Supplementary information

${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of acid/ $\mathrm{Si}(\mathrm{OMe})_{4}$ mixtures in $\mathrm{CD}_{3} \mathrm{OD}$ - the acid and ester signals

Acid	Form	Alpha \boldsymbol{H}	Beta \boldsymbol{H}	Ester CH_{3}	Alpha C	Beta C	$\begin{gathered} \text { Carboxyl } \\ \boldsymbol{C} \end{gathered}$	Ester $\boldsymbol{C} \mathrm{H}_{3}$
$\mathrm{OA}+$	free	-	-	-	-	-	161.65	-
$\mathrm{Si}(\mathrm{OMe})_{4}$	monomethyl ester	-	-	3.854 s	-	-	160.90 160.33	53.64
	dimethyl ester	-	-	3.863 s	-	-	159.53	53.86
$\mathrm{Si}(\mathrm{OMe})_{4}$	Free	$\begin{gathered} 4.480 \mathrm{dd}, \\ \mathrm{~J}=7.78,4.33 \end{gathered}$	$\begin{gathered} 2.799 \mathrm{dd}, \mathrm{~J}=16.13 \\ 4.33 \\ 2.649, \mathrm{~J}=16.05,7.80 \end{gathered}$	-	68.45	40.03	$\begin{aligned} & 176.50 \\ & 174.11 \end{aligned}$	-
	monomethyl ester	$\begin{gathered} 4.491 \mathrm{dd}, \\ \mathrm{~J}=7.50,4.50 \end{gathered}$	$\begin{gathered} 2.770 \mathrm{dd}, \mathrm{~J}=16.00, \\ 4.50 \\ 2.661 \mathrm{dd}, \mathrm{~J}=16.00, \\ 7.50 \end{gathered}$	3.739 s	68.61	39.85	175.13; 173.83	51.59
	dimethyl ester	$\begin{gathered} 4.507 \mathrm{dd}, \\ \mathrm{~J}=7.25,4.75 \end{gathered}$	$\begin{gathered} 2.801 \mathrm{dd}, \mathrm{~J}=15.00, \\ 4.50 \\ 2.702 \mathrm{dd}, \mathrm{~J}=16.25, \\ 7.25 \end{gathered}$	$\begin{gathered} 3.739 \mathrm{~s} \\ 3.679 \mathrm{~s} \end{gathered}$	68.56	39.86	$\begin{aligned} & 174.94 \\ & 172.49 \end{aligned}$	$\begin{gathered} 51.59 \\ 51.66 \end{gathered}$
TA+	free	4.531 s	-	-	73.38	-	174.70	-
$\mathrm{Si}(\mathrm{OMe})_{4}$								
	monomethyl ester	$\begin{gathered} 4.510 \mathrm{~d}, \\ \mathrm{~J}=2.0 \\ 4.569 \mathrm{~d}, \\ \mathrm{~J}=2.0 \end{gathered}$	-	3.780 s	$\begin{gathered} 73.48 \\ 73.80 \end{gathered}$	-	$\begin{aligned} & 174.44 ; \\ & 173.58 \end{aligned}$	51.60
	dimethyl ester	4.553 s	-	3.775 s	73.81	-	173.34	52.86
	transient	4.484 s	-	-	76.93	-	177.10	-
$\begin{gathered} \mathrm{TA}+ \\ \mathrm{Si}(\mathrm{OEt})_{4} \end{gathered}$	monoethylest er	$\begin{gathered} 4.500 \mathrm{~d} \\ \mathrm{~J}=2.5 ; \\ 4.561 \mathrm{~d} \\ \mathrm{~J}=2.5 \end{gathered}$	-	$\begin{aligned} & 1.295 \mathrm{t}, \mathrm{~J}=7.0 \\ & 4.239 \mathrm{q}, \mathrm{~J}=7.0 \end{aligned}$	$\begin{aligned} & 73.40 \\ & 73.70 \end{aligned}$	-	$\begin{aligned} & 174.31 \\ & 173.47 \end{aligned}$	$\begin{gathered} 62.46 \\ 14.48 \end{gathered}$
	diethylester	4.545 s	-	$\begin{aligned} & 1.290 \mathrm{t}, \mathrm{~J}=7.25 \\ & 4.234 \mathrm{q}, \mathrm{~J}=7.17 \end{aligned}$	73.74	-	173.22	$\begin{gathered} 62.48 \\ 14.48 \end{gathered}$
	transient	4.465 s	-	-	76.82	-	177.09	-
TA+	free	4.495 s	-	-	73.04	-	174.23	-
$\begin{gathered} \mathrm{Si}(\mathrm{OEt})_{4} / \\ \mathrm{EtOD}^{\mathrm{a}} \end{gathered}$	monoethyl	4.465 d,	-	$4.222 \mathrm{q}, \mathrm{J}=7.17$	73.13;	-	173.88;	61.99

