Electronic Supplementary Information (ESI) Ver. 1.12 (08-9-26)

Sandwich-type Hf^{IV} and Zr^{IV} complexes composed of tri-lacunary Keggin polyoxometalates: structure of $[M_3(\mu-OH)_3(A-\alpha-PW_9O_{34})_2]^{9-}$ (M = Hf and Zr)

Yoshio Saku,^a Yoshitaka Sakai,^a Akira Shinohara,^a Kunihiko Hayashi,^a Shoko Yoshida,^a Chika N. Kato,^{a,b} Kenji Yoza^c and Kenji Nomiya^{a,*}

^a Department of Materials Science, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan. E-mail: <u>nomiya@kanagawa-u.ac.jp</u> (K. Nomiya).

^b Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

^c Nihon Bruker AXS, Kanagawa-ku, Moriyacho 3-9 A6F, Yokohama 221-0022, Japan

Contents:

Experimental section S1. Crystallization of the crude product of Et_2NH_2 -1 obtained without refluxing, and X-ray crystallography of a 7 : 3 mixture of the α,α - and α,β -type

sandwich-structure POMs.

Experimental section S2. Crystallization of the crude product of Et_2NH_2 -2 obtained without refluxing and X-ray crystallography of a 7 : 3 mixture of the α,α - and α,β -type sandwich-structure POMs.

Fig. S1 Molecular structures of a 7 : 3 mixture of the α , α - and α , β -type sandwich-structure POMs (**Et₂NH₂-1**) solved with a disorder model.

Fig. S2 Molecular structures of a 7 : 3 mixture of the α,α - and α,β -type sandwich-structure POMs (**Et₂NH₂-2**) solved with a disorder model.

Fig. S3 ³¹P NMR spectra in D₂O of (a) the crude product of Et_2NH_2 -1 and (b) the crude product of Et_2NH_2 -2.

Table S1Bond lengths (Å) and angles (°) for 1

Table S2Bond lengths (Å) and angles (°) for 2

Table S3Bond valence sum (BVS) calculations of W, Hf, O and P atoms for 1 in

Et₂NH₂-1

Table S4Bond valence sum (BVS) calculations of W, Zr, O and P atoms for 2 in

 Et_2NH_2-2

Experimental section S1. Crystallization of the crude product of Et_2NH_2-1 obtained without refluxing, and X-ray crystallography of a 7 : 3 mixture of the α,α - and α,β -type sandwich-structure POMs.

The white powder (0.17 g) of the crude product of diethylammonium salt

(Et₂NH₂-1) (see Experimental section in the text) was dissolved in 3.5 mL of water on a water bath at 50-60°C. The colorless, clear solution was slowly concentrated at room temperature. After a few days, colorless prism crystals were deposited. The colorless prism crystal ($0.30 \times 0.08 \times 0.03 \text{ mm}^3$) was surrounded by liquid paraffin (Paratone-N) to prevent its degradation. X-ray diffraction measurement was done by a Bruker SMART APEX CCD diffractometer at 90 K in the range of $0.88^\circ < \theta < 28.31^\circ$. The intensity data were automatically collected for Lorentz and polarization effects during integration. The structure was solved by direct methods (program SHELXS-97)^{R1a} followed by subsequent difference Fourier calculation and refined by full-matrix, least-square procedure on F^2 (program SHELXL-97).^{R1b} Absorption correction was performed with SADABS (empirical absorption correction).^{R1c}

One of the two " W_3O_6 cap" moieties in the two tri-lacunary Keggin units was disordered. The structure was solved using a disorder model (Fig. S1). The site occupancy factors of the tungsten and oxygen atoms in the disordered cap site were

fixed at 0.71 for the tungsten and oxygen atoms labeled with A, which corresponded to the α -Keggin unit, and 0.29 for those labeled with B, which corresponded to the β -Keggin unit. Crystal data for C₂₈H₉₇N₇O₇₅P₂W₁₈Hf₃: M = 5638.50, monoclinic, space group $P2_{I}/n$, a = 27.805(4), b = 13.734(2), c = 29.936(5) Å, $\beta = 106.264(3)^{\circ}$, V =10974(3) Å³, Z = 4, $D_{c} = 3.413$ Mg m⁻³, μ (Mo-K α) = 21.723 mm⁻¹. R1 = 0.0960, wR2= 0.1719 (for all data). $R_{int} = 0.0742$, R1 = 0.0647, wR2 = 0.1533, GOF = 1.071 (77399 total reflections, 27199 unique reflections where $I > 2\sigma(I)$).

