SUPPORTING INFORMATION

Ruthenium Xantphos Complexes in Hydrogen Transfer Processes: Reactivity and Mechanistic Studies

Araminta E. W. Ledger, Paul A. Slatford, John Lowe, Mary F. Mahon, Michael K. Whittlesey and Jonathan M. J. Williams

Contents

1. Spectroscopic and analytical data for alkylation products of ketonitrile **6** S-2

2. X-ray crystal structure of 22

S-6

1. Spectroscopic and analytical data for alkylation products 7b-k from ketonitrile 6 listed in

Table 2.

7b: ¹H NMR (CDCl₃, 300 MHz, 298 K): $\delta = 7.10$ (m, 2H; *H2*), 6.82 (m, 2H; *H3*), 3.99 (app t, ³*J*_{HH} = 7.7 Hz, 1H; C*H*CN), 3.76 (s, 3H; OCH₃), 3.13 (dd, ²*J*_{HH} = 13.8, ³*J*_{HH} = 7.7 Hz, 1H; C*H*H), 3.05 (dd, ²*J*_{HH} = 13.8, ³*J*_{HH} = 7.7 Hz, 1H; C*H*H), 1.07 (s, 9H; C(C*H*₃)₃). ¹³C {¹H} NMR (CDCl₃, 75.5 MHz, 298 K): $\delta = 205.3$ (CO), 159.2 (C4), 130.4 (C2), 128.4 (C1), 117.4 (CN), 114.4 (C3), 55.5 (OCH₃), 45.7 (C(CH₃)₃), 39.2 (CHCN), 35.5 (CH₂), 25.8 (C(CH₃)₃). HR-MS (ESI): m/z: calcd for [M+NH₄]⁺: 263.1754; found: 263.1752.

7c: ¹H NMR (CDCl₃, 300 MHz, 298 K): $\delta = 7.18$ (m, 1H; *H4*), 7.08 (m, 1H; *H2*), 6.82 (m, 1H; *H3*), 6.78 (m, 1H; *H5*), 4.23 (dd, ³*J*_{HH} = 7.9, ³*J*_{HH} = 7.0 Hz, 1H; CHCN), 3.78 (s, 3H; OC*H*₃), 3.10 (dd, ²*J*_{HH} = 13.1, ³*J*_{HH} = 7.0 Hz, 1H; CHH), 3.00 (dd, ²*J*_{HH} = 13.1, ³*J*_{HH} = 7.9 Hz, 1H; CHH), 1.02 (s,

9H; C(CH₃)₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz, 298 K): δ = 206.0 (CO), 157.6 (C6), 131.8 (C2), 129.4 (C4), 124.6 (C1), 121.2 (C3), 117.9 (CN), 110.6 (C5), 55.6 (OCH₃), 45.7 (C(CH₃)₃), 36.4 (CHCN), 32.3 (CH₂), 25.8 (C(CH₃)₃). HR-MS (ESI): m/z: calcd for [M+NH₄]⁺: 263.1754; found: 263.1755.

7d: ¹H NMR (CDCl₃, 300 MHz, 298 K): $\delta = 7.16$ (m, 2H; *H2*), 6.97 (m, 2H; *H3*), 4.00 (app t, ³*J*_{HH} = 7.5 Hz, 1H; C*H*), 3.16 (dd, ²*J*_{HH} = 13.8, ³*J*_{HH} = 7.5 Hz, 1H; C*H*H), 3.08 (dd, ²*J*_{HH} = 13.8, ³*J*_{HH} = 7.5 Hz, 1H; CH*H*), 1.08 (s, 9H; C(C*H*₃)₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz, 298 K): $\delta = 205.0$ (CO), 162.4 (d, ¹*J*(C,F) = 246.1 Hz; C*4*), 132.2 (d, ⁴*J*(C,F) = 3.4 Hz; C*1*), 131.0 (d, ³*J*(C,F) = 8.1 Hz; C*2*), 117.1 (*C*N), 115.9 (d, ²*J*(C,F) = 21.5 Hz; C*3*), 45.7 (*C*(CH₃)₃), 39.0 (*C*H), 35.3 (*C*H₂), 25.8 (C(*C*H₃)₃). IR (nujol, cm⁻¹): v_{CN} = 2255 (s), 2244 (s), v_{CO} = 17123 (s). HR-MS (ESI): m/z: calcd for [M+NH₄]⁺: 251.1554; found: 251.1553.

