Boron(8) substituted isonitrilium and ammonium derivatives new versatile cobalt bis(1,2-dicarbollide) building blocks for synthetic purposes.

Vaclav Sicha^ª, Jaromír Plešek^ª, Magdalena Kvicalova^ª, Ivana Císařová^b and Bohumír Gruner^ª

^aInstitute of Inorganic Chemistry, Academy of Sciences of the Czech, Republic, 250 68 Řež, Czech Republic, and ^bDept. of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Albertov 6, 128 40 Praha 2, Czech Republic

Correspondence e-mail: cisarova@mail.natur.cuni.cz

Comment

Experimental

(2)

Crystal data	
C ₆ H ₂₄ B ₁₈ CoN	$D_{\rm x} = 1.335 {\rm ~Mg} {\rm m}^{-3}$
$M_r = 363.77$	Melting point: 568 K
Orthorhombic, <i>Pna2</i> ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 2415 reflections
<i>a</i> = 22.05980 (10) Å	$\theta = 1-27.5^{\circ}$
b = 7.0999 (2) Å	$\mu = 0.94 \text{ mm}^{-1}$
c = 11.5587 (3) Å	T = 150 (2) K
$V = 1810.35 (7) \text{ Å}^3$	Cell measurement pressure: 101.3 kPa
Z = 4	Plate, red
$F_{000} = 736$	$0.4 \times 0.4 \times 0.3 \text{ mm}$

Data collection

Nonius KappaCCD area detector diffractometer	3943 independent reflections
Radiation source: fine-focus sealed tube	3795 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.045$
Detector resolution: 9.091 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}$
T = 150(2) K	$\theta_{\min} = 3.0^{\circ}$
P = 101.3 kPa	$h = -28 \rightarrow 28$
ϕ and ω scans to fill the Ewald sphere	$k = -9 \rightarrow 9$
Absorption correction: none	$l = -14 \rightarrow 14$
25157 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.024$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.065$	$w = 1/[\sigma^2(F_o^2) + (0.0371P)^2 + 0.5901P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
3943 reflections	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
273 parameters	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
? constraints	Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.00 (13)

Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The crystal was refined as racemic twin, twin ration 0.54:0.46.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	у	z	$U_{\rm iso}*/U_{\rm eq}$
Co3	0.422893 (8)	0.24021 (2)	0.91204 (4)	0.01233 (7)
C1	0.36433 (8)	0.3067 (3)	1.04327 (15)	0.0173 (3)
H1	0.3842 (9)	0.381 (3)	1.0979 (19)	0.022 (5)*
C2	0.38405 (8)	0.0868 (2)	1.04180 (15)	0.0179 (3)
H2	0.4144 (9)	0.048 (3)	1.093 (2)	0.019 (5)*
B4	0.33920 (7)	0.3831 (2)	0.9126 (2)	0.0157 (3)
H4	0.3429 (9)	0.520 (3)	0.8893 (19)	0.024 (6)*
B5	0.28851 (9)	0.3335 (3)	1.02955 (18)	0.0207 (4)
Н5	0.2617	0.4466	1.0698	0.025*
B6	0.31850 (9)	0.1484 (3)	1.11407 (18)	0.0211 (4)
H6	0.3117	0.1408	1.2082	0.025*
B7	0.37432 (8)	-0.0131 (2)	0.9082 (2)	0.0177 (3)
H7	0.3981 (10)	-0.132 (3)	0.8766 (19)	0.025 (6)*
B8	0.34197 (9)	0.1749 (3)	0.82487 (17)	0.0163 (4)

