Solution studies of tri-metallic lanthanide luminescent anion sensors: Towards ratiometric sensing using an internal reference channel

Sally E. Plush and Thorfinnur Gunnlaugsson*

Electronic Supplementary Information

Synthesis Compound 2

1-Amino naphthalene (1 g, 6.9 mmol) was dissolved in a solution of DCM (40 cm³) and triethylamine (1.78 cm³, 13 mmol), the mixture was cooled to 0 °C. A solution of Chloroacetly chloride (0.828 cm³, 10.4 mmol) in DCM (30 cm³) was then added dropwise to the reaction mixture at 0 °C. The reaction was left to warm to room temperature overnight. The reaction was quenched with a dropwise addition of water (15 cm³). The organic layer was then washed with 0.1 mol dm⁻³ hydrochloric acid and a saturated solution of sodium hydrogen carbonate. The organic layer was then dried and the solvent removed under reduced pressure to give a brown solid. Purification by means of a silica squat column [100% DCM, R_f 0.8] yielded an off white solid (1.11 g, 74 %), $\delta_{\rm H}$ (400 MHz; CDCl₃) 4.38 (2H, s, CH₂Cl), 7.51 – 7.60 (3H, m, Ar-H), 7.77 (1H, d, Ar-H), 7.91 (2H, t, Ar-H), 8.00 (1H, d, Ar-H); $\delta_{\rm C}$ (100 MHz; CDCl₃) 42.9 (CH₂Cl), 119.7, 120.1, 125.5, 125.8, 126.0, 126.2, 126.4, 128.4, 130.6, 133.6 (Ar-H), 163.9 (C=O); *m/z* (ESMS) 242 (M-Na⁺); HRMS: *m/z* (ESMS) Found: 242.0341. C₁₂H₁₀NONaCl requires 242.0349

Compound 3

1-Aza-18-crown-6 (100 mg, 0.38 mmol) was dissolved in a solution of DCM (5 cm³) and triethylamine (0.158 cm³, 1.14 mmol), the mixture was cooled to 0 °C. A solution of Chloroacetly chloride (0.03 cm³, 0.38 mmol) in DCM (10 cm³) was then added dropwise to the reaction mixture at 0 °C. The reaction was left to warm to room temperature overnight. The reaction was quenched with a dropwise addition of water (15 cm³). The organic layer was then washed with 0.1 mol dm⁻³ hydrochloric acid and a saturated solution of sodium hydrogen carbonate. The organic layer was then dried and the solvent removed under reduced pressure to give a yellow oil (7.05 g, 79 %), $\delta_{\rm H}$ (400 MHz;

CDCl₃) 3.63 - 37.1 (24H, m, CH₂), 4.26 (2H, s, CH₂Cl); $\delta_{\rm C}$ (100 MHz; CDCl₃) 21.1 (CH₂Cl) 48.7 (CH₂), 49.7 (CH₂) 143.1 (C=O); *m/z* (ESMS) 378 (M-K⁺) 362 (M-Na⁺); HRMS: *m/z* (ESMS) Found: 362.1338. C₁₄H₂₆NO₆NaCl requires 362.1346.

Compound 4: Compound **2** (51.9 mg, 0.147 mmol), compound **3** (50 mg, 0.220 mmol), CsCO₃ (31 mg, 0.16 mmol) and a catalytic amount of KI were dissolved in DMF and the solution was heated at 80 °C for 3 days. The reaction was then filtered through celite and the solvent removed under reduced pressure. The residue was then redissolved in DCM and the product extracted into water to yield the desired product as a white solid (1.35 g, 65 %) $\delta_{\rm H}$ (400 MHz; CDCl₃) 2.75 – 2.97 (16H, m cyclen CH) 3.49 – 3.66 (28H, m, CH₂O and CH₂Cl), 7.51 (3H, m, Ar-H), 7.75 (1H, d, Ar-H), 7.86 (1H, d, Ar-H), 8.05 (1H, d, Ar-H), 8.19 (1H, d, Ar-H); $\delta_{\rm C}$ (100 MHz; CDCl₃) 47.6, 47.7 (broad, cyclen CH), 52.3, 52.4 (CH₂N), 54.3 (CH₂Cl), 116.0, 116.4 (CH=CH₂), 132.1, 132.6 (CH=CH₂), 170 (C=O); *m/z* (ESMS) 659 721(M⁺)