Table S1. Assignment of signals in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Measured in $\mathrm{CD}_{3} \mathrm{OD}$ except ${ }^{\text {a }}$ measured in $\mathrm{C}_{2} \mathrm{D}_{5} \mathrm{OD}$.

When MA was incubated with MeOH or with $\mathrm{Si}(\mathrm{OMe})_{4}$, the concentrations of the products were calculated from the integrals of the four regions A-D in Figure 4a). The concentration of monomethyl MA was calculated as
$[\text { monomethyl MA }]_{\mathrm{t}}=\left(1-\frac{\text { intA }_{\mathrm{t}}}{0.485}-\frac{\operatorname{intD}_{\mathrm{t}}}{0.515}\right) \times[\mathrm{MA}]_{0}$
and of diester as
$[\text { dimethylMA }]_{t}=\frac{\operatorname{intA}_{t}}{0.485} \times[\mathrm{MA}]_{0}$
where int A_{t} etc are the normalised integrals of the four regions A etc. at time t, and 0.485:0.515 is the ratio of the two left-hand peaks of the doublet of doublets to the two right-hand peaks, measured for both the pure acid and pure diester.

When CA was incubated with MeOH or with $\mathrm{Si}(\mathrm{OMe})_{4}$, the concentrations of the products were calculated from the integrals of the nine regions A-I in Figure 4b). The concentration of monomethyl CA was calculated as
$[\text { monomethylCA }]_{t}=\frac{\operatorname{intB}_{t}+\operatorname{intD}_{t}}{\operatorname{intA}_{t}+\operatorname{intB}_{t}+\operatorname{intC}_{t}+\operatorname{intD}_{t}} \times[\mathrm{CA}]_{0}$
and of diester as
$[\text { dimethylCA }]_{t}=\frac{\operatorname{intA}_{t}}{0.369 \times\left(\operatorname{intA}_{t}+\operatorname{intB}_{t}+\operatorname{intC}_{t}+\operatorname{intD}_{t}\right)} \times[\mathrm{CA}]_{0}$
where int A_{t} etc are the normalised integrals of the nine regions A etc. at time t , and 0.369:0.631 is the ratio of the left-hand peak of the left-hand doublet to the right-hand peak of the left-hand doublet, measured for both the pure acid and pure triester so extrapolated to the diester.
${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of acid/ $\mathrm{Si}(\mathrm{OMe})_{4}$ mixtures in $\mathrm{CD}_{3} \mathrm{OD}$ - the siloxane signals
Additional information regarding the mechanism of interaction and esterification in each case might be drawn from studying the changes in the siloxane signals. When $\mathrm{Si}(\mathrm{OMe})_{4}$ is incubated alone in $\mathrm{CD}_{3} \mathrm{OD}$, slow processes of ligand exchange (3.1) and hydrolysis (3.2) are observed:
$\equiv \mathrm{Si}-\mathrm{OCH}_{3}+\mathrm{CD}_{3} \mathrm{OD} \rightarrow \equiv \mathrm{Si}-\mathrm{OCD}_{3}+\mathrm{CH}_{3} \mathrm{OD}$
$\left[\equiv \mathrm{Si}-\mathrm{OCH}_{3}\right.$ or $\left.\equiv \mathrm{Si}-\mathrm{OCD}_{3}\right]+\mathrm{D}_{2} \mathrm{O} \rightarrow \equiv \mathrm{Si}-\mathrm{OD}+\left[\mathrm{CH}_{3} \mathrm{OD}\right.$ or $\left.\mathrm{CD}_{3} \mathrm{OD}\right]$
(where $\mathrm{D}_{2} \mathrm{O}$ is derived from $\mathrm{H}_{2} \mathrm{O}$, which is initially present or which ingresses into the tube and exchanges its protons with the deuteriums of the more abundant $\mathrm{CD}_{3} \mathrm{OD}$). Both processes lead to the loss of the $\mathrm{SiOCH}_{3}(3.56 \mathrm{ppm}$ singlet, figure 2 b$)$ and $\mathrm{SiOCH}_{3}(51.6 \mathrm{ppm}$ singlet, figure 2e) signals but the growth of new $\mathrm{CH}_{3} \mathrm{OD}$ (3.35 ppm singlet) and $\mathrm{CH}_{3} \mathrm{OD}$ (49.9 ppm singlet) signals, almost overlaying the $\mathrm{CHD}_{2} \mathrm{OD}$ and $\mathrm{CD}_{3} \mathrm{OD}$ signals. The ligand exchange process 3.1 , additionally leads to a signal for SiOCD_{3} (50.8 ppm septet), which subsequently decays due to process 3.2.

