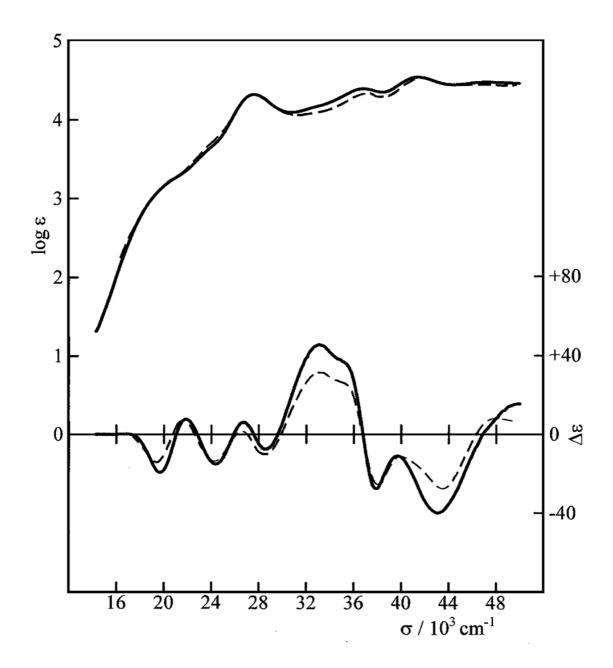
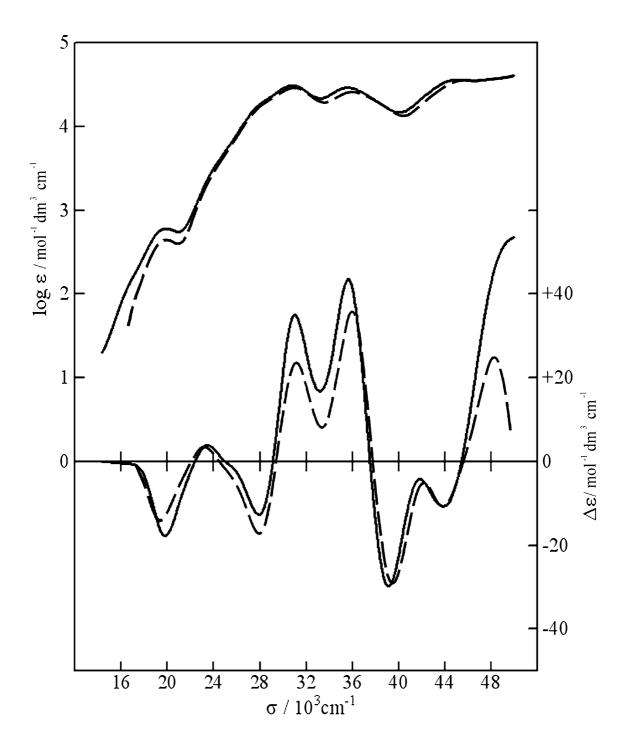
[Supporting Information]

Excellent chiralselectivity in sulfur-bridged Co^{III}MCo^{III} (M = Ni^{II} and Pd^{II}) trinuclear complexes containing 1,2-cyclohexanediamine

Asako Igashira-Kamiyama,^{*a*} Toshihiro Tamai,^{*a*} Tatsuya Kawamoto^{*b*} and Takumi Konno^{**a*}


^a Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-

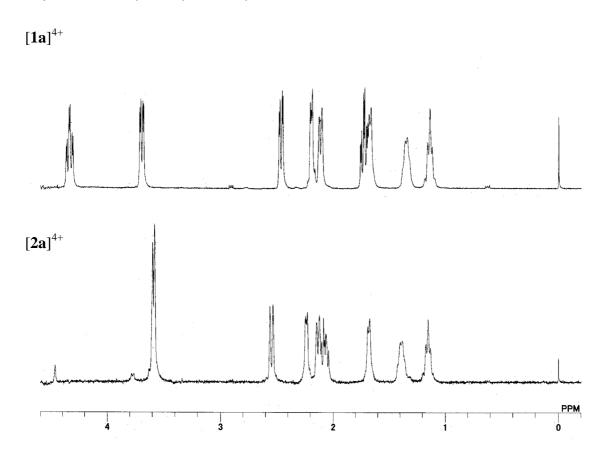
0043, Japan


^b Department of Chemistry, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan

* To whom correspondence should be addressed.

E-mail: konno@chem.sci.osaka-u.ac.jp

Figure S1 Electronic absorption and CD spectra of $\Delta_{RR}\Delta_{RR}$ - $[Ni\{Co(aet)_2(R, R-chxn)\}_2]^{4+}$ ([1a]⁴⁺) (—) and $[Ni\{Co(aet)_2(en)\}_2]^{4+}$ (- –).


Figure S2 Electronic absorption and CD spectra of $\Delta_{RR}\Delta_{RR}$ -[Pd{Co(aet)₂(R,R-chxn)}₂]⁴⁺ ([**2a**]⁴⁺) (- - -).

Electronic Supplementary Information for Dalton Transactions This journal is The Royal Society of Chemistry 2008

			unu [2 u] .			
	$\log \varepsilon$ for abs		$\Delta \epsilon$ for CD			
abs max:	max / mol^{-1}	CD extrema:	extrema / mol^{-1}			
σ / 10 ³ cm ⁻¹	$dm^3 cm^{-1}$	σ / 10 ³ cm ⁻¹	$dm^3 cm^{-1}$			
[1a] ⁴⁺						
19.5	3.1 ^{sh}	19.69	-19.33			
23.8	3.7 ^{sh}	21.83	+7.71			
27.62	4.31	24.37	-15.15			
36.83	4.38	26.70	6.11			
41.49	4.52	28.65	-7.50			
		33.05	+45.51			
		35.4	+35.6 ^{sh}			
		37.94	-27.67			
		43.03	-40.00			
$\left[\mathbf{2a}\right]^{4+}$						
19.92	2.78	19.76	-17.7			
23.8	3.7 ^{sh}	23.49	+3.9			
27.7	4.2^{sh}	27.95	-12.7			
30.82	4.48	31.04	+35.0			
35.59	4.47	35.61	+43.6			
45.15	4.56	39.12	-29.7			
		43.86	-10.7			
The sh label denotes a shoulder.						

Table S1	Absorption and	CD Spectral Da	ata for $[\mathbf{1a}]^{4+}$	and $[2a]^{4+}$.
----------	----------------	----------------	------------------------------	-------------------

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2008

Figure S3 ¹H NMR spectra of $[1a]^{4+}$ and $[2a]^{4+}$ in D₂O.