B9	0.27205 (9)	0.2454 (3)	0.88947 (18)	0.0197 (5)
H9	0.2340	0.2997	0.8377	0.024*
B10	0.25982 (9)	0.1005 (3)	1.01361 (17)	0.0220 (4)
H10	0.2139	0.0606	1.0416	0.026*
B11	0.32293 (9)	-0.0555 (3)	1.02635 (19)	0.0220 (4)
H11	0.3187	-0.1968	1.0645	0.026*
B12	0.29371 (9)	0.0014 (3)	0.88742 (16)	0.0212 (4)
H12	0.2696	-0.1031	0.8343	0.025*
C1'	0.50113 (8)	0.3165 (2)	0.99333 (15)	0.0163 (3)
H1'	0.4933 (9)	0.321 (3)	1.067 (2)	0.013 (5)*
C2'	0.47404 (6)	0.47855 (19)	0.90874 (18)	0.0156 (3)
H2'	0.4511 (8)	0.578 (3)	0.9436 (15)	0.008 (4)*
B4'	0.50714 (8)	0.1044 (2)	0.92436 (18)	0.0163 (3)
H4'	0.5058 (9)	-0.025 (3)	0.9749 (19)	0.019 (5)*
B5'	0.57209 (9)	0.2516 (3)	0.9537 (2)	0.0190 (5)
H5'	0.6081	0.2066	1.0136	0.023*
B6'	0.54933 (8)	0.4900 (3)	0.94656 (17)	0.0187 (4)
H6'	0.5698	0.5992	1.0016	0.022*
H6' B7'	0.5698 0.45900 (8)	0.5992 0.3938 (3)	1.0016 0.77378 (16)	0.022* 0.0155 (3)
H6' B7' H7'	0.5698 0.45900 (8) 0.4287 (9)	0.5992 0.3938 (3) 0.467 (3)	1.0016 0.77378 (16) 0.721 (2)	0.022* 0.0155 (3) 0.027 (6)*
H6' B7' H7' B8'	0.5698 0.45900 (8) 0.4287 (9) 0.48199 (8)	0.5992 0.3938 (3) 0.467 (3) 0.1488 (3)	1.0016 0.77378 (16) 0.721 (2) 0.77825 (16)	0.022* 0.0155 (3) 0.027 (6)* 0.0158 (4)
H6' B7' H7' B8' H8'	0.5698 0.45900 (8) 0.4287 (9) 0.48199 (8) 0.4671 (8)	0.5992 0.3938 (3) 0.467 (3) 0.1488 (3) 0.042 (3)	1.0016 0.77378 (16) 0.721 (2) 0.77825 (16) 0.7193 (16)	0.022* 0.0155 (3) 0.027 (6)* 0.0158 (4) 0.010 (4)*
H6' B7' H7' B8' H8' B9'	0.5698 0.45900 (8) 0.4287 (9) 0.48199 (8) 0.4671 (8) 0.56150 (9)	0.5992 0.3938 (3) 0.467 (3) 0.1488 (3) 0.042 (3) 0.1489 (3)	1.0016 0.77378 (16) 0.721 (2) 0.77825 (16) 0.7193 (16) 0.81503 (17)	0.022* 0.0155 (3) 0.027 (6)* 0.0158 (4) 0.010 (4)* 0.0192 (4)
H6' B7' H7' B8' H8' B9' H9'	0.5698 0.45900 (8) 0.4287 (9) 0.48199 (8) 0.4671 (8) 0.56150 (9) 0.5915	0.5992 0.3938 (3) 0.467 (3) 0.1488 (3) 0.042 (3) 0.1489 (3) 0.0364	1.0016 0.77378 (16) 0.721 (2) 0.77825 (16) 0.7193 (16) 0.81503 (17) 0.7834	0.022* 0.0155 (3) 0.027 (6)* 0.0158 (4) 0.010 (4)* 0.0192 (4) 0.023*
H6' B7' H7' B8' H8' B9' H9' B10'	0.5698 0.45900 (8) 0.4287 (9) 0.48199 (8) 0.4671 (8) 0.56150 (9) 0.5915 0.58792 (9)	0.5992 0.3938 (3) 0.467 (3) 0.1488 (3) 0.042 (3) 0.1489 (3) 0.0364 0.3864 (3)	1.0016 0.77378 (16) 0.721 (2) 0.77825 (16) 0.7193 (16) 0.81503 (17) 0.7834 0.82779 (18)	0.022* 0.0155 (3) 0.027 (6)* 0.0158 (4) 0.010 (4)* 0.0192 (4) 0.023* 0.0208 (4)
H6' B7' H7' B8' H8' B9' H9' B10' H10'	0.5698 0.45900 (8) 0.4287 (9) 0.48199 (8) 0.4671 (8) 0.56150 (9) 0.5915 0.58792 (9) 0.6343	0.5992 0.3938 (3) 0.467 (3) 0.1488 (3) 0.042 (3) 0.1489 (3) 0.0364 0.3864 (3) 0.4273	1.0016 0.77378 (16) 0.721 (2) 0.77825 (16) 0.7193 (16) 0.81503 (17) 0.7834 0.82779 (18) 0.8036	0.022* 0.0155 (3) 0.027 (6)* 0.0158 (4) 0.010 (4)* 0.0192 (4) 0.023* 0.0208 (4) 0.025*
H6' B7' H7' B8' H8' B9' H9' B10' H10' B11'	0.5698 0.45900 (8) 0.4287 (9) 0.48199 (8) 0.4671 (8) 0.56150 (9) 0.5915 0.58792 (9) 0.6343 0.52443 (9)	0.5992 0.3938 (3) 0.467 (3) 0.1488 (3) 0.042 (3) 0.1489 (3) 0.0364 0.3864 (3) 0.4273 0.5374 (3)	1.0016 0.77378 (16) 0.721 (2) 0.77825 (16) 0.7193 (16) 0.81503 (17) 0.7834 0.82779 (18) 0.8036 0.80468 (17)	0.022* 0.0155 (3) 0.027 (6)* 0.0158 (4) 0.010 (4)* 0.0192 (4) 0.023* 0.0208 (4) 0.025* 0.0192 (4)