Ligand 1: Compounds 4 (20 mg, 0.015 mmol) and *N*,*N*-dimethyl- α -chlomoamide (7.2 mg, 0.03 mmol) were dissolved in CH₂Cl₂(5 cm³) and to this solution was added dissopropylethylamine (0.036 cm³, 0.1 mmol). The resulting solution was left to stir overnight at room temperature, after which the solvent was removed under reduced pressure to yield 1 as a yellow oil (10 mg, 80 %). $\delta_{\rm H}$ (400 MHz; CDCl₃) 2.41 – 3.21 (22H, m, CH₃ and cyclen CH₂), 3.50 – 3.74 (54H, m, CH₂O and CH₂Cl), 4.11, (2H, m, CH₂Cl) 7.51 (3H, m, Ar-H), 7.83 (4H, m, Ar-H); $\delta_{\rm C}$ (100 MHz; CDCl₃) 14.4 (CH₃), 29.7 (cyclen CH₂), 65.1 (CH₂C=O), 70.0 (aza-crown CH₂), 87.7 (aza-crown CH₂), 123.0, 123.1, 125.5, 126.0, 126.1, 128.1, 133.9 (ArH), 170.4, 171.2 (C=O); *m/z* (ESMS) 1047.6 (M⁺); HRMS: *m/z* (ESMS) Found: 1047.6298. C₅₂H₈₇N₈O₁₄ requires 1047.6342.

Eu(III) and Tb(III) Complexes of 1:

Eu(III) complex of 1: Eu(ClO₄)₃ (19 mg, 0.043 mmol)was added to a stirred solution of ligand **1** (15 mg, 0.015 mmol) in MeOH (2 cm³) a precipitate formed, which was redisolved in CH₃CN (2 cm³). The solvent was then left to evaporate and the resultant solid dried under reduced pressure to yield a yellow solid in 60% yield. The ¹H NMR was

broad due to the presence of three Eu(III) ions. Hence, we could not assign it accurately, Elemental analysis found: C 21.28, H 3.62, N 3.69; Expected for: $C_{52}H_{86}N_8O_{14}.(Eu^{3+})_3.(ClO_4^{-})_{15}.(CH_3OH)_3$: C 21.37, H 3.20, N 3.63

Tb(III) complex of 1: Same procedure was used as above, using $Tb(ClO_4)_3$ (50 mg, 0.045 mmol), **1** (16 mg, 0.015 mmol). Elemental analysis: found: C 41.74, H 5.17, N 7.64. Expected for : C 41.36, H 5.87, N 7.89. $C_{52}H_{86}N_8O_{14}.Tb^{3+}_3.CH_3OH.$ CH₃CN.

Solution studies of the formation of the trimetallic complexes of 1:

Figure S1. Fit obtained from Specfit for the changes in Eu³⁺ emission intensity upon titration of **1** (5 x 10⁻⁶ mol dm⁻³) with Eu³⁺ (0 – 5 x 10⁻⁵ mol dm⁻³), pH 6.5 (MES), $I = 0.10 \text{ mol dm}^{-3}$ (NEt₄ClO₄) in 50/50 MeOH/H₂O (v/v).

Figure S2. Speciation diagram for the changes in Eu^{3+} emission intensity upon titration of 1 (5 x 10⁻⁶ mol dm⁻³) with Eu^{3+} (0 – 3.5 x 10⁻⁵ mol dm⁻³), pH 6.5 (MES), I = 0.10 mol dm⁻³ (NEt₄ClO₄) in 50/50 MeOH/H₂O (v/v).