References

R1 (a) G. M. Sheldrick, *Acta Crystallogr., Sect A*, 1990, 46, 467; (b) G. M. Sheldrick,
SHELXL-97 program for crystal structure refinement, University of Gottingen,
Germany, 1997; (c) G. M. Sheldrick, SADABS, University of Gottingen,
Germany, 1996.

Experimental section S2. Crystallization of the crude product of Et_2NH_2-2 obtained without refluxing, and X-ray crystallography of a 7 : 3 mixture of the α,α - and α,β -type sandwich-structure POMs.

The white powder (0.5 g) of the crude product of diethylammonium salt

Supplementary Material (ESI) for *Dalton Transactions* This journal is © The Royal Society of Chemistry 2008

(Et₂NH₂-2) (see Experimental section in the text) was dissolved in 5 mL of water on a water bath at 50-60°C. The colorless, clear solution was slowly concentrated at room temperature. After a few days, colorless needle crystals were deposited. The colorless needle crystal ($0.23 \times 0.08 \times 0.03 \text{ mm}^3$) was surrounded by liquid paraffin (Paratone-N) to prevent its degradation. X-ray diffraction measurement was done by a Bruker SMART APEX CCD diffractometer at 90 K in the range of $0.88^\circ < \theta < 28.35^\circ$.

One of the two "W₃O₆ cap" moieties in the two tri-lacunary Keggin units was disordered. The structure was solved using a disorder model (Fig. S2). The site occupancy factors of the tungsten and oxygen atoms in the disordered "W₃O₆ cap" were fixed at 0.78 for those labeled with A (α -Keggin unit) and 0.22 for those labeled with B (β -Keggin unit). Crystal data for C₂₈H₁₀₅N₇O₈₀P₂W₁₈Zr₃: M = 5465.09, monoclinic, space group $P2_{I}/n$, a = 27.828(3), b = 13.6970(12), c = 30.008(3) Å, $\beta = 106.533(2)$ °, V= 10965.1(17) Å³, Z = 4, $D_c = 3.310$ Mg m⁻³, μ (Mo-K α) = 19.194 mm⁻¹. R1 = 0.1043, wR2 = 0.1909 (for all data). $R_{int} = 0.0843$, R1 = 0.0694, wR2 = 0.1681, GOF = 1.110 (107125 total reflections, 27284 unique reflections where $I > 2\sigma(I)$).

Fig. S3

$W-O_t(O_t: termina)$	l oxygen)			
W(1)-O(1)	1.700(7)	W(6)-O(15)	1.723(7)	
W(2)-O(2)	1.699(7)	W(7)-O(16)	1.717(7)	
W(3)-O(3)	1.715(7)	W(8)-O(17)	1.702(7)	
W(4)-O(13)	1.709(6)	W(9)-O(18)	1.717(7)	
W(5)-O(14)	1.715(6)			
		average = 1.711 [1	.699(7)-1.723(7)]	
W-O _c (O _c : corner-	sharing oxygen)			
W(1)-O(7)	1.897(7)	W(6)-O(27)	1.840(6)	
W(1)-O(12)	1.859(7)	W(6)-O(20)	1.912(7)	
W(2)-O(8)	1.872(7)	W(6)-O(9)	1.949(6)	
W(2)-O(9)	1.882(7)	W(7)-O(28)	1.834(6)	
W(3)-O(10)	1.869(7)	W(7)-O(22)	1.917(7)	
W(3)-O(11)	1.876(7)	W(7)-O(10)	1.952(7)	
W(4)-O(25)	1.851(7)	W(8)-O(29)	1.823(6)	
W(4)-O(24)	1.919(6)	W(8)-O(22)	1.912(7)	
W(4)-O(7)	1.931(7)	W(8)-O(11)	1.955(7)	
W(5)-O(26)	1.833(6)	W(9)-O(30)	1.822(7)	
W(5)-O(20)	1.903(6)	W(9)-O(24)	1.905(6)	
W(5)-O(8)	1.955(7)	W(9)-O(12)	1.969(7)	
		average = 1.893 [1.822(7)-1.969(7)]		
W-O _e (O _e : edge-sh	aring oxygen)			
W(1)-O(4)	1.959(7)	W(4)-O(19)	1.925(6)	
W(1)-O(6)	1.932(7)	W(5)-O(19)	1.938(6)	
W(2)-O(5)	1.933(7)	W(6)-O(21)	1.901(7)	
W(2)-O(4)	1.939(7)	W(7)-O(21)	1.924(7)	
W(3)-O(6)	1.941(7)	W(8)-O(23)	1.944(6)	
W(3)-O(5)	1.927(7)	W(9)-O(23)	1.956(6)	
		average = 1.935 [1	1.901(7)-1.959(7)]	
W-O _a (oxygen cool	rdinating to P atom)			
W(1)-O(34)	2.425(6)	W(6)-O(32)	2.434(6)	
W(2)-O(34)	2.424(6)	W(7)-O(32)	2.393(6)	
W(3)-O(34)	2.420(6)	W(8)-O(33)	2.396(6)	
W(4)-O(31)	2.418(6)	W(9)-O(33)	2.422(6)	

