Supporting Information

Synthesis and characterization of a series of manganese phosphonate complexes with various valences and nuclearity

Mei Wang, Chengbing Ma, Huimin Wen and Changneng Chen*

Table **S1.** Selected bond angles [°] for **1**

01-Mn1-06	82.33(9)	O16-Mn4-O34	80.01(8)	O41-Mn7-O21	177.12(9)
O1-Mn1-O10	173.33(9)	O20-Mn4-O34	83.77(8)	O5-Mn8-O4	81.20(9)
O6-Mn1-O10	93.88(9)	O30-Mn4-O34	171.24(8)	O5-Mn8-O22	94.75(9)
O1-Mn1-O14	93.76(9)	O3-Mn5-O33	97.20(10)	O4-Mn8-O22	175.42(9)
O6-Mn1-O14	152.77(9)	O3-Mn5-O21	89.11(9)	O5-Mn8-O8A	172.01(9)
O10-Mn1-O14	87.10(9)	O33-Mn5-O21	173.09(9)	O4-Mn8-O8A	97.39(9)
O1-Mn1-O29	94.63(9)	O3-Mn5-O39	169.03(10)	O22-Mn8-O8A	86.33(10)
O6-Mn1-O29	106.90(10)	O33-Mn5-O39	87.51(10)	O5-Mn8-O36	87.65(10)
O10-Mn1-O29	91.72(9)	O21-Mn5-O39	85.79(10)	O4-Mn8-O36	94.82(9)
O14-Mn1-O29	100.26(9)	O3-Mn5-O31	95.89(9)	O22-Mn8-O36	87.11(10)
O6-Mn2-O1	82.30(9)	O33-Mn5-O31	88.11(11)	O8A-Mn8-O36	100.32(10)
O6-Mn2-O11	173.90(10)	O21-Mn5-O31	94.04(10)	O5-Mn8-O34	87.92(8)
O1-Mn2-O11	94.09(9)	O39-Mn5-O31	94.16(10)	O4-Mn8-O34	89.70(8)
O6-Mn2-O19A	93.42(9)	O3-Mn5-O25	86.70(8)	O22-Mn8-O34	88.01(9)
01-Mn2-019A	152.48(10)	O33-Mn5-O25	93.20(10)	O8A-Mn8-O34	84.20(9)
O11-Mn2-O19A	87.51(9)	O21-Mn5-O25	84.34(9)	O36-Mn8-O34	173.12(8)
O6-Mn2-O26	93.95(10)	O39-Mn5-O25	83.13(9)	O5-Mn9-O4	80.93(9)
O1-Mn2-O26	106.15(10)	O31-Mn5-O25	176.93(9)	O5-Mn9-O18	165.07(10)
O11-Mn2-O26	91.78(10)	O3-Mn6-O2	81.31(9)	O4-Mn9-O18	95.70(9)
O19A-Mn2-O26	101.25(10)	O3-Mn6-O13	172.71(9)	O5-Mn9-O23	93.24(9)
O15-Mn3-O12	171.49(9)	O2-Mn6-O13	97.01(9)	O4-Mn9-O23	172.25(10)
O15-Mn3-O2	89.51(9)	O3-Mn6-O24	94.56(9)	O18-Mn9-O23	88.64(9)
O12-Mn3-O2	92.32(9)	O2-Mn6-O24	174.10(10)	O5-Mn9-O40	91.76(10)
O15-Mn3-O28	87.16(11)	O13-Mn6-O24	86.55(10)	O4-Mn9-O40	95.48(9)
O12-Mn3-O28	90 18(11)	O3-Mn6-O32	88 61(9)	O18-Mn9-O40	103 06(10)
O2-Mn3-O28	173 49(10)	02-Mn6-032	95 61(9)	023-Mn9-040	89 77(10)
015-Mn3-01	97 22(9)	013-Mn6-O32	98 63(10)	05-Mn9-035	85 59(8)
012-Mn3-01	91 02(9)	O24-Mn6-O32	88 48(10)	O4-Mn9-O35	90 71(8)
02-Mn3-01	91.82(8)	03-Mn6-035	87 53(8)	018-Mn9-035	79 89(9)
028-Mn3-O1	94 15(9)	02-Mn6-035	88 95(8)	023-Mn9-035	83 72(9)
015-Mn3-042	85 86(10)	013-Mn6-035	85 34(9)	040-Mn9-035	172.82(8)
012-Mn3-042	85 94(10)	024-Mn6-035	86 65(9)	017-Mn10-09A	171.77(10)
0.12 Mm ³ 0.12	87 18(9)	032-Mn6-035	17352(9)	017-Mn10-04	89 53(9)
02 Mm ³ 012028 -Mm ³ 042	87.00(9)	05-Mn7-037	9676(10)	O9A-Mn10-O4	92 62(9)
01-Mn3-042	17676(10)	05-Mn7-038	169.93(10)	017-Mn10-027A	87 66(10)
0.2 - Mn4 - 0.3	80.94(9)	037-Mn7- 038	87 55(10)	09A-Mn10-027A	89 47(10)
02 Mm + 03 02 Mm + 016	95 93(9)	05-Mn7-025	89 22(9)	$O_{4}Mn10-O_{7}A$	$174\ 23(10)$
02 Mn4 010	165 26(9)	037-Mn7-025	173 31(10)	017-Mn10-06A	97 30(9)
$O_{2}-Mn_{4}-O_{2}O_{2}O_{2}$	173.03(10)	$O_{38}Mn_{7}O_{25}$	86.07(10)	O9A-Mn10-O6A	90.55(9)
O_2 -Win4- O_20 O_3 -Mn4- O_20	93 63(10)	05-Mn7-041	94 81(9)	$O_{4}Mn10-O6\Delta$	92.35(8)
0.00000000000000000000000000000000000	88 23(9)	$O_{37}Mn_{7}O_{41}$	86.14(11)	0.27Δ Mn10-00A	93 01(9)
$\Omega_{-Mn/-\Omega_{30}}$	96.64(9)	$O_{38}Mn_{7}O_{41}$	94.56(10)	0.17-Mp10-07	86.93(10)
O_2 -Mn4-O30	90.04(9) 92.24(9)	0.025-Mn7-041	96.36(10)	$O_{1} - M_{11} - O_{7}$	85 25(10)
$0.016 Mn/_0.030$	102.24(9)	025-Mn7-021	88 00(8)	O_4 -Mn10-O7	87 09(0)
$\Omega_{10}^{-10114-030}$	102.77(3) 87.80(10)	0.37 Mn7 021	00.00(0) 07.04(10)	Ω^{27} M_{n10} Ω^{7}	87.09(9)
$\Omega_2 = Mn_4 = 0.30$	07.07(10) 01.07(8)	$O_{38}Mn7 O_{21}$	92.94(10) 82.67(0)	O_2/A -Will $O_0/$	07.72(9) 175 73(10)
$\Omega_2 - Mn_4 - \Omega_3 4$	91.72(0) 85.65(8)	0.00-10117-0.21 0.025-Mn7 0.021	84 25(0)		1/3./3(10)
0,5-1111-0,54	02.02(0)	023-1011/-021	07.23(7)		