In the presence of added $\mathrm{H}_{2} \mathrm{O}$ these processes are accelerated and, because $\equiv \mathrm{Si}-\mathrm{OD}$ is formed in larger quantities, condensation reactions to form $\equiv \mathrm{Si}-\mathrm{O}-\mathrm{Si} \equiv$ also become significant:
$\left[\equiv \mathrm{Si}^{-} \mathrm{OCH}_{3}\right.$ or $\left.\equiv \mathrm{Si}-\mathrm{OCD}_{3}\right]+\equiv \mathrm{Si}-\mathrm{OD} \rightarrow \equiv \mathrm{Si}-\mathrm{O}-\mathrm{Si} \equiv+\left[\mathrm{CH}_{3} \mathrm{OD}\right.$ or $\left.\mathrm{CD}_{3} \mathrm{OD}\right] \quad 3.3$
$\equiv \mathrm{Si}-\mathrm{OD}+\equiv \mathrm{Si}-\mathrm{OD} \rightarrow \equiv \mathrm{Si}-\mathrm{O}-\mathrm{Si} \equiv+\mathrm{D}_{2} \mathrm{O} \quad 3.4$
Each of these processes leads to further signals due to $\equiv \mathrm{Si}-\mathrm{OCH}_{3}$ or $\equiv \mathrm{Si}_{\mathrm{i}}-\mathrm{OCD}_{3}$ within hydrolysed or oligomeric species which can also be seen in figures 2 b) and 2 e).

It was shown in the previous paper that the concentrations of $\mathrm{SiOCH}_{3}, \mathrm{SiOCD}_{3}$ and $\mathrm{CH}_{3} \mathrm{O}[\mathrm{D} / \mathrm{H}]$ change ~ 1000 fold faster in mixtures of $\mathrm{Si}(\mathrm{OMe})_{4}$ with 2 HOAs in $\mathrm{CD}_{3} \mathrm{OD}$ than in $\mathrm{Si}(\mathrm{OMe})_{4}+\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CD}_{3} \mathrm{OD}$. All of these processes are accelerated for OA, MA, TA and CA also. Figure 5 shows the rapid growth of the SiOCD_{3} signal for each of these acids immediately after addition of $\mathrm{Si}(\mathrm{OMe})_{4}$, and its slow decay due to hydrolysis and condensation. It can be seen that the processes occur at similar rates for each acid, though the removal of SiOCD_{3} is perhaps slower in the case of MA. Thus, changes in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra due to the siloxane species reveal little about any differences in the mechanism of reactions for the four acids.