H6' B7' H7' B8' H8' B9' H9' B10' B10' B11' H11'	0.5698 0.45900 (8) 0.4287 (9) 0.48199 (8) 0.4671 (8) 0.56150 (9) 0.5915 0.58792 (9) 0.6343 0.52443 (9) 0.5294	0.5992 0.3938 (3) 0.467 (3) 0.1488 (3) 0.042 (3) 0.1489 (3) 0.0364 0.3864 (3) 0.4273 0.5374 (3) 0.6789	1.0016 0.77378 (16) 0.721 (2) 0.77825 (16) 0.7193 (16) 0.81503 (17) 0.7834 0.82779 (18) 0.8036 0.8036 0.80468 (17) 0.7670	0.022* 0.0155 (3) 0.027 (6)* 0.0158 (4) 0.010 (4)* 0.0192 (4) 0.023* 0.025* 0.0192 (4) 0.023*
H6' B7' H7' B8' H8' B9' H9' B10' H10' B11' H11' B12'	0.5698 0.45900 (8) 0.4287 (9) 0.48199 (8) 0.4671 (8) 0.56150 (9) 0.5915 0.58792 (9) 0.6343 0.52443 (9) 0.5294 0.53186 (9)	0.5992 0.3938 (3) 0.467 (3) 0.1488 (3) 0.042 (3) 0.042 (3) 0.1489 (3) 0.0364 0.3864 (3) 0.4273 0.5374 (3) 0.6789 0.3264 (3)	1.0016 0.77378 (16) 0.721 (2) 0.77825 (16) 0.7193 (16) 0.81503 (17) 0.7834 0.82779 (18) 0.8036 0.8036 0.80468 (17) 0.7670 0.72216 (16)	0.022* 0.0155 (3) 0.027 (6)* 0.0158 (4) 0.010 (4)* 0.0192 (4) 0.023* 0.025* 0.0192 (4) 0.023* 0.0192 (4)
H6' B7' H7' B8' H8' B9' H9' B10' B10' B11' H11' B12' H12'	0.5698 0.45900 (8) 0.4287 (9) 0.48199 (8) 0.4671 (8) 0.56150 (9) 0.5915 0.58792 (9) 0.6343 0.52443 (9) 0.5294 0.53186 (9) 0.5425	0.5992 0.3938 (3) 0.467 (3) 0.1488 (3) 0.042 (3) 0.042 (3) 0.1489 (3) 0.0364 0.3864 (3) 0.4273 0.5374 (3) 0.6789 0.3264 (3) 0.3302	1.0016 0.77378 (16) 0.721 (2) 0.77825 (16) 0.7193 (16) 0.81503 (17) 0.7834 0.82779 (18) 0.8036 0.80468 (17) 0.7670 0.76216 (16) 0.6292	0.022* 0.0155 (3) 0.027 (6)* 0.0158 (4) 0.010 (4)* 0.0192 (4) 0.023* 0.0208 (4) 0.025* 0.0192 (4) 0.023* 0.0181 (4) 0.022*
H6' B7' H7' B8' H8' B9' H9' B10' H10' B11' H11' B12' H12' N1	0.5698 0.45900 (8) 0.4287 (9) 0.48199 (8) 0.4671 (8) 0.56150 (9) 0.5915 0.58792 (9) 0.6343 0.52443 (9) 0.5294 0.53186 (9) 0.5425 0.34117 (7)	0.5992 0.3938 (3) 0.467 (3) 0.1488 (3) 0.042 (3) 0.042 (3) 0.1489 (3) 0.0364 0.3864 (3) 0.4273 0.5374 (3) 0.6789 0.3264 (3) 0.3302 0.1754 (2)	1.0016 0.77378 (16) 0.721 (2) 0.77825 (16) 0.7193 (16) 0.81503 (17) 0.7834 0.82779 (18) 0.8036 0.80468 (17) 0.7670 0.76216 (16) 0.6292 0.69449 (14)	0.022* 0.0155 (3) 0.027 (6)* 0.0158 (4) 0.010 (4)* 0.0192 (4) 0.023* 0.0208 (4) 0.025* 0.0192 (4) 0.023* 0.0192 (4) 0.023* 0.0181 (4) 0.022* 0.0189 (3)
H6' B7' H7' B8' H8' B9' H9' B10' H10' B11' H11' B12' H12' N1 C3	0.5698 0.45900 (8) 0.4287 (9) 0.48199 (8) 0.4671 (8) 0.56150 (9) 0.5915 0.58792 (9) 0.6343 0.52443 (9) 0.5294 0.53186 (9) 0.5425 0.34117 (7) 0.33764 (8)	0.5992 0.3938 (3) 0.467 (3) 0.1488 (3) 0.042 (3) 0.1489 (3) 0.0364 0.3864 (3) 0.4273 0.5374 (3) 0.6789 0.3264 (3) 0.3302 0.1754 (2) 0.1731 (3)	1.0016 0.77378 (16) 0.721 (2) 0.77825 (16) 0.7193 (16) 0.81503 (17) 0.7834 0.82779 (18) 0.8036 0.80468 (17) 0.7670 0.76216 (16) 0.6292 0.69449 (14) 0.59612 (16)	0.022* 0.0155 (3) 0.027 (6)* 0.0158 (4) 0.010 (4)* 0.0192 (4) 0.023* 0.0208 (4) 0.025* 0.0192 (4) 0.023* 0.0192 (4) 0.023* 0.0181 (4) 0.022* 0.0189 (3) 0.0188 (3)
H6' B7' H7' B8' H8' B9' H9' B10' H10' B11' H11' B12' H12' N1 C3 C4	0.5698 0.45900 (8) 0.4287 (9) 0.48199 (8) 0.4671 (8) 0.56150 (9) 0.5915 0.58792 (9) 0.6343 0.52443 (9) 0.5294 0.53186 (9) 0.5425 0.34117 (7) 0.33764 (8) 0.33273 (9)	0.5992 0.3938 (3) 0.467 (3) 0.1488 (3) 0.042 (3) 0.042 (3) 0.1489 (3) 0.0364 0.3864 (3) 0.4273 0.5374 (3) 0.6789 0.3264 (3) 0.3302 0.1754 (2) 0.1731 (3) 0.1684 (3)	1.0016 0.77378 (16) 0.721 (2) 0.77825 (16) 0.7193 (16) 0.81503 (17) 0.7834 0.82779 (18) 0.80468 (17) 0.7670 0.7670 0.72216 (16) 0.6292 0.69449 (14) 0.59612 (16) 0.47097 (16)	0.022* 0.0155 (3) 0.027 (6)* 0.0158 (4) 0.010 (4)* 0.0192 (4) 0.023* 0.0208 (4) 0.025* 0.0192 (4) 0.023* 0.0181 (4) 0.022* 0.0189 (3) 0.0188 (3) 0.0240 (4)