Figure S3: Changes in the Tb³⁺ emission upon titrations of complex **1** (1 x 10⁻⁵ mol dm⁻³) with Tb(ClO₄)₃ (0 – 5 x 10⁻⁵ mol dm⁻³), pH 6.5 (MES), I = 0.10 mol dm⁻³ (NEt₄ClO₄) in 50/50 MeOH/H₂O (v/v); Inset: Changes in Tb³⁺ emission at 616 nm.

Figure S4. Fit obtained from Specfit for the changes in Tb^{3+} emission intensity upon titration of **1** (5 x 10⁻⁶ mol dm⁻³) with Tb^{3+} (0 – 5 x 10⁻⁵ mol dm⁻³), pH 6.5 (MES), $I = 0.10 \text{ mol dm}^{-3}$ (NEt₄ClO₄) in 50/50 MeOH/H₂O (v/v).

Figure S5. Speciation diagram for the changes in Tb^{3+} emission intensity upon titration of **1** (1 x 10⁻⁵ mol dm⁻³) with Tb^{3+} (0 – 4 x 10⁻⁵ mol dm⁻³), pH 6.5 (MES), I = 0.10 mol dm⁻³ (NEt₄ClO₄) in 50/50 MeOH/H₂O (v/v).

Formation of the mixed lanthanide ion complex

Figure S6. Fit obtained from Specfit for the changes in Eu³⁺ emission intensity upon titration of **1** (5 x 10⁻⁶ mol dm⁻³) with Tb³⁺ (0 – 5 x 10⁻⁵ mol dm⁻³), pH 6.5 (MES), $I = 0.10 \text{ mol dm}^{-3}$ (NEt₄ClO₄) in 50/50 MeOH/H₂O (v/v).

Figure S7. Speciation diagram for the changes in Tb^{3+} emission intensity upon titration of 1 (1 x 10⁻⁵ mol dm⁻³) with Tb^{3+} (0 – 4 x 10⁻⁵ mol dm⁻³), pH 6.5 (MES), I = 0.10 mol dm⁻³ (NEt₄ClO₄) in 50/50 MeOH/H₂O (v/v).

Potentiometric titration of 1 and resulting Eu(III) and Tb(III) complexes

Figure S8. Typical titration curve of the protonated ligand **1** in the absence and presence of Eu(ClO₄)₃ against NEt₄OH at 25 °C in a methanol/water solution 50/50(v/v). [156] = $5.0 \times 10^{-4} \text{ mol dm}^{-3}$, [H⁺] = $7.0 \times 10^{-3} \text{ mol em}^{-3}$, [Eu(III)] $1 \times 10^{-3} - 2 \times 10^{-3} \text{ mol dm}^{-3}$, [NEt₄OH] = $0.093 \text{ mol dm}^{-3}$, $I (NEt_4ClO_4) = 0.1 \text{ mol dm}^{-3}$.

Figure S9. Typical titration curve of the protonated ligand **1** in the absence and presence of Tb(ClO₄)₃ against NEt₄OH at 25 °C in a methanol/water solution 50/50(v/v). [156] = $5.0 \times 10^{-4} \text{ mol dm}^{-3}$, [H⁺] = $7.0 \times 10^{-3} \text{ mol em}^{-3}$, [Tb(III)] $1 \times 10^{-3} - 2 \times 10^{-3} \text{ mol dm}^{-3}$, [NEt₄OH] = $0.093 \text{ mol dm}^{-3}$, $I (\text{NEt}_4\text{ClO}_4) = 0.1 \text{ mol dm}^{-3}$.

