ELECTRONIC SUPPLEMENTARY INFORMATION

Reactivity of mononuclear Pd(II) and Pt(II) complexes containing the primary phosphane (ferrocenylmethyl)phosphane towards metal chlorides and PPh₃.

Maria Michela Dell'Anna^a, Piero Mastrorilli^{a*}, Cosimo Francesco Nobile^a, Beatrice Calmuschi-Cula^b, Ulli Englert^b, Maurizio Peruzzini^c

Figure S1: (a) ${}^{31}P{}^{1}H$ and (b) ${}^{31}P$ NMR spectra of 2 (CD₂Cl₂, 273 K, 162 MHz). The starred peaks are due to impurities.

Figure S2: ¹H-COSY spectrum of **2** (CD₂Cl₂, 273 K, 400 MHz).

Figure S3: ${}^{1}H{}^{31}P{}$ -COSY spectrum of 2 (CD₂Cl₂, 273 K, 400 MHz).

Figure S4: portion of the ¹H-NOESY spectrum of **2** (CD₂Cl₂, 273 K, 400 MHz): the red cross peaks indicate *noesy* interaction.

Figure S5: ${}^{13}C{}^{1}H$ APT NMR spectrum of 2 (CD₂Cl₂, 273 K, 100 MHz, *C* and *C*H₂ point upward, *C*H and *C*H₃ point downward).

Figure S6: portion of the ${}^{1}\text{H}{}^{-13}\text{C}$ HMQC spectrum of complex **2** in the methylenic region (CD₂Cl₂, 273 K).

Figure S7: Portion of the ¹H-¹³C HMQC spectrum of **2** in the vinylic region (CD₂Cl₂, 273 K). In the ¹³C{¹H} APT NMR spectrum of F1 the signals of primary and tertiary carbons point downward. The starred cross peak is due to the [Pt(cod)Cl₂] impurity.

¹³C{¹H}-APT and ¹H-¹³C HMQC spectra of **2** (Figure S5-7) show the magnetic inequivalence of the four vinylic carbon nuclei.

Figure S8: ³¹P-¹H HETCOR spectrum of **2** (CD₂Cl₂, 273 K). The projection on F1 is the ¹H $\{^{31}P\}$ NMR spectrum.

Figure S9: Portion of the ¹H-¹⁹⁵Pt HMQC spectrum of **2** (CD₂Cl₂, 273 K, Pt² region).

The ¹H-¹⁹⁵Pt HMQC spectrum of **2** in Figure S9 shows that the four different vinylic protons of the coordinated diene couple only with Pt¹ (H_d and H_{d'}, $\delta_{Hd'} = \delta_{Hd} = 5.86$, ² $J_{Hd-Pt1} = {}^{2}J_{Hd'-Pt1} = 40$ Hz; H_{c'}, $\delta_{Hc'} = 5.33$, ² $J_{Hc'-Pt1} = 72$ Hz; H_c, $\delta_{Hc} = 4.06$, ² $J_{Hc'-Pt1} = 77$ Hz). The chemical shifts of the diastereotopic vinylic protons *cis* to the phosphido bridging ligand (H_c and H_{c'}) are significantly different; on the contrary, the chemical shifts of the diastereotopic vinylic protons *trans* to the phosphido bridging ligand (H_d and H_{d'}) are coincident.

Figure S10: Portion of the ¹H-¹⁹⁵Pt HMQC spectrum of **2** (CD₂Cl₂, 273 K, Pt¹ region).

Figure S11: Experimental (solid line) and simulated (dashed line) HRMS(+) spectrum of **2** (exact mass = 1065.9425 da) in THF diluted with CH₃CN. The error between simulated and observed isotopic patterns is -0.9 ppm.

Figure S12: portion of the ${}^{1}\text{H}-{}^{31}\text{P}$ HMQC spectrum of **3** (CD₂Cl₂, 265 K) in the terminal phosphane region.

Figure S13: portion of the¹H-³¹P HMQC spectrum of **3** (CD₂Cl₂, 265 K) in the phosphido-bridged region.

Figure S14: ¹H-³¹P HMBC spectrum of **3** (CD₂Cl₂, 265 K).

Figure S15: ¹H-COSY spectrum of **3** (CD₂Cl₂, 265 K, 400 MHz).

Figure S16: ${}^{1}H{}^{31}P{}$ -COSY spectrum of 3 (CD₂Cl₂, 265 K, 400 MHz).

