂Cl₂) to give main orange or red fraction. The solvent was evaporated and Et₂O was added. Sonication precipitated the product which was filtered, washed with *n*-pentane and dried in vacuum. Yield: 20.55 mg (20 %) orange crystals, R_f ≈ 0.4 in CH₂Cl₂. Anal. Calcd for C₂₀H₁₂Cl₂N₂OPt: C, 42.72; H, 2.15; N, 4.98. Found: C, 42.76; H, 2.32; N, 5.11. ¹H-NMR (δ, 20°C, CDCl₃, 500 MHz): 9.39 (d, 1H, ${}^{3}J_{HH} = 6.1$ Hz, Py⁶), 9.29 (d, 1H, ${}^{3}J_{HH} = 5.1$ Hz, Q²), 8.65 (d, 1H, ${}^{3}J_{HH} = 8.5$ Hz, Q⁴), 7.86 (t, 1H, ${}^{3}J_{HH} = 7.8$ Hz, Q³), 7.69 (s, 1H, Q⁶), 7.66 (d, 1H, ${}^{3}J_{HH} = 7.8$ Hz, Ph⁶), 7.56-7.51 (m, 3H, Py⁴, Ph^{3,5}), 7.29 (m, 1H, Py³), 7.22 (t, 1H, ${}^{3}J_{HH} = 7.0$ Hz, Ph⁴), 7.17 (t, 1H, ${}^{3}J_{HH} = 7.0$ Hz, Py⁵).

Figure S3. ¹H-NMR spectrum of 4c in CDCl₃.

Table S1. Absorption and emission properties of 4c at room temperature.

Complex	Abs, λ_{max}^{a}	Emission	$\tau_{\rm u}$ [us]	$ au_{N_2}$ [µS]	Φ[%]
	λ [nm] (ε [10 ⁻³ cm ⁻¹ M ⁻¹])	λ_{max} [nm]			
4c	261 (23.9), 363 (6.2), 477 (4.7)	_b	_ b	_b	_ b

^a CHCl₃ solutions

^b no emission observed in CH₂Cl₂ and in CHCl₃ solution

Synthesis of $\kappa^2(N,C^2)$ -(2-phenylpyridine)- $\kappa^2(N,O)$ -(8-quinolinolato) platinum(II) (4d) was prepared similarly to 4a, using 1 (101.5 mg, 0.188 mmol), 3d (42.6 mg, 0.293 mmol) and K₂CO₃ (130.3 mg, 1.106 mmol) as the starting materials. Purification was accomplished by washing the orange-red residue with MeOH and acetone. The precipitate was filtered off and dried in vacuum. Yield: 52.2 mg (56 %) red crystals, $R_f \approx 0.8$ in acetone. Anal. Calcd for $C_{20}H_{14}N_2OPt$: C, 48.68; H, 2.86; N, 5.68. Found: C, 48.72; H, 3.01; N, 5.72. ¹H-NMR (δ, 20°C, CDCl₃, 500 MHz): 9.32 (d, 1H, ${}^{3}J_{HH} = 4.1 \text{ Hz}$, Q²), 9.29 (d, 1H, ${}^{3}J_{HH} = 5.6 \text{ Hz}$, Py⁶), 8.62 (d, 1H, ${}^{3}J_{HH} = 8.3 \text{ Hz}$, Q^4), 8.10 (m, 2H, $Q^{3,6}$), 7.78 (d, 1H, ${}^{3}J_{HH} = 7.3 Hz$, Ph⁶), 7.71 (t, 1H, Py⁴), 7.67 (d, 1H, ${}^{3}J_{HH} = 7.6 Hz$, Py³), 7.52-7.46 (m, 2H, Ph^{3,5}), 7.27 (t, 1H, ${}^{3}J_{HH} = 7.6 Hz$, Ph⁴), 7.17 (t, 1H, ${}^{3}J_{HH} = 7.6 Hz$, Py⁵), 7.04 (d, 1H, ${}^{3}J_{HH} = 8.1 Hz$, Q⁵), 6.97 (d, 1H, ${}^{3}J_{HH} = 7.6 Hz$, Q⁷). ¹³C{¹H}-NMR (δ, 20°C, CDCl₃, 125 MHz): 166.6, 166.4 (2C, Q⁸, Ph²), 148.7, 148.4 (2C, Py⁶, Py²), 146.1 (1C, Q^{8a}), 145.8 (1C, Q²), 140.1 (1C, Ph³), 139.3, 139.1 (2C, Ph⁶, Ph¹), 131.6, 131.2 (2C, Q⁴, Py⁴), 130.3 (1C, Q^{4a}), 129.4 (1C, Q⁶), 124.4 (1C, Q³), 123.3 (1C, Py³), 122.6, 122.1 (2C, Ph⁴, Ph⁵), 119.1 (1C, Py⁵), 115.1 (1C, Q^5), 111.5 (1C, Q^7). IR (film on KBr-window cast from CH₂Cl₂-solution, cm⁻¹): 3044 (w), 2917 (w), 2848 (w), 1608 (m), 1575 (s), 1500 (s), 1487 (m), 1465 (s), 1440 (w), 1423 (w), 1383 (s), 1323 (s), 1288 (m), 1237 (w), 1222 (w), 1173 (w), 1160 (w), 1113 (m).