H4B	0.3696	0.1194	0.4386	0.036*
H4C	0.3260	0.2936	0.4424	0.036*

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co3	0.01386 (10)	0.01269 (10)	0.01043 (10)	0.00057 (6)	-0.00028 (10)	-0.00005 (10)
C1	0.0186 (8)	0.0189 (8)	0.0143 (8)	0.0018 (6)	0.0020 (7)	-0.0023 (7)
C2	0.0207 (8)	0.0193 (8)	0.0135 (7)	0.0010 (6)	0.0022 (7)	0.0032 (6)
B4	0.0155 (7)	0.0166 (7)	0.0149 (8)	0.0026 (6)	-0.0019 (9)	0.0000 (9)
B5	0.0179 (9)	0.0252 (10)	0.0191 (9)	0.0017 (8)	-0.0008 (8)	-0.0029 (8)
B6	0.0208 (9)	0.0252 (10)	0.0174 (10)	0.0005 (8)	0.0030 (7)	0.0018 (8)
B7	0.0210 (8)	0.0149 (7)	0.0174 (8)	-0.0021 (6)	0.0011 (9)	0.0013 (10)
B8	0.0169 (9)	0.0160 (9)	0.0161 (9)	-0.0015 (7)	-0.0011 (7)	-0.0002 (7)
B9	0.0142 (9)	0.0228 (9)	0.0221 (15)	0.0002 (6)	-0.0016 (7)	-0.0014 (7)
B10	0.0208 (9)	0.0267 (10)	0.0184 (10)	-0.0012 (8)	0.0013 (7)	-0.0011 (8)
B11	0.0251 (10)	0.0197 (9)	0.0211 (10)	-0.0018 (7)	0.0042 (7)	0.0032 (8)
B12	0.0213 (9)	0.0202 (8)	0.0222 (11)	-0.0058 (7)	0.0007 (7)	-0.0021 (7)
C1'	0.0189 (8)	0.0194 (8)	0.0104 (7)	0.0003 (6)	-0.0009 (6)	-0.0008 (6)
C2'	0.0181 (7)	0.0144 (6)	0.0143 (6)	-0.0015 (5)	-0.0003 (8)	-0.0009 (8)
B4'	0.0174 (8)	0.0161 (7)	0.0154 (9)	0.0042 (6)	-0.0010 (7)	0.0001 (8)
B5'	0.0169 (11)	0.0263 (12)	0.0138 (9)	0.0029 (7)	-0.0009 (7)	-0.0008 (7)
B6'	0.0184 (9)	0.0215 (9)	0.0160 (9)	-0.0027 (7)	-0.0006 (7)	-0.0021 (7)
B7'	0.0187 (8)	0.0158 (8)	0.0119 (8)	-0.0008 (7)	-0.0003 (7)	0.0012 (6)
B8'	0.0199 (9)	0.0161 (9)	0.0114 (9)	0.0035 (6)	0.0008 (7)	-0.0003 (7)
B9'	0.0213 (9)	0.0218 (10)	0.0146 (9)	0.0043 (7)	-0.0003 (7)	-0.0016 (7)
B10'	0.0199 (9)	0.0264 (10)	0.0162 (9)	-0.0003 (8)	0.0005 (7)	0.0006 (8)
B11'	0.0216 (9)	0.0192 (9)	0.0169 (9)	-0.0017 (7)	0.0008 (7)	0.0010 (7)
B12'	0.0191 (9)	0.0209 (9)	0.0144 (9)	0.0000 (7)	0.0016 (7)	0.0011 (7)
N1	0.0179 (7)	0.0198 (8)	0.0189 (8)	-0.0016 (6)	-0.0025 (6)	-0.0016 (6)
C3	0.0170 (7)	0.0199 (8)	0.0194 (9)	-0.0019 (6)	-0.0012 (6)	-0.0021 (7)
C4	0.0299 (10)	0.0276 (10)	0.0146 (9)	-0.0028 (7)	-0.0013 (7)	-0.0013 (7)

Table 1

Geometric parameters (Å, °)

Co3—C2'	2.0342 (14)	B11—H11	1.1000
Co3—C1'	2.0384 (18)	B12—H12	1.1000
Со3—С2	2.0421 (17)	C1'—C2'	1.624 (2)
Co3—C1	2.0476 (18)	C1'—B5'	1.695 (3)
Со3—В7'	2.0922 (19)	C1'—B4'	1.710 (2)
Со3—В7	2.0941 (16)	C1'—B6'	1.714 (3)
Co3—B4'	2.0987 (17)	С1'—Н1'	0.87 (2)
Со3—В8	2.1016 (19)	C2'—B11'	1.690 (2)
Co3—B4	2.1066 (16)	C2'—B7'	1.705 (3)
Co3—B8'	2.1240 (18)	C2'—B6'	1.719 (2)
C1—C2	1.621 (2)	C2'—H2'	0.960 (18)
C1—B5	1.691 (3)	B4'—B9'	1.771 (3)
C1—B4	1.698 (3)	B4'—B8'	1.805 (3)
C1—B6	1.719 (3)	B4'—B5'	1.806 (3)
C1—H1	0.93 (2)	B4'—H4'	1.09 (2)
C2—B11	1.694 (3)	B5'—B6'	1.767 (3)
С2—В7	1.713 (3)	B5'—B9'	1.777 (3)
С2—В6	1.726 (3)	B5'—B10'	1.777 (3)
С2—Н2	0.93 (2)	B5'—H5'	1.1000
B4—B5	1.789 (3)	B6'—B11'	1.762 (3)
B4—B8	1.793 (3)	B6'—B10'	1.775 (3)
B4—B9	1.795 (3)	B6'—H6'	1.1000
B4—H4	1.01 (2)	B7'—B12'	1.780 (3)
В5—В6	1.767 (3)	B7'—B11'	1.803 (3)
В5—В9	1.773 (3)	B7'—B8'	1.812 (3)
B5—B10	1.781 (3)	B7'—H7'	1.05 (2)
В5—Н5	1.1000	B8'—B12'	1.794 (3)
B6—B11	1.770 (3)	B8'—B9'	1.805 (3)
B6—B10	1.772 (3)	B8'—H8'	1.069 (19)
В6—Н6	1.1000	B9'—B12'	1.780 (3)
B7—B8	1.794 (3)	B9'—B10'	1.790 (3)
B7—B12	1.797 (3)	В9'—Н9'	1.1000