Figure S 1 : Changes in the concentration of $\equiv \mathrm{SiOCD}_{3}$ after $\mathrm{Si}(\mathrm{OMe})_{4}(0.75 \mathrm{mmol})$ is added to $\mathrm{CD}_{3} \mathrm{OD}$ containing 0.375 mmol of OA (open circles), MA (open triangles), TA (filled circles) or CA (filled triangles).

ES-MS analysis of acid/Si(OMe) $)_{4}$ mixtures in $\mathrm{CH}_{3} \mathrm{OH}$

$\mathrm{R}=\mathrm{H}$
or
I
$336.9880 \quad \mathrm{SiC}_{9} \mathrm{H}_{9} \mathrm{O}_{12} \quad 336.9869$ (+1.1) I, R=CH
$354.9973 \mathrm{SiC}_{9} \mathrm{H}_{11} \mathrm{O}_{13}{ }^{-} \quad 354.9974$ (+0.5)

$\mathrm{n}=0,1 \times \mathrm{R}=\mathrm{CH}_{3}, 2 \times \mathrm{R}=\mathrm{H}$
$369.0132 \mathrm{SiC}_{10} \mathrm{H}_{13} \mathrm{O}_{13}$ $378.9435 \mathrm{Si}_{2} \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{13}$
369.0131 (-0.3) J, n=0, $2 \times \mathrm{R}=\mathrm{CH}_{3}, 1 \times \mathrm{R}=\mathrm{H}$ 378.9431 (-1.0)

$\mathrm{R}=\mathrm{CH}_{3}$
$383.0291 \quad \mathrm{SiC}_{11} \mathrm{H}_{15} \mathrm{O}_{13}{ }^{-}$
383.0287 (-0.9) J, n=0, $3 \times \mathrm{R}=\mathrm{CH}_{3}$
$410.9734 \mathrm{Si}_{2} \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{14}$
410.9693 (-
10.0)

or

$\mathrm{n}=0,2 \times \mathrm{R}=\mathrm{CH}_{3}, 1 \times \mathrm{R}=\mathrm{H}$
L
$461.0058 \quad \mathrm{Si}_{2} \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{16}$ $475.0213 \quad \mathrm{Si}_{2} \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{16}$ $484.9518 \quad \mathrm{Si}_{3} \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{16}$
$461.0061(+0.5) \mathrm{J}, \mathrm{n}=1,3 \times \mathrm{R}=\mathrm{CH}_{3}, 2 \times \mathrm{R}=\mathrm{H}$ $475.0217(+0.9) \mathrm{J}, \mathrm{n}=1,4 \times \mathrm{R}=\mathrm{CH}_{3}, 1 \times \mathrm{R}=\mathrm{H}$ 484.9517 (-0.3)