^{*a*} Symmetry transformations used to generate equivalent atoms: A: -x, y, -z + 3/2.

	<u> </u>					
Complex	D-H···A	d(D-H)	d(H···A)	<dha< td=""><td>d(D···A)</td><td>Symmetry code</td></dha<>	d(D···A)	Symmetry code
2	O9-H9B…O4&	0.853	2.017	159.97	2.834	-y, x-y, z
	O10-H10A…O7#	0.820	2.017	144.44	2.727	-x+y-1, -x, z
3	O2-H2A…O3&	0.820	1.774	172.64	2.590	-x + 1/2, -y + 1, -z + 1
	O7-H7A…O5	0.820	1.777	163.45	2.573	· · ·
	O6-H6A…O3	0.820	1.906	160.30	2.693	

Table S2. Hydrogen Bond Distances (Å) and Bond Angles (°) for compounds 2 and 3

Fig. S1. The structure of compound 1 along c axis. Color code: green, Mn; modena, Na; purple, P; red,O; gray, C. Hydrogen atoms have been omitted for clarity.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Fig. S2. The structure of compound **1**. The Jahn-Teller elongated axes of the nine Mn(III) ions are highlighted in black. Color code: green, Mn; modena, Na; purple, P; red, O;. Hydrogen atoms and carbon atoms have been omitted for clarity.

Fig. S3. The structure of compound **2**. The Jahn-Teller elongated axes of the Mn(III) ions are highlighted in black. Color code: Mn^{III} : green; Mn^{II} : modena; purple, P; red, O. Hydrogen atoms and carbon atoms have been omitted for clarity.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Fig. S4 The view of the hydrogen-bonded dinuclear complex for **3** (top) and the one-dimensional packing diagram for compound **3** (bottom). Dotted lines show hydrogen bonding interactions

Fig. S5. In-phase $(\chi'_M T)$ (top) and out-phase (χ''_M) (bottom) AC susceptibility versus *T* for complex **2** measured in a 3.0 G AC field oscillating at the indicated frequencies.