Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2008

Atom	LL·2HCl [Pd(LL)Cl ₂]		1	2a	2b	
	δ	δ (Δδ)	δ (Δδ)	δ (Δδ)	δ (Δδ)	
N ³	-331.5	-367.2 (-35.7)	-379.3 (-47.8)	-360.8 (- 29.3)	-357.5 (-26.0)	
N ⁴	-348.7	-382.0 (-33.3)	-394.9 (-46.2)	-372.4 (-23.7)	-375.9 (-27.2)	

Table 1S. ¹⁵N NMR chemical shifts (δ, ppm) in LL·2HCl and [Pd(LL)Cl₂], **1, 2a, 2b** ^{a)}

a) 10 mM in DMSO- d_6 /CD₃CN, 1:2 v/v solution. ¹⁵N chemical shifts are referenced to external CD₃NO₂. Parameter $\Delta\delta$ denotes the difference of ¹⁵N chemical shifts between the complex and the dihydrochloride of LL

δ [ppm]	LL·2HCl	[Pd(LL)Cl ₂]	1	2a	2b
H^1	4.81 (bt, ${}^{3}J = 3.5$)	$4.74 (d, {}^{3}J = 3.9)$	4.71 (bd, ${}^{3}J = 3.5$)	4.72	4.75
H^2	$2.08^{b)}$	$2.24 \text{ (m, }^{3}J = 3.9,$	2.15 (ddd, ${}^{2}J = 13.5$,	2.02	2.08
		${}^{2}J = 14.0, {}^{3}J = 13.0$	${}^{3}J = 13.5, {}^{3}J = 3.8$		
$\mathrm{H}^{2^{\prime}}$	2.08^{b}	1.89 (m, ${}^{2}J = 14.0$, ${}^{3}J = 6.0$)	1.86 (dd, ${}^{2}J = 13.5, {}^{3}J = 5.3$)	1.94	1.94
H^3	3.80 (m)	$2.97 (m)^{b}$	2.87 (m)	3.22	3.23
H^{4}	3.77 (bd)	$3.01 (m)^{b}$	2.82 (m)	3.05	3.02
H^5	$4.10 (q, {}^{3}J = 6.8)$	$3.87 (q, {}^{3}J = 6.9)$	$3.96 (q, {}^{3}J = 6.5)$	4.01	4.01
CH ₃	$1.22 (d, {}^{3}J = 6.8)$	$1.03 (d, {}^{3}J = 6.9)$	$1.05 (d, {}^{3}J = 6.5)$	1.08	1.10
OCH ₃	3.30 (s)	3.23 (s)	3.21 (s)	3.23	3.24
$N^3 H^c$	c)	4.94 (bm)	5.47 ^{e)} (bd)	7.22	6.48
$N^3 H^t$	c)	4.05 (bd, ${}^{2}J = 10.5$)	$4.87^{\rm e}$ (bd, $^2J = 10.5$)	5.39	5.56
$N^4 H^c$	c)	4.51 (bm)	5.29 ^{f)} (bs)	5.96	6.20
$N^4 H^t$	c)	3.90 ^d)	4.31^{f} (bt, $^2J = 10.5$)	5.26	5.66

Table 2S. ¹H NMR chemical shifts (δ , ppm) and coupling constants (*J*, Hz) in LL·2HCl and [Pd(LL)Cl₂], **1**, **2a**, **2b** ^{a)}

a) 10 mM in DMSO- d_6 /CD₃CN, 1:2 v/v solution. ¹H chemical shifts are referenced to internal CD₃CN, $\delta = 1.93$ ppm

b) Two overlapping multiplets

c) Not resolved due to exchange

d) Broad, hidden under H⁵

e) Assignments are based on analogy with 2a and 2b, can be interchanged

f) Assignments are based on analogy with 2a and 2b, can be interchanged

	LL·2HCl	[Pd(LL)Cl ₂]		1		2a		2b	
	δ	δ	Δδ	δ	Δδ	δ	Δδ	δ	Δδ
C^1	98.0 (171.2)	98.3 (169.3)	0.3	98.01	0.01	98.00	0.00	98.22	0.22
C^2	29.3 (131.3)	30.6 (126.4, 132.8)	1.3	29.88	0.58	29.96	0.66	30.21	0.91
C^3	47.6 (145.1)	54.2 (144.0)	6.6	53.97	6.37	54.00	6.40	54.30	6.70
C^4	52.2 (148.1)	60.3 (143.8)	8.1	61.58	9.38	61.05	8.85	60.85	8.65
C^5	65.1 (147.0)	61.9 (144.4)	-3.2	62.31	-2.79	61.87	-3.23	61.80	-3.30
CH ₃	17.7 (127.7)	17.2 (127.2)	-0.5	17.56	-0.14	17.43	-0.27	17.70	0.00
OCH ₃	55.3 (142.7)	55.1 (142.3)	-0.2	55.03	-0.27	55.07	-0.23	55.77	0.47

Table 3S ¹³C NMR chemical shifts (δ , ppm) in LL·2HCl and [Pd(LL)Cl₂], **1**, **2a**, **2b** ^{a)}

a) 10 mM in DMSO- d_6 /CD₃CN, 1:2 v/v solution. ¹³C chemical shifts are referenced to internal CD₃CN, $\delta = 1.28$ ppm Parameter $\Delta\delta$ denotes the difference of ¹³C chemical shifts between the complex and the dihydrochloride of LL Coupling constants (¹*J*(C,H), Hz) are in parentheses.