B7—B11	1.800 (3)	B10'—B11'	1.784 (3)
B7—H7	1.06 (2)	B10'—B12'	1.789 (3)
B8—N1	1.507 (2)	B10'—H10'	1.1000
B8—B12	1.782 (3)	B11'—B12'	1.784 (3)
B8—B9	1.785 (3)	B11'—H11'	1.1000
B9—B10	1.786 (3)	B12'—H12'	1.1000
B9—B12	1.798 (3)	N1—C3	1.140 (2)
В9—Н9	1.1000	C3—C4	1.451 (2)
B10—B12	1.784 (3)	C4—H4A	0.9600
B10—B11	1.785 (3)	C4—H4B	0.9600
B10—H10	1.1000	C4—H4C	0.9600
B11—B12	1.777 (3)		
C2'—Co3—C1'	46.99 (7)	B12—B11—H11	122.6
C2'—Co3—C2	133.64 (8)	B10—B11—H11	122.2
C1'—Co3—C2	99.12 (7)	B7—B11—H11	120.7
C2'—Co3—C1	99.90 (7)	B11—B12—B8	107.88 (14)
C1'—Co3—C1	97.55 (7)	B11—B12—B10	60.19 (11)
C2—Co3—C1	46.70 (7)	B8—B12—B10	108.01 (14)
C2'—Co3—B7'	48.77 (8)	B11—B12—B7	60.49 (12)
C1'—Co3—B7'	83.75 (7)	B8—B12—B7	60.17 (11)
С2—Со3—В7'	177.12 (8)	B10—B12—B7	109.15 (14)
C1—Co3—B7'	133.30 (7)	B11—B12—B9	107.67 (14)
C2'—Co3—B7	176.29 (8)	B8—B12—B9	59.83 (11)
C1'—Co3—B7	132.18 (8)	B10—B12—B9	59.83 (12)
С2—Со3—В7	48.92 (8)	B7—B12—B9	108.44 (13)
С1—Со3—В7	83.74 (8)	B11—B12—H12	121.8
B7'—Co3—B7	128.77 (9)	B8—B12—H12	121.9
C2'—Co3—B4'	83.83 (6)	B10—B12—H12	121.4
C1'—Co3—B4'	48.79 (7)	B7—B12—H12	120.9
C2—Co3—B4'	94.39 (7)	B9—B12—H12	121.9
C1—Co3—B4'	127.91 (8)	C2'—C1'—B5'	111.73 (14)
B7'—Co3—B4'	87.38 (7)	C2'—C1'—B4'	111.84 (14)
B7—Co3—B4'	93.43 (7)	B5'—C1'—B4'	64.06 (11)
C2'—Co3—B8	130.21 (7)	C2'—C1'—B6'	61.94 (10)