7e: ¹H NMR (CDCl₃, 300 MHz, 298 K): $\delta = 7.44$ (m, 2H; *H3*), 7.09 (m, 2H; *H2*), 3.96 (app t, ³*J*_{HH} = 7.6 Hz, 1H; C*H*CN), 3.16 (dd, ²*J*_{HH} = 13.6, ³*J*_{HH} = 7.6 Hz, 1H; C*H*H), 3.08 (dd, ²*J*_{HH} = 13.6, ³*J*_{HH} = 7.6 Hz, 1H; C*H*H), 1.12 (s, 9H; C(C*H*₃)₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz, 298 K): $\delta = 204.8$ (CO), 135.5 (*C1*), 132.3 (*C3*), 131.2 (*C2*), 122.0 (*C4*), 117.0 (*C*N), 45.8 (*C*(CH₃)₃), 38.9 (*C*H), 35.5 (*C*H₂), 26.0 (C(CH₃)₃). HR-MS (ESI): m/z: calcd for [M+NH₄]⁺: 311.0754; found: 311.0754.

7f: ¹H NMR (CDCl₃, 300 MHz, 298 K): $\delta = 8.18$ (m, 2H; *H3*), 7.41 (m, 2H; *H2*), 4.03 (app t, ³*J*_{HH} = 7.6 Hz, 1H; C*H*), 3.30 (dd, ²*J*_{HH} = 13.7, ³*J*_{HH} = 7.6 Hz, 1H; C*H*H), 3.23 (dd, ²*J*_{HH} = 13.7, ³*J*_{HH} = 7.6 Hz, 1H; CH*H*), 1.15 (s, 9H; C(C*H*₃)₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz, 298 K): $\delta = 204.3$ (CO), 147.8 (*C1*), 144.0 (*C4*), 130.6 (*C2*), 124.4 (*C3*), 116.6 (*C*N), 45.9 (*C*(CH₃)₃), 38.6 (*C*H), 35.5 (*C*H₂), 26.2 (C(*C*H₃)₃). HR-MS (ESI): m/z: calcd for [M+NH₄]⁺: 278.1499; found: 278.1502.

7g: ¹H NMR (CDCl₃, 300 MHz, 209 K): $\delta = 7.58$ (m, 2H; *H3*), 7.35 (m, 2H; *H2*), 4.01 (app t, ³*J*_{HH} = 7.6 Hz, 1H; C*H*), 3.25 (dd, ²*J*_{HH} = 13.7, ³*J*_{HH} = 7.6 Hz, 1H; C*H*H), 3.18 (dd, ²*J*_{HH} = 13.7, ³*J*_{HH} = 7.6 Hz, 1H; C*H*H), 1.13 (s, 9H; C(C*H*₃)₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz, 298 K): $\delta = 204.7$ (CO), 140.6 (*C1*), 130.3 (q, ²*J*_{CF} = 32.9 Hz; *C4*), 129.9 (*C2*), 126.1 (q, ³*J*_{CF} = 3.8 Hz; *C3*), 124.3 (q, ¹*J*_{CF} = 272.4 Hz; CF₃), 116.9 (*C*N), 45.9 (*C*(CH₃)₃), 38.9 (*C*H), 35.7 (*C*H₂), 26.1 (C(*C*H₃)₃). HR-MS (ESI): m/z: calcd for [M+NH₄]⁺: 301.1522; found: 301.1521.