Figure S17: ¹³C{¹H}APT NMR spectrum of **3** (CD₂Cl₂, 265 K, 100 MHz, *C* and *C*H₂ point upward, *C*H and *C*H₃ point downward).

Figure S18: Portion of the ¹H-¹³C HMQC spectrum of complex **3** in the vinylic region (CD₂Cl₂, 265 K). In the reported ¹³C{¹H} APT NMR spectrum (F1) the signals of primary and tertiary carbons point downward. The cross-peaks marked with the star and with the rhomb are due to the vinylic protons of [Pd(cod)Cl₂] and of free COD impurities, respectively.

Figure S19: ³¹P-¹H HETCOR spectrum of 4a and 4b (CD₂Cl₂, 295 K). The projection on F1 is the 1 H{³¹P} NMR spectrum.

0 ppm

Figure S20: ¹H-³¹P HMBC spectrum of 4a and 4b (CD₂Cl₂, 295 K)

Figure S21: Methylenic region of the ¹H-¹³C-HMQC spectrum of 4a and 4b (CD₂Cl₂, 295 K)

Figure S22: Experimental (black line) and simulated (red line) HRMS(+) spectrum of **4a** and **4b** (exact mass = 1901.8977 da) in THF diluted with CH_3CN . The error between simulated and observed isotopic patterns is 6.8 ppm.

Figure S23: ${}^{31}P{}^{1}H$ -COSY spectrum (CD₂Cl₂, 295 K) of 5.

Figure S24: Portion of ¹H-COSY spectrum of **5** (CD₂Cl₂, 295 K).

Figure S25: Portion of ${}^{1}H{}^{31}P{}$ -COSY spectrum of 5 (CD₂Cl₂, 295 K).

Figure S26: ³¹P-¹H HETCOR spectrum of 5 (CD₂Cl₂, 295 K). The projection in F1 is the ¹H $\{^{31}P\}$ NMR spectrum.

Figure S27: ¹H-³¹P HMBC spectrum of **5** (CD₂Cl₂, 295 K)

Figure S28: portion of ¹H-¹³C HMQC spectrum of **5** (CD₂Cl₂, 295 K): methylene region.

Figure S29: Experimental (black line) and simulated (red line) HRMS(+) spectrum of 5 (exact mass = 1871.8175 da) in THF diluted with CH₃CN. The error between simulated and observed isotopic patterns is 3.5 ppm.

H ² _{vvv} C	H ² _{vv} CH ₂ Fc		H ² _{vy} CH ₂ Fc			H ² _{vy} _CH ₂ Fc		
Ph ₃ P ¹ P ²	CI	CI	P ²	CI	CI	P ²	$_{>}P^{1}Ph_{3}$	
Pt Pt		Pt			Pt			
Cl P ³	[−] P ⁴ Ph ₃	Ph_3P^1	P ³	P ⁴ Ph ₃	CI	P ³	P ⁴ Ph ₃	
H ^{3⁻² CH₂Fc}		H ^{3°} CH ₂ Fc			H ^{3 Jrr} CH ₂ Fc			
Α		В			C			
						•		
	P(1)	P(2)	P(3)	P(4)	H(2)	H(3)		
P(1)	22.9	5.0	385.9	-	-	-		
	23.8	348	-	-	-	-		
	23.7	7.9	382.0	-	-	-		
	P(2)	-173.4	179.6	385.9	300	-		
		-181.7	180.0	348.0	357	-		
		-190.0	183.9	382.0	340	-		
		D(2)	-173.4	5.0	-	300		
		r(3)	-164.7	-	-	360		
			-190.0	7.9	-	340		
			P(4)	22.9	-	-		
				23.8	-	-		
				23.7	-	-		
				H (2)	1.51	-		
				П(2)	3.72	-		
					2.04	-		
				H(3)	1.51			
					11(3)	0.05		
						2.04		

Table S1. ³¹P and ¹H NMR parameters for complexes A (top), B (middle), and C (bottom), deriving from PPh₃ addition to 2. (C₆D₆, 295 K, 162 MHz); chemical shifts (bold) are in ppm; coupling constants (normal) are in Hz.

Table S2. ³¹P and ¹H NMR parameters for complex **D** (CD₂Cl₂, 295 K, 162 MHz); chemical shifts(bold) are in ppm; coupling constants (normal) are in Hz.