Supporting Information for:
 Reactivity of $\mathbf{U H}_{3}$ with Mild Oxidants

David D. Schnaars, Guang Wu, and Trevor W. Hayton*

Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara CA 93106
*To whom correspondence should be addressed. Email: hayton@chem.ucsb.edu

Figure S1. UV/Vis spectrum of $\mathbf{1}$ in $\mathrm{Et}_{2} \mathrm{O}(0.091 \mathrm{mM})$.

Figure S2. UV/Vis spectrum of $\mathbf{2}$ in DME (0.87 mM).

Figure S3. UV/Vis spectrum of 3 in DME (4.2 mM).

Figure S4. UV/Vis spectrum of 4 in DME (6.6 mM).

Figure S5. UV/Vis spectrum of 5 in DME (4.1 mM).

X-ray Crystallography.

Further details of the X-ray crystallographic determinations of complexes 1,
$2 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{3}, \mathbf{4}$, and $\mathbf{5}$ can be found in the following paragraphs:
For complexes 3 and 4, as the crystals did not have a regular shape, it would be difficult to determine the individual faces and corresponding center-face distances precisely. Thus, we used empirical absorption correction instead of numeric correction.

For complexes 1, 3, 4, and 5 relatively high Rint values are observed. We attribute this to significant absorption ($\mu>10 \mathrm{~mm}^{-1}$) due to the presence of heavy atoms. As a result, the empirical absorption correction based on psi-scan may not perfectly correct for the absorption effect.

For complex 4 large maximum and minimum residual electron densities are observed. For instance, the structure has a highest residual peak of 6.63 at 0.25130 .59460 .2196 ($0.88 \AA$ from U1) and a lowest residual peak -4.51 at 0.23030 .55130 .2581 ($0.96 \AA$ from U1). Because of their close proximity to the heavy uranium atom they are likely 'ghost peaks'.