$3 \times \mathrm{R}=\mathrm{CH}_{3}$
$489.0370 \quad \mathrm{Si}_{2} \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{16}$ $516.9789 \mathrm{Si}_{3} \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{17}$ $581.0305 \quad \mathrm{Si}_{3} \mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{19}$ $622.9864 \mathrm{Si}_{4} \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{20}$ $728.9950 \mathrm{Si}_{5} \mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{23}$
TA+
$\mathrm{Si}(\mathrm{OMe})_{4}$ $149.0099 \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}$
$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{6}{ }^{-}$ $369.0113 \mathrm{SiC}_{10} \mathrm{H}_{13} \mathrm{O}_{13}-$ $383.0268 \mathrm{SiC}_{11} \mathrm{H}_{15} \mathrm{O}_{13}{ }^{-}$ $396.9534 \mathrm{Si}_{2} \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{14}{ }^{-}$
$489.0374(+0.8) \mathrm{J}, \mathrm{n}=1,5 \times \mathrm{R}=\mathrm{CH}_{3}$
516.9779 (-1.9) L, $\mathrm{n}=1,4 \times \mathrm{R}=\mathrm{CH}_{3}, 1 \times \mathrm{R}=\mathrm{H}$
581.0303 (-0.3) J, $\mathrm{n}=2,6 \times \mathrm{R}=\mathrm{CH}_{3}, 1 \times \mathrm{R}=\mathrm{H}$ $622.9865(+0.2) \mathrm{L}, \mathrm{n}=2,6 \times \mathrm{R}=\mathrm{CH}_{3}, 1 \times \mathrm{R}=\mathrm{H}$ $728.9951(+0.2) \mathrm{L}, \mathrm{n}=3,8 \times \mathrm{R}=\mathrm{CH}_{3}, 1 \times \mathrm{R}=\mathrm{H}$ 149.0092 (-4.8) $\mathrm{G}, \mathrm{R}=\mathrm{H}$
$163.0248(+4.1) \mathrm{G}, \mathrm{R}=\mathrm{CH}_{3}$
$354.9974(+3.3) \mathrm{J}, \mathrm{n}=0,1 \times \mathrm{R}=\mathrm{CH}_{3}, 2 \times \mathrm{R}=\mathrm{H}$ $369.0131(+4.8) \mathrm{J}, \mathrm{n}=0,2 \times \mathrm{R}=\mathrm{CH}_{3}, 1 \times \mathrm{R}=\mathrm{H}$ $383.0287(+5.0) \mathrm{J}, \mathrm{n}=0,3 \times \mathrm{R}=\mathrm{CH}_{3}$
$396.9536(+0.5) L, n=0,1 \times \mathrm{R}=\mathrm{CH}_{3}, 2 \times \mathrm{R}=\mathrm{H}$

K

or M

Table S2. Assignment of ES-MS spectra shown in Fig. 6

FTIR analysis of $2 \mathrm{HOA}+\mathrm{Si}(\mathrm{OMe})_{4}$ mixtures in d_{4}-methanol

The mixtures of acids with $\mathrm{Si}(\mathrm{OMe})_{4}$ in $\mathrm{CD}_{3} \mathrm{OD}$ as studied by NMR above were also studied by FTIR and their spectra compared with those recorded for the pure acid and pure ester (where available) at the same concentration in $\mathrm{CD}_{3} \mathrm{OD}$ (Table S3), as had previously been done with monocarboxylic acids ${ }^{31}$.

Spectra were recorded on a Perkin-Elmer Spectrum One instrument using a solid sample holder attachment. Acid (0.375 mmol) was dissolved completely in $\mathrm{CD}_{3} \mathrm{OD}(0.75 \mathrm{~mL})$. Aliquots were withdrawn, spotted onto the sample holder, and spectra, corrected for the empty sample holder, were recorded. $\mathrm{Si}(\mathrm{OMe})_{4}(0.750 \mathrm{mmol})$ was then added and the sample incubated at room temperature. Further spectra were recorded after varying intervals. Spectra were also recorded for $\mathrm{CD}_{3} \mathrm{OD}$ and $\mathrm{Si}(\mathrm{OMe})_{4}$ in $\mathrm{CD}_{3} \mathrm{OD}$ controls.

The spectra recorded after 1 wk displayed signals previously assigned to $\mathrm{CH}_{3} \mathrm{O}[\mathrm{D} / \mathrm{H}]$ produced by hydrolysis/condensation of $\mathrm{Si}(\mathrm{OMe})_{4}^{31}$. Mixtures of $\mathrm{Si}(\mathrm{OMe})_{4}$ with OA, MA, TA and CA displayed C O and $\mathrm{C}=\mathrm{O}$ stretch absorbances closer to those of the esters than those of the starting acids, as expected.