Luminescent pH dies of 1.Eu₃ and 1.Tb₃

Figure S10. The pH titration profile of the acidified complex, $1.Eu_3$ (5 x 10⁻⁶ mol dm⁻³) on titration with NEt₄OH at 298.2 (± 0.2) K, *I* =0.01 M (NEt₄ClO₄) in 100% H2O

Figure S11. The pH titration profile of the acidified complex, $1.Tb_3$ (5 x 10⁻⁶ mol dm⁻³) on titration with NEt₄OH at 298.2 (± 0.2) K, *I* =0.01 M (NEt₄ClO₄) in 100% H2O;

Figure S12. Changes in Eu³⁺ emission upon titrations of $1.Eu_3$ (5 x 10⁻⁶ mol dm⁻³) with Oxalic acid (0 – 3.5 x 10⁻⁵ mol dm⁻³), pH 6.5 (MES), I = 0.10 mol dm⁻³ (NEt₄ClO₄) in 100 % H₂0.

Figure S13. Changes in Tb^{3+} emission upon titrations of $1.\text{Tb}_3$ (5 x 10⁻⁶ mol dm⁻³) with oxalic acid (0 – 5 x 10⁻⁵ mol dm⁻³), pH 6.5 (MES), I = 0.10 mol dm⁻³ (NEt₄ClO₄) in 100% H₂O.

Figure S14. The ratiometric changes observed by comparing the changes in the Eu(III) emission with that of the Tb(III), demonstrating the liner relationship observed when titrated for malonic acid.

Tables S1-4

Table S1: The pK_a values of the protonated ligand 1 obtained at 25 °C with I = 0.1 mol dm⁻³ (NEt₄ClO₄) in a methanol/water solution 60/40(v/v).

	p <i>K</i> a
pK _a 1	8.30 ± 0.06
pKa2	5.94 ± 0.03
pK _a 3	2.36 ± 0.01

Table S2: The stability constants expressed as log*K* values for the metal complex ion of Eu(III) or Tb(III) perchlorate with **1**, at 25 °C with I = 0.1 mol dm⁻³ (NEt₄ClO₄) in a methanol/water solution 60/40(v/v).

	1.5	eq	of	1.5	eq	of
	Eu ³⁺			Tb^{3+}		
ML	27.58	$3\pm0.$	04	23.00	$0\pm 0.$	05
M ₂ L	4.41	± 0.0	4	8.99	± 0.0	5

Complex	logK	logK
	1.5 eq of	1.5 eq of Tb^{3+}
	Eu ³⁺	
MLH ₋₁	5.01 ± 0.05	5.36 ± 0.03
MLH-2	5.39 ± 0.04	5.87 ± 0.04
MLH-3	6.83 ± 0.06	5.19 ± 0.05
MLH.4	-	6.97 ± 0.02
MLH-5	-	10.02 ± 0.04

Table S3. The p K_a values of the metal complex ion of Eu(III) or Tb(III) perchlorate with **1** at 25 °C with $I = 0.1 \text{ mol dm}^{-3}$ (NEt₄ClO₄) in a methanol/water solution 60/40(v/v).

Complex	p <i>K</i> _a	p <i>K</i> a
	1.5 eq of	1.5 eq of Tb^{3+}
	Eu ³⁺	
MLH ₋₁	6.17 ± 0.05	5.96 ± 0.03
MLH.2	6.52 ± 0.06	6.35 ± 0.03
MLH.3	8.39 ± 0.06	6.78 ± 0.04
MLH-4	-	7.57 ± 0.03
MLH.5	-	10.10 ± 0.11

Table S4. Lifetimes measurements for 1.Eu₃ and 1.Tb₃

Excitation of antenna at	$ au_1$	$ au_2$	$ au_1$	$ au_2$	q_1	q_2
283 nm						
	H ₂ O		D ₂ O			
1.Eu ₃	0.313	0.695	0.568	3.04	1.33	0.94

Excitation of antenna at	$ au_1$	$ au_2$	$ au_1$	$ au_2$	q_1	q_2
283 nm						
	H ₂ O		D ₂ O			
1.Tb ₃	0.229	1.29	0.216	1.77	1.67	1.05