C1'—Co3—B8	177.19 (7)	B5'—C1'—B6'	62.45 (11)
С2—Со3—В8	83.00 (7)	B4'—C1'—B6'	115.96 (14)
C1—Co3—B8	82.53 (8)	C2'—C1'—Co3	66.37 (8)
B7'—Co3—B8	94.14 (8)	B5'—C1'—Co3	125.81 (13)
В7—Со3—В8	50.64 (8)	B4'—C1'—Co3	67.45 (8)
B4'—Co3—B8	133.11 (8)	B6'—C1'—Co3	124.81 (11)
C2'—Co3—B4	94.91 (6)	C2'—C1'—H1'	119.2 (14)
C1'—Co3—B4	127.77 (8)	B5'—C1'—H1'	117.4 (13)
С2—Со3—В4	83.50 (8)	B4'—C1'—H1'	120.4 (14)
C1—Co3—B4	48.22 (8)	B6'—C1'—H1'	113.9 (13)
B7'—Co3—B4	94.88 (8)	Co3—C1'—H1'	107.0 (13)
В7—Со3—В4	88.01 (6)	C1'—C2'—B11'	111.20 (12)
B4'—Co3—B4	175.71 (10)	C1'—C2'—B7'	111.88 (12)
B8—Co3—B4	50.45 (8)	B11'—C2'—B7'	64.15 (12)
C2'—Co3—B8'	84.26 (7)	C1'—C2'—B6'	61.62 (11)
C1'—Co3—B8'	84.10 (7)	B11'—C2'—B6'	62.23 (11)
C2—Co3—B8'	129.00 (7)	B7'—C2'—B6'	115.94 (13)
C1—Co3—B8'	175.54 (7)	C1'—C2'—Co3	66.64 (8)
B7'—Co3—B8'	50.91 (7)	B11'—C2'—Co3	125.72 (12)
B7—Co3—B8'	92.07 (8)	B7'—C2'—Co3	67.39 (8)
B4'—Co3—B8'	50.62 (8)	B6'—C2'—Co3	124.76 (10)
B8—Co3—B8'	96.02 (8)	C1'—C2'—H2'	117.7 (11)
B4—Co3—B8'	133.41 (9)	B11'—C2'—H2'	117.5 (11)
C2-C1-B5			. ,
	111.90 (14)	B7'—C2'—H2'	122.8 (10)
C2—C1—B4	111.90 (14) 112.71 (13)	B7'—C2'—H2' B6'—C2'—H2'	122.8 (10) 111.6 (10)
C2—C1—B4 B5—C1—B4	111.90 (14) 112.71 (13) 63.74 (11)	B7'—C2'—H2' B6'—C2'—H2' Co3—C2'—H2'	122.8 (10) 111.6 (10) 108.4 (10)
C2—C1—B4 B5—C1—B4 C2—C1—B6	111.90 (14) 112.71 (13) 63.74 (11) 62.15 (12)	B7'—C2'—H2' B6'—C2'—H2' Co3—C2'—H2' C1'—B4'—B9'	122.8 (10) 111.6 (10) 108.4 (10) 103.17 (13)
C2—C1—B4 B5—C1—B4 C2—C1—B6 B5—C1—B6	111.90 (14) 112.71 (13) 63.74 (11) 62.15 (12) 62.39 (12)	B7'—C2'—H2' B6'—C2'—H2' Co3—C2'—H2' C1'—B4'—B9' C1'—B4'—B8'	122.8 (10) 111.6 (10) 108.4 (10) 103.17 (13) 104.96 (12)
C2—C1—B4 B5—C1—B4 C2—C1—B6 B5—C1—B6 B4—C1—B6	111.90 (14) 112.71 (13) 63.74 (11) 62.15 (12) 62.39 (12) 116.12 (14)	B7'—C2'—H2' B6'—C2'—H2' Co3—C2'—H2' C1'—B4'—B9' C1'—B4'—B8' B9'—B4'—B8'	122.8 (10) 111.6 (10) 108.4 (10) 103.17 (13) 104.96 (12) 60.62 (11)
C2—C1—B4 B5—C1—B4 C2—C1—B6 B5—C1—B6 B4—C1—B6 C2—C1—Co3	111.90 (14) 112.71 (13) 63.74 (11) 62.15 (12) 62.39 (12) 116.12 (14) 66.47 (8)	B7'—C2'—H2' B6'—C2'—H2' Co3—C2'—H2' C1'—B4'—B9' C1'—B4'—B8' B9'—B4'—B8' C1'—B4'—B5'	122.8 (10) 111.6 (10) 108.4 (10) 103.17 (13) 104.96 (12) 60.62 (11) 57.57 (10)
C2—C1—B4 B5—C1—B4 C2—C1—B6 B5—C1—B6 B4—C1—B6 C2—C1—Co3 B5—C1—Co3	111.90 (14) 112.71 (13) 63.74 (11) 62.15 (12) 62.39 (12) 116.12 (14) 66.47 (8) 125.49 (12)	B7'—C2'—H2' B6'—C2'—H2' Co3—C2'—H2' C1'—B4'—B9' C1'—B4'—B8' B9'—B4'—B8' C1'—B4'—B5' B9'—B4'—B5'	122.8 (10) 111.6 (10) 108.4 (10) 103.17 (13) 104.96 (12) 60.62 (11) 57.57 (10) 59.56 (12)
C2—C1—B4 B5—C1—B4 C2—C1—B6 B5—C1—B6 B4—C1—B6 C2—C1—Co3 B5—C1—Co3 B4—C1—Co3	111.90 (14) 112.71 (13) 63.74 (11) 62.15 (12) 62.39 (12) 116.12 (14) 66.47 (8) 125.49 (12) 67.71 (8)	B7'—C2'—H2' B6'—C2'—H2' Co3—C2'—H2' C1'—B4'—B9' C1'—B4'—B8' B9'—B4'—B8' C1'—B4'—B5' B9'—B4'—B5' B8'—B4'—B5'	122.8 (10) 111.6 (10) 108.4 (10) 103.17 (13) 104.96 (12) 60.62 (11) 57.57 (10) 59.56 (12) 108.57 (14)
C2-C1-B4 $B5-C1-B4$ $C2-C1-B6$ $B5-C1-B6$ $B4-C1-B6$ $C2-C1-C03$ $B5-C1-C03$ $B4-C1-C03$ $B6-C1-C03$	111.90 (14) 112.71 (13) 63.74 (11) 62.15 (12) 62.39 (12) 116.12 (14) 66.47 (8) 125.49 (12) 67.71 (8) 124.95 (12)	B7'—C2'—H2' B6'—C2'—H2' C03—C2'—H2' C1'—B4'—B9' C1'—B4'—B8' B9'—B4'—B8' B9'—B4'—B5' B9'—B4'—B5' B8'—B4'—B5' C1'—B4'—C03	122.8 (10) 111.6 (10) 108.4 (10) 103.17 (13) 104.96 (12) 60.62 (11) 57.57 (10) 59.56 (12) 108.57 (14) 63.76 (8)

B5—C1—H1	117.7 (12)	B8'—B4'—Co3	65.41 (8)
B4—C1—H1	125.2 (13)	B5'—B4'—Co3	116.70 (10)
В6—С1—Н1	108.9 (13)	C1'—B4'—H4'	119.3 (11)
Со3—С1—Н1	109.6 (13)	B9'—B4'—H4'	123.6 (11)
C1—C2—B11	111.23 (14)	B8'—B4'—H4'	129.9 (11)
C1—C2—B7	112.01 (13)	B5'—B4'—H4'	114.1 (11)
B11—C2—B7	63.79 (11)	Co3—B4'—H4'	113.5 (11)
C1—C2—B6	61.73 (12)	C1'—B5'—B6'	59.31 (11)
B11—C2—B6	62.32 (12)	C1'—B5'—B9'	103.53 (14)
В7—С2—В6	115.86 (14)	B6'—B5'—B9'	108.25 (15)
C1—C2—Co3	66.83 (8)	C1'—B5'—B10'	104.84 (14)
B11—C2—Co3	125.07 (12)	B6'—B5'—B10'	60.10 (11)
B7—C2—Co3	67.12 (8)	B9'—B5'—B10'	60.49 (13)
B6—C2—Co3	124.89 (12)	C1'—B5'—B4'	58.37 (10)
C1—C2—H2	118.0 (13)	B6'—B5'—B4'	108.67 (13)
B11—C2—H2	117.6 (13)	B9'—B5'—B4'	59.24 (12)
В7—С2—Н2	122.4 (13)	B10'—B5'—B4'	108.28 (16)
В6—С2—Н2	111.8 (13)	C1'—B5'—H5'	125.1
Co3—C2—H2	108.5 (13)	B6'—B5'—H5'	120.8
C1—B4—B5	57.94 (11)	B9'—B5'—H5'	122.9
C1—B4—B8	103.22 (12)	B10'—B5'—H5'	122.0
B5—B4—B8	106.65 (13)	B4'—B5'—H5'	121.5
C1—B4—B9	103.19 (13)	C1'—B6'—C2'	56.44 (10)
B5—B4—B9	59.32 (11)	C1'—B6'—B11'	103.73 (13)
B8—B4—B9	59.67 (10)	C2'—B6'—B11'	58.07 (11)
C1—B4—Co3	64.07 (8)	C1'—B6'—B5'	58.24 (11)
B5—B4—Co3	117.09 (12)	C2'—B6'—B5'	103.96 (13)
B8—B4—Co3	64.63 (8)	B11'—B6'—B5'	108.38 (15)
B9—B4—Co3	117.43 (10)	C1'—B6'—B10'	104.11 (14)
C1—B4—H4	121.1 (13)	C2'—B6'—B10'	104.30 (13)
B5—B4—H4	116.2 (12)	B11'—B6'—B10'	60.58 (11)
B8—B4—H4	129.6 (12)	B5'—B6'—B10'	60.21 (13)
B9—B4—H4	123.4 (12)	C1'—B6'—H6'	125.4
Co3—B4—H4	113.0 (12)	C2'—B6'—H6'	125.2