Figure S4. ¹H-NMR spectrum of 4d in CDCl₃.

Table S2. Absorption	and emission	properties of 4d	at room temperature.
----------------------	--------------	------------------	----------------------

Complex	Abs, λ _{max} ^a λ [nm] (ε [10 ⁻³ cm ⁻¹ M ⁻¹])	Emission λ_{max} [nm]	$ au_{\it Air}$ [µs]	$ au_{N_2}$ [μs]
4d	321 (10.2), 346 (7.7), 370 (7.1), 412 (4.7), 459 (7.6)	656 ^a 628 ^b	3.7 ^c 4.7 ^d	7 ^c 10 ^d

^a CHCl₃ solutions; ^b film; 2 w.t. % complex in polystyrene; ^c apparent lifetimes measured at a modulation frequency of 5.5 kHz in CHCl₃ at a concentration of 2-3 · 10⁻⁵ M; ^d apparent lifetimes measured at a modulation frequency of 5 kHz for the embedded complex (2 w.t. %) in polystyrene.

¹H-NMR-Spectra

Figure S5. ¹H-NMR spectrum of 4a in DMSO-d₆.

Figure S6. ¹H-NMR spectrum of 5a in CDCl₃.

UV-VIS and Fluorescence Spectra

Figure S7. Absorption spectra of **4a** measured in CHCl₃, CH₃CN, DMSO and THF solution at room temperature: **[4a]** in CHCl₃ = $2.96 \cdot 10^{-5}$ M; **[4a]** in CH₃CN = $1.84 \cdot 10^{-5}$ M; **[4a]** in DMSO = $1.11 \cdot 10^{-5}$ M; **[4a]** in THF = $1.24 \cdot 10^{-5}$ M.

Figure S8. Absorption spectra of **4b** measured in CHCl₃, CH₃CN, DMSO and THF solution at room temperature: **[4b]** in CHCl₃ = $2.87 \cdot 10^{-5}$ M; **[4b]** in CH₃CN = $1.49 \cdot 10^{-5}$ M; **[4b]** in DMSO = $1.20 \cdot 10^{-5}$ M; **[4b]** in THF = $1.33 \cdot 10^{-5}$ M.

Figure S9. Emission spectra of **4a** measured in CHCl₃, CH₃CN and THF solution at room temperature: **[4a]** in CHCl₃ = $2.56 \cdot 10^{-5}$ M; **[4a]** in CH₃CN = $6.23 \cdot 10^{-6}$ M; **[4a]** in THF = $7.97 \cdot 10^{-6}$ M.

Figure S10. Emission spectra of **4b** measured in CHCl₃, CH₃CN, DMSO and THF solution at room temperature: **[4b]** in CHCl₃ = $1.88 \cdot 10^{-5}$ M; **[4b]** in CH₃CN = $9.59 \cdot 10^{-6}$ M; **[4b]** in DMSO = $7.73 \cdot 10^{-6}$ M; **[4b]** in THF = $8.60 \cdot 10^{-6}$ M.