Table S1Bond lengths (Å) and angles (°) for 1

Table S1 continued

W(5)-O(31)	2.420(6)	average = 2.417 [2.3]	average = 2.417 [2.393(6)-2.434(6)]	
P-0				
P(1)-(31)	1.540(6)	P(1)-(33)	1.533(6)	
P(1)-(32)	1.535(6)	P(1)-(34)	1.559(7)	
		average = 1.542 [1.53	average = 1.542 [1.533(6)-1.559(7)]	
О-Р-О				
O(33)-P(1)-O(32)	110.4(4)	O(33)-P(1)-O(34)	108.4(4)	
O(33)-P(1)-O(31)	110.5(4)	O(32)-P(1)-O(34)	108.7(4)	
O(32)-P(1)-O(31)	110.6(3)	O(31)-P(1)-O(34)	108.2(4)	
		average = 109.5 [108	average = 109.5 [108.2(4)-110.6(3)]	

$W-O_t(O_t: terminal)$	l oxygen)			
W(1)-O(1)	1.716(5)	W(6)-O(15)	1.717(5)	
W(2)-O(2)	1.707(6)	W(7)-O(16)	1.716(5)	
W(3)-O(3)	1.722(5)	W(8)-O(17)	1.718(6)	
W(4)-O(13)	1.712(5)	W(9)-O(18)	1.713(5)	
W(5)-O(14)	1.720(5)			
		average = 1.716 [1.707(6)-1.722(5)]		
W-O _c (O _c : corner-s	sharing oxygen)			
W(1)-O(7)	1.878(6)	W(6)-O(27)	1.839(5)	
W(1)-O(12)	1.867(5)	W(6)-O(20)	1.925(5)	
W(2)-O(8)	1.852(5)	W(6)-O(9)	1.935(5)	
W(2)-O(9)	1.886(5)	W(7)-O(28)	1.829(5)	
W(3)-O(10)	1.875(6)	W(7)-O(22)	1.891(5)	
W(3)-O(11)	1.884(5)	W(7)-O(10)	1.952(5)	
W(4)-O(25)	1.828(5)	W(8)-O(29)	1.849(5)	
W(4)-O(24)	1.916(5)	W(8)-O(22)	1.924(5)	
W(4)-O(7)	1.954(6)	W(8)-O(11)	1.945(5)	
W(5)-O(26)	1.826(5)	W(9)-O(30)	1.833(5)	
W(5)-O(20)	1.896(5)	W(9)-O(24)	1.912(5)	
W(5)-O(8)	1.971(5)	W(9)-O(12)	1.954(5)	
		average = 1.893 [1	.826(5)-1.971(5)]	
$W-O_e(O_e: edge-sha$	aring oxygen)			
W(1)-O(4)	1.943(6)	W(4)-O(19)	1.934(5)	
W(1)-O(6)	1.920(6)	W(5)-O(19)	1.951(5)	
W(2)-O(5)	1.963(6)	W(6)-O(21)	1.927(5)	
W(2)-O(4)	1.926(6)	W(7)-O(21)	1.932(5)	
W(3)-O(6)	1.932(6)	W(8)-O(23)	1.911(6)	
W(3)-O(5)	1.934(5)	W(9)-O(23)	1.911(6)	
		average = 1.932 [1	.911(6)-1.963(6)]	
W-O _a (oxygen coor	dinating to P atom)			
W(1)-O(34)	2.425(5)	W(6)-O(32)	2.419(5)	
W(2)-O(34)	2.415(5)	W(7)-O(32)	2.429(5)	
W(3)-O(34)	2.433(5)	W(8)-O(33)	2.435(5)	
W(4)-O(31)	2.401(5)	W(9)-O(33)	2.395(5)	