C1—B5—B6	59.59 (11)	B11'—B6'—H6'	122.1
C1—B5—B9	104.38 (14)	B5'—B6'—H6'	122.1
B6—B5—B9	108.61 (14)	B10'—B6'—H6'	122.8
C1—B5—B10	104.87 (14)	C2'—B7'—B12'	103.06 (13)
B6—B5—B10	59.93 (12)	C2'—B7'—B11'	57.54 (10)
B9—B5—B10	60.33 (11)	B12'—B7'—B11'	59.71 (11)
C1—B5—B4	58.32 (10)	C2'—B7'—B8'	104.96 (12)
B6—B5—B4	109.28 (13)	B12'—B7'—B8'	59.92 (11)
B9—B5—B4	60.50 (11)	B11'—B7'—B8'	108.24 (13)
B10—B5—B4	109.06 (14)	C2'—B7'—Co3	63.84 (8)
C1—B5—H5	125.0	B12'—B7'—Co3	117.36 (11)
B6—B5—H5	120.7	B11'—B7'—Co3	116.63 (11)
B9—B5—H5	122.3	B8'—B7'—Co3	65.45 (8)
B10—B5—H5	122.1	С2'—В7'—Н7'	118.9 (12)
B4—B5—H5	120.8	B12'—B7'—H7'	121.0 (12)
C1—B6—C2	56.12 (10)	B11'—B7'—H7'	110.2 (12)
C1—B6—B5	58.02 (11)	B8'—B7'—H7'	132.4 (13)
C2—B6—B5	103.56 (14)	Со3—В7'—Н7'	117.7 (12)
C1—B6—B11	103.27 (14)	B12'—B8'—B9'	59.27 (11)
C2—B6—B11	57.96 (11)	B12'—B8'—B4'	105.81 (13)
B5—B6—B11	108.21 (15)	B9'—B8'—B4'	58.74 (10)
C1—B6—B10	104.06 (14)	B12'—B8'—B7'	59.15 (10)
C2—B6—B10	104.26 (14)	B9'—B8'—B7'	106.16 (13)
B5—B6—B10	60.44 (12)	B4'—B8'—B7'	106.29 (12)
B11—B6—B10	60.54 (12)	B12'—B8'—Co3	115.14 (11)
С1—В6—Н6	125.6	B9'—B8'—Co3	115.15 (11)
С2—В6—Н6	125.5	B4'—B8'—Co3	63.97 (8)
B5—B6—H6	122.2	B7'—B8'—Co3	63.64 (8)
B11—B6—H6	122.3	B12'—B8'—H8'	117.0 (10)
B10—B6—H6	122.7	B9'—B8'—H8'	116.6 (9)
С2—В7—В8	103.03 (12)	B4'—B8'—H8'	124.5 (10)
C2—B7—B12	102.74 (14)	B7'—B8'—H8'	125.1 (10)
B8—B7—B12	59.48 (10)	Co3—B8'—H8'	119.5 (10)
C2—B7—B11	57.59 (12)	B4'—B9'—B5'	61.20 (11)

B8—B7—B11	106.32 (13)	B4'—B9'—B12'	107.95 (13)
B12—B7—B11	59.19 (11)	B5'—B9'—B12'	107.59 (14)
С2—В7—Со3	63.96 (8)	B4'—B9'—B10'	109.27 (13)
B8—B7—Co3	64.90 (8)	B5'—B9'—B10'	59.77 (11)
В12—В7—Со3	117.38 (10)	B12'—B9'—B10'	60.17 (11)
В11—В7—Со3	116.72 (13)	B4'—B9'—B8'	60.65 (11)
С2—В7—Н7	125.4 (12)	B5'—B9'—B8'	109.90 (14)
B8—B7—H7	127.2 (12)	B12'—B9'—B8'	60.07 (11)
B12—B7—H7	119.4 (12)	B10'—B9'—B8'	109.64 (14)
B11—B7—H7	116.2 (12)	B4'—B9'—H9'	121.0
Со3—В7—Н7	116.0 (12)	В5'—В9'—Н9'	121.2
N1—B8—B12	113.60 (14)	B12'—B9'—H9'	122.3
N1—B8—B9	114.05 (15)	B10'—B9'—H9'	121.0
B12—B8—B9	60.52 (11)	B8'—B9'—H9'	120.4
N1—B8—B4	124.28 (16)	B6'—B10'—B5'	59.68 (11)
B12—B8—B4	108.67 (14)	B6'—B10'—B11'	59.35 (11)
B9—B8—B4	60.20 (10)	B5'—B10'—B11'	106.99 (14)
N1—B8—B7	122.88 (16)	B6'—B10'—B12'	107.16 (14)
B12—B8—B7	60.34 (11)	B5'—B10'—B12'	107.16 (15)
B9—B8—B7	109.14 (14)	B11'—B10'—B12'	59.89 (11)
B4—B8—B7	108.87 (14)	B6'—B10'—B9'	107.33 (14)
N1—B8—Co3	119.26 (13)	B5'—B10'—B9'	59.75 (12)
B12—B8—Co3	117.74 (12)	B11'—B10'—B9'	107.36 (15)
В9—В8—Со3	118.14 (12)	B12'—B10'—B9'	59.64 (12)
B4—B8—Co3	64.92 (8)	B6'—B10'—H10'	122.3
В7—В8—Со3	64.47 (8)	B5'—B10'—H10'	122.3
B5—B9—B8	107.69 (14)	B11'—B10'—H10'	122.2
B5—B9—B10	60.04 (12)	B12'—B10'—H10'	122.1
B8—B9—B10	107.76 (14)	B9'—B10'—H10'	122.0
B5—B9—B4	60.19 (12)	C2'—B11'—B6'	59.70 (10)
B8—B9—B4	60.13 (11)	C2'—B11'—B12'	103.49 (13)
B10—B9—B4	108.58 (14)	B6'—B11'—B12'	107.96 (14)
B5—B9—B12	107.32 (14)	C2'—B11'—B10'	105.13 (13)
B8—B9—B12	59.65 (11)	B6'—B11'—B10'	60.06 (11)