$$
\text { C-O stretch } \quad \mathrm{C}=\mathrm{O} \text { stretch } \quad \text { absorbance } \sim 823 \mathrm{~cm}^{-1}
$$

	acid	ester	acid +	acid	ester	acid +	acid	ester	acid +
			$\begin{gathered} \mathrm{Si}(\mathrm{OMe})_{4}, \\ 1 \mathrm{wk} \end{gathered}$			$\underset{1 \mathrm{wk}}{\mathrm{Si}(\mathrm{OMe})_{4},}$			$\begin{gathered} \mathrm{Si}(\mathrm{OMe})_{4}, \\ 1 \mathrm{wk} \end{gathered}$
OA	1238	$1219{ }^{\text {b }}$	$1224{ }^{\text {a }}$		1708		823	823	816
		$1334{ }^{\text {b }}$		1747	1748	1748			
	1398	$1367{ }^{\text {b }}$	1361		1774	1771			
MA	1317	$1288{ }^{\text {c }}$	1306	1727	1746	1742	824	824	804
	1385	$1372{ }^{\text {c }}$	1386						
TA	1310	$1282{ }^{\text {d }}$	1292	1732	1754	1753	823	824	807
	1373	$1367{ }^{\text {d }}$	1371						
CA	1249	$1207{ }^{\text {e }}$	$1230{ }^{\text {a }}$	1726	1746	1742	823	825	810
	1383	$1364{ }^{\text {e }}$	1368						

Table S3: Selected FTIR absorbances for the various acids, their esters, and their mixtures with $\mathrm{Si}(\mathrm{OMe})_{4}$ after 1 wk , all recorded in $\mathrm{CD}_{3} \mathrm{OD}$. ${ }^{\text {a }}$ Overlaps with bands due to $\mathrm{Si}(\mathrm{OMe})_{4}$ and/or MeOH at $\sim 1200 \mathrm{~cm}^{-1} .{ }^{\mathrm{b}}$ dimethyloxalate ${ }^{\mathrm{c}}$ dimethyl L-malate ${ }^{\mathrm{d}}$ dimethyl L-tartrate ${ }^{\mathrm{e}}$ trimethyl citrate.

The absorbance in the $750-850 \mathrm{~cm}^{-1}$ region of the spectra of the mixtures is again included in table S 3 . The only absorbance observed in this region with pure samples of the acids and esters was the band at $\sim 823 \mathrm{~cm}^{-1}$ attributed to $\mathrm{CD}_{3} \mathrm{OD}$. Ignatyev et al. suggest two $\mathrm{Si}-\mathrm{O}$ stretches appear at 843 and $827 \mathrm{~cm}^{-1}$ in $\mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{4}$ but at 801 and $779 \mathrm{~cm}^{-1}$ for $\mathrm{Si}\left(\mathrm{OCD}_{3}\right)_{4}$. For $\mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{4}+\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CD}_{3} \mathrm{OD}$ this band appears initially at $832 \mathrm{~cm}^{-1}$ and after 1 wk at $821 \mathrm{~cm}^{-1}$ due to the replacement of SiOCH_{3} with SiOCD_{3}. Interestingly with $\mathrm{Si}(\mathrm{OMe})_{4}+$ acetic acid and $\mathrm{Si}(\mathrm{OMe})_{4}+3$-hydroxybutyric acid in $\mathrm{CD}_{3} \mathrm{OD}$ this band moved further, to $798 \mathrm{~cm}^{-1}$, as more SiOCD_{3} was present after 1 week ${ }^{31}$. In the current work the band moves further for MA than for OA, TA and CA, corresponding with the ${ }^{13} \mathrm{C}$ results which suggest more SiOCD_{3} is present after 1 wk in the $\mathrm{MA}+\mathrm{Si}(\mathrm{OMe})_{4}$ sample.

Samples of acid+ $\mathrm{Si}(\mathrm{OMe})_{4}$ in $\mathrm{CD}_{3} \mathrm{OD}$ that had been incubated for just 30 min were also subjected to FTIR in the hope that this might show evidence of different absorbances that might be attributed Si acid complexes or other reaction intermediates. However, these spectra were essentially intermediate between the initial spectra for the acids alone and the spectra recorded for acids+ $\mathrm{Si}(\mathrm{OMe})_{4}$ at 1 week, suggesting any absorbances due to transient siloxane-acid complexes were weak and/or obscured by the other absorbances.

