Electronic supplementary information

Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids

Kojiro Shimojo,* Kensuke Kurahashi and Hirochika Naganawa

Division of Environment and Radiation Sciences, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki, 319-1195, Japan

*To whom correspondence should be addressed. E-mail: shimojo.kojiro@jaea.go.jp

Fig. S1 Effect of aqueous-phase C_2 mim⁺ concentration on extractability of La³⁺ using TODGA in [C₂mim][Tf₂N] (closed circles and solid line) or in isooctane (open circles and broken line). [La³⁺] = 0.1 mM, [HNO₃] = 0.01 M, and [TODGA] = 1 mM when using [C₂mim][Tf₂N] or [HNO₃] = 1 M and [TODGA] = 100 mM when using isooctane.

Fig. S2 Effect of aqueous-phase $C_2 mim^+$ concentration on extractability of Lu^{3+} using TODGA in $[C_2 mim][Tf_2N]$ (closed triangles and solid line) or in isooctane (open triangles and broken line). $[Lu^{3+}] = 0.1$ mM, $[HNO_3] = 0.01$ M, and [TODGA] = 1 mM when using $[C_2 mim][Tf_2N]$ or $[HNO_3] = 1$ M and [TODGA] = 100 mM when using isooctane.

Fig. S3 Extraction behavior of La^{3+} using TODGA into $[C_nmim][Tf_2N]$ (n = 2 (closed circles), n = 4 (closed squares), n = 6 (closed triangles)). $[La^{3+}] = 0.01$ mM, $[HNO_3] = 0.01$ M.

Fig. S4 Extraction behavior of Lu^{3+} using TODGA into $[C_nmim][Tf_2N]$ (n = 2 (closed circles), n = 4 (closed squares), n = 6 (closed triangles)). $[Lu^{3+}] = 0.01$ mM, $[HNO_3] = 0.01$ M.