Supporting information

Catalytic Disproportionation of N-Alkylhydroxylamines Bound to Pentacyanoferrates

María M. Gutiérrez,^a Graciela B. Alluisetti,^a José A. Olabe^b and Valentín T. Amorebieta^{*a}

^aDepartment of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina. E-mail, amorebie@mdp.edu.ar

^bDepartment of Inorganic, Analytical and Physical Chemistry and INQUIMAE, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.

Figure 1. ¹H NMR spectrum of the solution of $[Fe(CN)_5H_2O]^{3-}$ 5 mM, MeHA 100 mM in D₂O, at room temperature, pH 7.1 (2.5 M phosphates), internal standard NaCH₃CO₂.

Figure 2. 13 C NMR spectrum of the solution of $[Fe(CN)_5H_2O]^{3-}$ 5 mM, MeHA 100 mM in D₂O, at room temperature, pH 7.1 (2.5 M phosphates), internal standard NaCH₃CO₂

Figure 3. ATR spectrum of a reactive aqueous solution of $[Fe(CN)_5H_2O]^{3-}$ 0.1 M with [MeHA] 0.05 M, $(pH \sim 4)$, at room temperature. A background of MeHA-solution has been substracted. Note the CN stretching of unreacted $[Fe(CN)_5H_2O]^{3-}$ at 2035 cm⁻¹. The CN stretching at 2079, CH bending at 1500-1400 and NO stretching at 1349 cm⁻¹ correspond to the red complex.

Figure 4. FTIR transmittance spectra of the red solid, KBr disk. CN stretching at 2090 (not showed), CH bending at 1460; NO stretching at 1359 cm^{-1} .

pН	$[Fe(CN)_5H_2O]^{3-}$, mM	[HN(CH ₃)OH], mM	$k_{\rm obs}, {\rm s}^{-1}$
5.9	0.18	9.2	0,12
6.05	0.14	13.5	0,24
6.05	0.12	27.0	0,50
6.1	0.053	1.0	0,014
6.1	0.116	5.9	0,089
7.12	0.07	3	0,11
7.12	0.27	3.8	0,13
7.12	0.137	1.5	0,036
7.12	0.12	1.1	0,036
7.12	0.16	2.1	0,056

Table 1. Pseudo-first order rate constants for the reaction of $[Fe(CN)_5H_2O]^{3-}$ with MeHA at different concentrations of reactants and pH's. T = 25.0 ± 0.2 °C, 20 mM phosphates and *I* = 1 M (NaCl).

Figure 5. (A) Initial EPR spectrum of the red solid, obtained as a Zn-precipitate, for the reaction of $[Fe(CN)_5H_2O]^{3-1}$ with MeHA, showing a triplet centered at 344 mT. (B) Final spectrum of the red solid, showing a singlet centered at 350 mT

Figure 6. ¹H NMR spectrum of the solution of $[Fe^{II}(CN)_5H_2O]^{3-}$: 5 mM, Me₂HA 100 mM in D₂O, at room temperature, pH 7.1 (2.5 M phosphates), internal standard NaCH₃CO₂.

Figure 7. ¹³C NMR spectrum of the solution of $[Fe(CN)_5H_2O]^{3-}$ 5 mM, Me₂HA 100 mM in D₂O, at room temperature, pH 7.1 (2.5 M phosphates), internal standard NaCH₃CO₂

pН	$[Fe(CN)_5H_2O]^{3-}$, mM	[(CH ₃) ₂ NOH], mM	$k_{\rm obs},{ m s}^{-1}$
6.05	0.12	1.54	0,00492
6.05	0.16	10.8	0,0327
6.05	0.053	38.0	0,125
6.05	0.12	9.8	0,0356
6.05	0.19	19.8	0,0693
6.05	0.07	5.1	0,0178
6.1	0.18	24.7	0,0752
6.1	0.16	12.0	0.0389
7.05	0.054	28.3	0.125
7.05	0.19	12.5	0.057
7.1	0.11	1.18	0.0046

Table 2.Pseudo-first order rate constants for the reaction of $[Fe(CN)_5H_2O]^{3-}$ with Me₂HA at different concentrations ofreactants and pH's, T = 25.0 ± 0.2 °C, 20 mM phosphates and I = 1 M (NaCl).

Figure 8. EPR spectrum of the solid obtained as a Zn-precipitate, for the reaction of $[Fe(CN)_5H_2O]^{3-}$ with Me₂HA, showing a triplet centered at 343 mT.