${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$ and ${ }^{29} \mathrm{Si}$ NMR and ESI-MS of TA/ $\mathrm{Si}(\mathrm{OEt})_{4}$ mixtures

Figure S2: Concentrations of product monoester (diamonds), diester (triangles) and transient intermediate (circles) versus time for the mixture of $\mathrm{TA}(0.40 \mathrm{M})$ with $\mathrm{Si}(\mathrm{OEt})_{4}(0.79 \mathrm{M})$ in $\mathrm{C}_{2} \mathrm{D}_{5} \mathrm{OD}$.

Figure S3 ES-MS spectra obtained in negative ion mode with direct infusion of samples. $\mathrm{Si}(\mathrm{OEt})_{4}(0.79$ $\mathrm{M})+\mathrm{TA}(0.40 \mathrm{M})$ in EtOH , collected $c .2 \mathrm{~h}$ after mixing.

$\mathrm{TA}+\mathrm{Si}(\mathrm{OEt})_{4}$	149.0110	$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}{ }^{-}$	$149.0092(-12.7)$	$\mathrm{G}, \mathrm{R}=\mathrm{H}$
	364.9278	$\mathrm{Si}_{2} \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{13}{ }^{-}$	364.9274 (-1.1)	$\mathrm{K}, \mathrm{R}=\mathrm{H}$
	382.9389	$\mathrm{Si}_{2} \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{14}{ }^{-}$	382.9380 (-2.5)	L, $\mathrm{n}=0,3 \times \mathrm{R}=\mathrm{H}$
	392.9599	$\mathrm{Si}_{2} \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{13}{ }^{-}$	392.9587 (-3.0)	$\mathrm{K}, \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$
	410.9703	$\mathrm{Si}_{2} \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{14}{ }^{-}$	410.9693 (-2.5)	L, $\mathrm{n}=0,1 \times \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, 2 \times \mathrm{R}=\mathrm{H}$
	439.0017	$\mathrm{Si}_{2} \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{14}{ }^{-}$	439.0006 (-2.5)	L, $\mathrm{n}=0,2 \times \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, 1 \times \mathrm{R}=\mathrm{H}$
	488.9473	$\mathrm{Si}_{3} \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{17}{ }^{-}$	488.9466 (-1.5)	L, $\mathrm{n}=1,1 \times \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, 4 \times \mathrm{R}=\mathrm{H}$
	498.9678	$\mathrm{Si}_{3} \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{16}{ }^{-}$	498.9673 (-0.9)	$\mathrm{M}, 2 \times \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, 1 \times \mathrm{R}=\mathrm{H}$
	516.9786	$\mathrm{Si}_{3} \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{17}$	516.9779 (-1.4)	L, $\mathrm{n}=1,2 \times \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, 3 \times \mathrm{R}=\mathrm{H}$
	545.0101	$\mathrm{Si}_{3} \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{17}{ }^{-}$	545.0092 (-1.6)	L, $\mathrm{n}=1,3 \times \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, 2 \times \mathrm{R}=\mathrm{H}$
	573.0413	$\mathrm{Si}_{3} \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{17}{ }^{-}$	573.0405 (-1.3)	L, $\mathrm{n}=1,4 \times \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, 1 \times \mathrm{R}=\mathrm{H}$
	622.9880	$\mathrm{Si}_{4} \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{20}{ }^{-}$	622.9865 (-2.4)	L, $\mathrm{n}=2,3 \times \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, 4 \times \mathrm{R}=\mathrm{H}$
	651.0191	$\mathrm{Si}_{4} \mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{20}{ }^{-}$	651.0178 (-2.0)	L, $\mathrm{n}=2,4 \times \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, 3 \times \mathrm{R}=\mathrm{H}$
	679.0507	$\mathrm{Si}_{4} \mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{20}{ }^{-}$	679.0491 (-2.3)	L, $\mathrm{n}=2,5 \times \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, 2 \times \mathrm{R}=\mathrm{H}$
	707.0827	$\mathrm{Si}_{4} \mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{20}{ }^{-}$	707.0804 (-3.3)	L, $\mathrm{n}=2,6 \times \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, 1 \times \mathrm{R}=\mathrm{H}$

Table S4 Assignment of ES-MS spectrum shown in figure S3.