Atom	1	2a'	2b'	3a	3b
N ³	207.6	198.2	205.7	208.6	217.0
N^4	225.5	222.9	214.9	233.4	226.1
C^1	79.9	80.7	81.2	80.9	80.7
C^2	148.4	148.2	147.9	148.5	148.5
C ³	126.2	125.7	123.1	125.8	123.3
C^4	120.2	118.4	120.7	118.3	120.9
C ⁵	116.7	116.9	117.1	117.5	117.6
C ^{CH3}	165.7	165.8	165.8	166.5	165.8
C ^{OCH3}	126.2	124.7	124.7	124.6	124.5
0	241.4	240.2	241.7	240.9	240.2
O ^{OCH3}	257.7	257.1	257.8	257.4	257.1
H^{1}	27.24	26.98	27.00	27.01	27.01
H^2	30.34	29.97	30.09	29.97	29.99
$\mathrm{H}^{2^{\prime}}$	29.58	29.88	29.94	29.92	29.95
H^3	28.66	28.32	28.15	28.27	28.22
H^4	29.45	29.11	29.24	29.25	29.26
H^{5}	28.00	27.75	27.75	27.69	27.68
H ^{CH3}	30.83	30.65	30.63	30.63	30.64
H ^{OCH3}	28.53	28.38	28.39	28.34	28.34
H ^t at N ³	29.35	28.80	28.95	28.79	28.96
H ^c at N ³	30.11	29.40	29.51	29.42	29.55
H ^t at N ⁴	29.31	28.51	28.42	28.64	28.39
H ^c at N ⁴	29.82	29.28	29.21	29.24	29.10
C ^{(DMSO)-Pt}	-	132.1	131.9	-	-
H ^{(DMSO)-Pt}	-	28.72	28.74	-	-
O ^{H2O-Pt}	-	-	-	362.3	363.5
H ^{H2O-Pt}	-	-	-	30.16; 29.63	30.23; 29.60

Table 4S Calculated NMR shieldings [ppm] of 1-3 complexes at GIAO DFT level^{a)}

^{a)} **2a'** and **2b'** denotes position of DMSO- h_6 trans to N⁴ and trans to N³, respectively; **3a** and **3b** denotes position of H₂O trans to N⁴ and trans to N³, respectively

Atom	1	2a'	2b'	3 a	3b
N^3	-365.0	-355.6	-363.1	-366.0	-374.4
N^4	-382.9	-380.3	-372.3	-390.8	-383.5
C^1	103.6	102.8	102.3	102.6	102.8
C^2	35.1	35.3	35.6	35.0	35.0
C^3	57.3	57.8	60.4	57.7	60.2
C^4	63.3	65.1	62.8	65.2	62.6
C ⁵	66.8	66.6	66.4	66.0	65.9
C ^{CH3}	17.8	17.7	17.7	17.0	17.7
C ^{OCH3}	57.3	58.8	58.8	58.9	59.0
H^1	4.66	4.92	4.90	4.89	4.89
H^2	1.56	1.93	1.81	1.93	1.91
$\mathrm{H}^{2^{\prime}}$	2.32	2.02	1.96	1.98	1.95
H ³	3.24	3.58	3.75	3.63	3.68
H^4	2.45	2.79	2.66	2.65	2.64
H^{5}	3.90	4.15	4.15	4.21	4.22
H ^{CH3}	1.07	1.25	1.27	1.27	1.26
H ^{OCH3}	3.37	3.52	3.51	3.56	3.56
C ^{(DMSO)-Pt}	-	51.4	51.6	-	-
H ^{(DMSO)-Pt}	-	3.18	3.16	-	-

Table 5S Calculated NMR chemical shifts [ppm] of **1-3** complexes at GIAO DFT level^a, in respect to nitromethane (¹⁵N) or TMS (¹H, ¹³C).

^{a)} **2a'** and **2b'** denotes position of DMSO- h_6 trans to N⁴ and trans to N³, respectively; **3a** and **3b** denotes position of H₂O trans to N⁴ and trans to N³, respectively

Complex	Bond lengths [Å]					Bond ang	les [deg]		Dihe	leg] ^{b)}		
	Pt-N ³	Pt-N ⁴	Pt-Cl	Pt-S	Pt-O	N-Pt-N	X-Pt-Y	N-Pt-S-O	H ^t -N ³ -Pt-Cl	H ^c -N ³ -Pt-Cl	H ^t -N ⁴ -Pt-Cl	H ^c -N ⁴ -Pt-Cl
1	2.035	2.052	2.306 ^{c)} 2.298 ^{d)}	-	-	83.91	93.12	-	41.65	-78.32	110.37	-129.60
2a'	2.108	2.100	2.346	2.296	-	82.15	93.03	-2.94	-149.68	95.15	-71.71	44.37
2b'	2.107	2.101	2.348	2.295	-	82.24	92.91	-3.42	42.94	-72.16	96.56	-147.44
3a	2.118	2.032	2.332	-	2.138	82.91	85.91	-	-128.95	113.37	-72.21	43.68
3b	2.037	2.111	2.334	-	2.135	82.91	85.76	-	42.43	-72.51	119.32	-121.88

 Table 6S
 Selected calculated geometrical parameters of 1-3 complexes.^{a)}

^{a)} **2a'** and **2b'** denotes position of DMSO-*h*₆ *trans* to N⁴ and *trans* to N³, respectively; **3a** and **3b** denotes position of H₂O *trans* to N⁴ and *trans* to N³, respectively ^{b)} Stereochemical designations of protons attached to nitrogen atoms (NH) are based on the dihedral angles between a given NH bond and the adjacent CH bond (H-N-C-H);

the smaller dihedral angle is assigned to *cisoid* arrangement while the larger dihedral angle to *transoid* arrangement, denoted as superscripts ^c and ^t, respectively

^{c)} Cl *trans* to N⁴

^{d)} Cl *trans* to N³