Figure S11. Low energy absorption features and emission spectra of **4a**, **4b**, **5a** and **5b** measured in CHCl₃ at room temperature. For emission measurements: [**4a**] = $2.56 \cdot 10^{-5}$ M, $\lambda_{ex} = 478$ nm; [**5a**] = $2.62 \cdot 10^{-5}$ M, $\lambda_{ex} = 484$ nm: [**4b**] = $1.88 \cdot 10^{-5}$ M, $\lambda_{ex} = 460$ nm; [**5b**] = $1.22 \cdot 10^{-5}$ M, $\lambda_{ex} = 465$ nm.

Figure S12. Absorption spectra measured in CHCl₃ solution at room temperature: $[4a] = 2.96 \cdot 10^{-5} \text{ M}; [5a] = 2.74 \cdot 10^{-5} \text{ M}; [4b] = 2.87 \cdot 10^{-5} \text{ M}; [5b] = 1.85 \cdot 10^{-5} \text{ M}; [4c]$ $= 3.42 \cdot 10^{-5} \text{ M}, [4d] = 3.98 \cdot 10^{-5} \text{ M}.$

Lifetime Measurements and Thin Film Spectra

Table S3. Lifetime measurements of coated capillaries (2 w.t. % complex in polystyrene)

Compound	Conditions	Lifetime at	Lifetime at	Lifetime at
•		5 κHz / μs [∞]	10 kHz / µs°	20 kHz / µs°
15	air	12	11	7
4a	nitrogen	34	28	15
50	air	10	8	6
Ja	nitrogen	25	18	10
4 b	air	10	8	6
40	nitrogen	29	20	12
56	air	8	7	6
50	nitrogen	24	17	10
1d	air	5	4	4
4u	nitrogen	10	8	6

^a Estimated experimental error: ± 2µs

Figure S13. Thin film spectra of coated capillaries (2 w.t. % complex in polystyrene) of **4a** (λ_{ex} = 475 nm)

Figure S14. Thin film spectra of coated capillaries (2 w.t. % complex in polystyrene) of **4b** (λ_{ex} = 460 nm)

Figure S15. Thin film spectra of coated capillaries (2 w.t. % complex in polystyrene) of **5a** (λ_{ex} = 480 nm)

Figure S16. Thin film spectra of coated capillaries (2 w.t. % complex in polystyrene) of **5b** (λ_{ex} = 466 nm)

Figure S17. Thin film spectra of coated capillaries (2 w.t. % complex in polystyrene) of **4d** (λ_{ex} = 459 nm)

	E (eV)	nm	f	description
S ₁	2.623	473	0.144	H-L
S ₂	3.152	393	0.011	H – L+1
S ₃	3.189	389	0.055	H-1 – L
S ₄	3.235	383	0.012	H-2 – L
S ₅	3.632	341	0.180	H – L+2
S ₆	3.665	338	0.010	H-2 – L+1
S ₇	3.669	338	0.058	H-2 – L+1, H – L+3, H-4 – L, H-3 – L
S ₈	3.692	336	0.008	H-1 – L+1, H-5 – L
S ₉	3.696	335	0.004	H-1 – L+1, H-5 – L
S ₁₀	3.777	328	0.046	H – L+3, H-3 – L
T ₁	1.955	634		H-L
T ₂	2.564	484		H-1 – L, H – L+1, H-1 – L+1
T ₃	2.922	424		H – L+1
T ₄	3.008	412		H-1 – L+1, H-1 – L
T ₅	3.070	404		H-11 – L, H-11 – L+2
T ₆	3.108	399		H-2 – L
T ₇	3.146	394		H – L+2, H – L+1, H-3 – L+1
T ₈	3.233	384		H-5 – L, H-5 – L+2

Table S4. Calculated Excitation Energies, Dominant Orbital Excitation, andOscillation Strengths from TDDFT Calculations for Pt Complex, **4a**

Table S5. Calculated Excitation Energies, Dominant Orbital Excitation, andOscillation Strengths from TDDFT Calculations for Pt Complex, **4b**