Table S2Bond lengths (Å) and angles (°) for 2

Table S2 continued

		average = 2.420 [2.395(5)-2.435(5)]	
1.528(5)	P(1)-O(33)	1.538(5)	
1.532(5)	P(1)-O(34)	1.561(5)	
	average = 1.540 [1.52	average = 1.540 [1.528(5)-1.561(5)]	
110.8(3)	O(33)-P(1)-O(34)	109.0(3)	
110.1(3)	O(32)-P(1)-O(34)	108.4(3)	
110.4(3)	O(31)-P(1)-O(34)	108.2(3)	
	average = 109.5 [108	average = 109.5 [108.2(3)-110.8(3)]	
	1.528(5) 1.532(5) 110.8(3) 110.1(3) 110.4(3)	1.528(5) $P(1)$ -O(33) $1.532(5)$ $P(1)$ -O(34) $average = 1.540 [1.52]$ $110.8(3)$ $O(33)$ -P(1)-O(34) $110.1(3)$ $O(32)$ -P(1)-O(34) $110.4(3)$ $O(31)$ -P(1)-O(34) $average = 109.5 [108]$	

Supplementary Material (ESI) for *Dalton Transactions* This journal is © The Royal Society of Chemistry 2008

O(1)	1.798	O(29)	1.996	W(1)	6.129
O(2)	1.803	O(30)	1.996	W(2)	6.185
O(3)	1.726	O(31)	1.746	W(3)	6.149
O(4)	1.835	O(32)	1.772	W(4)	6.144
O(5)	1.931	O(33)	1.784	W(5)	6.124
O(6)	1.897	O(34)	1.934	W(6)	6.143
O(7)	2.018			W(7)	6.137
O(8)	2.032	O(1M)	1.220	W(8)	6.197
O(9)	2.016	O(2M)	1.222	W(9)	6.067
O(10)	2.048				
O(11)	2.020			Hf(1)	4.046
O(12)	2.039			Hf(2)	4.033
O(13)	1.754				
O(14)	1.726			P(1)	4.904
O(15)	1.689				
O(16)	1.717				
O(17)	1.788				
O(18)	1.717				
O(19)	1.923				
O(20)	2.052				
O(21)	2.025				
O(22)	2.015				
O(23)	1.830				
O(24)	2.028				
O(25)	1.912				
O(26)	1.954				
O(27)	1.918				
O(28)	1.968				

Table S3Bond valence sum (BVS) calculations of W, Hf, O and P atoms for 1 in

Et₂NH₂-1

O(1)	1.722	O(29)	1.856	W(1)	6.155
O(2)	1.764	O(30)	1.918	W(2)	6.163
O(3)	1.694	O(31)	1.794	W(3)	6.071
O(4)	1.908	O(32)	1.766	W(4)	6.145
O(5)	1.838	O(33)	1.759	W(5)	6.068
O(6)	1.952	O(34)	1.925	W(6)	6.114
O(7)	2.016			W(7)	6.184
O(8)	2.056	O(1M)	1.141	W(8)	6.085
O(9)	2.040	O(2M)	1.136	W(9)	6.200
O(10)	2.030				
O(11)	2.020			Zr(1)	3.778
O(12)	2.050			Zr(2)	3.753
O(13)	1.740				
O(14)	1.703			P(1)	4.932
O(15)	1.717				
O(16)	1.722				
O(17)	1.712				
O(18)	1.736				
O(19)	1.867				
O(20)	2.037				
O(21)	1.934				
O(22)	2.054				
O(23)	2.033				
O(24)	2.016				
O(25)	1.930				
O(26)	1.940				
O(27)	1.891				
O(28)	1.909				

Table S4Bond valence sum (BVS) calculations of W, Zr, O and P atoms for 2 in

 Et_2NH_2-2