7h: ¹H NMR (CDCl₃, 300 MHz, 298 K): $\delta = 7.32$ (m, 1H; *H4*), 6.28 (m, 1H; *H3*), 6.15 (m, 1H; *H*₂), 4.18 (dd, ³*J*_{HH} = 8.0, ³*J*_{HH} = 6.9 Hz, 1H; *CH*), 3.27 (dd, ²*J*_{HH} = 15.0, ³*J*_{HH} = 8.0 Hz, 1H; *CH*H), 3.17 (dd, ²*J*_{HH} = 15.0, ³*J*_{HH} = 6.9 Hz, 1H; CH*H*), 1.14 (s, 9H; C(*CH*₃)₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz, 298 K): $\delta = 204.7$ (*C*O), 149.8 (*C1*), 142.6 (*C4*), 117.0 (*C*N), 111.0 (*C3*), 108.8 (*C2*), 46.1 (*C*(CH₃)₃), 36.2 (*C*H), 28.9 (*C*H₂), 26.0 (C(*C*H₃)₃).

7j: ¹H NMR (CDCl₃, 300 MHz, 298 K): $\delta = 3.79$ (dd, ³*J*_{HH} = 8.4, ³*J*_{HH} = 6.4 Hz, 1H; C*H*), 1.85-1.25 (m, 20H, alkyl C*H*₂), 1.23 (s, 9H; C(C*H*₃)₃), 0.87 (t, ³*J*_{HH} = 6.7 Hz, 3H; C*H*₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz, 298 K): $\delta = 205.9$ (CO), 117.8 (CN), 45.8 (C(CH₃)₃), 37.4 (CH), 32.2 (C1), 30.3 (C2), 29.9 (C3/4), 29.8 (C5), 29.6 (C6), 29.5 (C7), 29.3 (C8), 27.5 (C9), 26.4 (C(CH₃)₃), 23.0 (C10), 14.4 (CH₃). HR-MS (ESI): m/z: calcd for [M+NH₄]⁺: 297.2900; found: 297.2900.

7k: ¹H NMR (CDCl₃, 300 MHz, 298 K): $\delta = 3.91$ (app t, ³*J*_{HH} = 7.4 Hz, 1H; C*H*), 1.76 (m, 2H; C*H*₂), 1.22 (s, 9H; C(C*H*₃)₃), 0.77 (m, 1H; *H1*), 0.52 (m, 2H, *H2/H3*), 0.15 (m, 2H; *H2H3*). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz, 298 K): $\delta = 205.8$ (CO), 117.9 (CN), 45.9 (C(CH₃)₃), 37.5 (CH), 35.6 (CH₂), 26.4 (C(CH₃)₃), 9.4 (C*I*), 5.1 (C2/3). HR-MS (ESI): m/z: calcd for [M+NH₄]⁺: 197.1648; found: 197.1647.

2. X-ray crystal structure of 22

Molecular structure of 22. All hydrogen atoms are omitted. Thermal ellipsoids are

shown at the 30% probability level

Compound	22
Empirical formula	$C_{48}H_{38}O_4P_2Ru$
Formula weight	841.79
T / K	150(2)
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21/c
<i>a</i> / Å	10.7330(1)
b / Å	28.5420(2)
<i>c</i> / Å	3.0640(1)
β/°	96.661(1)
$U/Å^3$	3975.03(6)
Ζ	4
$D_{\rm calc}$ / Mg/m ³	1.407
μ/mm^{-1}	0.520
F(000)	1728
Crystal size / mm	0.25 x 0.25 x 0.10
Theta range for data collection	3.55 to 27.50
/ 0	
Index ranges	-13<=h<=12;
	-36<=k<=37;
	-16<=1<=16
Reflections collected	57366

 Table S-1. Crystal data and structure refinement for 22.

Independent reflections, $R_{\rm int}$	9072, 0.0489
Reflections observed (> 2σ)	7068
Data Completeness	0.995
Absorption correction	Semi-empirical from
-	equivalents
Max. and min. transmission	0.91, 0.85
Data / restraints / parameters	9072 / 0 / 499
Goodness-of-fit on F^2	1.027
Final R1, wR2 indices	0.0344, 0.0840
$[I \ge 2\sigma(I)]$	
Final <i>R</i> 1, <i>wR</i> 2 indices (all data)	0.0540, 0.0917
Largest diff. peak and hole /	0.454, -0.506
eÅ- ³	

Notes: Asymmetric unit also contains 1 molecule of benzene.