N-Pt-N-CHO	E (eV)	nm	f	description
S ₁	2.632	471	0.126	H–L
S ₂	3.115	398	0.011	H – L+1
S ₃	3.225	384	0.027	H-1 – L
S ₄	3.315	374	0.005	H-2 – L
S ₅	3.442	360	0.000	H-3 – L
S ₆	3.569	347	0.016	H – L+2
S ₇	3.680	337	0.010	H-1 – L+1
S ₈	3.687	336	0.001	H-2 – L+1
S ₉	3.763	329	0.180	H-4 – L
S ₁₀	3.937	315	0.048	H – L+3
T ₁	1.990	623		H-L
T ₂	2.562	484		H-1 – L, H – L+1
T ₃	2.948	421		H – L+1
T ₄	3.114	398		H-1 – L+1, H-1 – L
T ₅	3.121	397		H-3 – L, H-2 – L
T ₆	3.186	389		H-2 – L, H-3 – L
T ₇	3.217	385		H – L+3
T ₈	3.385	366		H – L+2

	E (eV)	nm	f	description
S ₁	2.400	517	0.090	H-L
S ₂	2.955	420	0.004	H – L+1
S ₃	3.117	398	0.013	H-1 – L
S ₄	3.276	379	0.003	H-2 – L
S ₅	3.465	358	0.006	H – L+2
S ₆	3.598	345	0.013	H-1 – L+1
S ₇	3.675	337	0.080	H – L+3
S ₈	3.681	337	0.002	H-2 – L+1
S ₉	3.761	330	0.097	H-3 – L
S ₁₀	3.912	317	0.050	H-4 – L
T ₁	1.813	684		H–L
T ₂	2.542	488		H-1 – L, H – L+1
T ₃	2.887	429		H – L+1
T_4	3.008	412		H – L+3
T ₅	3.067	404		H-1 – L+1, H-1 – L
T ₆	3.147	394		H-2 – L
T ₇	3.314	374		H – L+2, H-4 – L
T ₈	3.354	370		H-3 – L, H – L+2, H-4 – L

Table S6. Calculated Excitation Energies, Dominant Orbital Excitation, andOscillation Strengths from TDDFT Calculations for Pt Complex, **4c**

Table S7. Calculated Excitation Energies, Dominant Orbital Excitation, andOscillation Strengths from TDDFT Calculations for Pt Complex, **4d**

N-Pt-N	E (eV)	nm	f	description
S ₁	2.436	509	0.080	H-L
S ₂	2.908	426	0.002	H – L+1
S ₃	3.191	389	0.012	H-1 – L
S ₄	3.323	373	0.004	H-2 – L
S ₅	3.338	371	0.007	H – L+2
S ₆	3.641	341	0.010	H-1 – L+1
S ₇	3.688	336	0.000	H-2 – L+1
S ₈	3.793	327	0.162	H-3 – L
S ₉	3.882	319	0.019	H – L+3
S ₁₀	3.967	313	0.019	H-4 – L, H-1 – L+2
T ₁	1.872	662		H–L
T ₂	2.503	495		H – L+1, H-1 – L
T ₃	2.831	438		H – L+1, H-1 – L
T ₄	3.131	396		H-1 – L+1, H-1 – L, H – L+2
T ₅	3.168	391		H – L+3, H-2 – L+1
T ₆	3.181	390		H-2 – L, H – L+3
T ₇	3.252	381		H – L+2
T ₈	3.398	365		H-3 – L

	triplet state energy (eV)	E (T ₁ -S ₀)	TD-B3PW91// S ₀ geometry	TD-B3PW91// T ₁ geometry
4a		1.927	1.955	1.608
4b	N-Pt-N-CHO	1.961	1.990	1.586
4c		1.744	1.813	1.251
4d		1.802	1.872	1.304

Table S8. Calculated triplet State Energies of Pt Complexes at the Various Levels ofTheory

Table S9. Calculated Kohn-Sham HOMO and LUMO and the corresponding orbitalenergies for complexes 4a-4d

	Structure	НОМО	LUMO
4 a			
		-5.699 eV	-2.533 eV
4b	Pt-N CHO		
		-5.461 eV	-2.257 eV
4c			A ST
		-5.273 eV	-2.261 eV
4d			
		-4.997 eV	-1.945 eV

Figure S18. Kohn-Sham orbitals for HOMO, HOMO+1, HOMO+2, LUMO, LUMO+1 and LUMO+2 as well as orbital energies calculated for **4a** and **4d**.