B10—B9—B12	59.70 (11)	B12'—B11'—B10'	60.20 (11)
B4—B9—B12	107.92 (13)	C2'—B11'—B7'	58.31 (10)
В5—В9—Н9	122.0	B6'—B11'—B7'	109.02 (14)
B8—B9—H9	122.0	B12'—B11'—B7'	59.51 (11)
В10—В9—Н9	121.6	B10'—B11'—B7'	108.56 (14)
B4—B9—H9	121.3	C2'—B11'—H11'	125.0
В12—В9—Н9	122.2	B6'—B11'—H11'	120.8
B6—B10—B5	59.63 (12)	B12'—B11'—H11'	123.1
B6—B10—B12	107.78 (14)	B10'—B11'—H11'	121.9
B5—B10—B12	107.60 (14)	B7'—B11'—H11'	121.2
B6—B10—B11	59.68 (12)	B9'—B12'—B7'	108.66 (14)
B5—B10—B11	106.90 (15)	B9'—B12'—B11'	107.81 (13)
B12—B10—B11	59.72 (12)	B7'—B12'—B11'	60.78 (11)
B6—B10—B9	107.80 (14)	B9'—B12'—B10'	60.20 (12)
B5—B10—B9	59.62 (11)	B7'—B12'—B10'	109.34 (14)
B12—B10—B9	60.47 (11)	B11'—B12'—B10'	59.91 (11)
B11—B10—B9	107.81 (14)	B9'—B12'—B8'	60.66 (11)
B6—B10—H10	121.9	B7'—B12'—B8'	60.93 (11)
B5—B10—H10	122.4	B11'—B12'—B8'	109.90 (13)
B12—B10—H10	121.7	B10'—B12'—B8'	110.14 (14)
B11—B10—H10	122.3	B9'—B12'—H12'	121.9
B9—B10—H10	121.6	B7'—B12'—H12'	120.9
C2—B11—B6	59.72 (11)	B11'—B12'—H12'	121.4
C2—B11—B12	104.39 (14)	B10'—B12'—H12'	120.9
B6—B11—B12	108.17 (15)	B8'—B12'—H12'	120.1
C2—B11—B10	105.02 (15)	C3—N1—B8	176.61 (18)
B6—B11—B10	59.79 (12)	N1—C3—C4	179.4 (2)
B12—B11—B10	60.10 (11)	C3—C4—H4A	109.5
C2—B11—B7	58.62 (10)	C3—C4—H4B	109.5
B6—B11—B7	109.44 (14)	H4A—C4—H4B	109.5
B12—B11—B7	60.32 (11)	C3—C4—H4C	109.5
B10—B11—B7	108.95 (14)	Н4А—С4—Н4С	109.5
C2—B11—H11	124.7	H4B—C4—H4C	109.5
B6—B11—H11	120.8		

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(6)

Crystal data	
$C_{10}H_{35}B_{18}CoN_2$	$D_{\rm x} = 1.262 {\rm Mg m}^{-3}$
$M_r = 436.91$	Melting point: 479 K
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 8353 reflections
a = 7.0734 (7) Å	$\theta = 1-26.5^{\circ}$
b = 13.714 (2) Å	$\mu = 0.75 \text{ mm}^{-1}$
c = 23.709 (6) Å	T = 150 (2) K
$V = 2299.9 (7) \text{ Å}^3$	Cell measurement pressure: 101.3 kPa
Z = 4	Prism, red
$F_{000} = 904$	$0.40\times0.24\times0.12~mm$

Data collection	
KM4 CCD diffractometer	4733 independent reflections
Radiation source: fine-focus sealed tube	3491 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.043$
Detector resolution: 8.343 pixels mm ⁻¹	$\theta_{\rm max} = 26.6^{\circ}$
T = 150(2) K	$\theta_{\min} = 3.0^{\circ}$
P = 101.3 kPa	$h = -8 \rightarrow 8$
ϕ and ω scans to fill the Ewald sphere	$k = -16 \rightarrow 17$
Absorption correction: none	$l = -29 \rightarrow 29$
16379 measured reflections	

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.035$

 $wR(F^2) = 0.087$

S = 0.99

4733 reflections 282 parameters

1 restraint

. . . .

? constraints

Primary atom site location: structure-invariant direct

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.049P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.66 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.53 \text{ e } \text{Å}^{-3}$ Extinction correction: none Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881

Flack parameter: 0.013 (17)

methods

Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	X	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
Co3	0.74668 (6)	0.17305 (2)	0.133189 (13)	0.01749 (10)
C1	0.5023 (3)	0.09275 (19)	0.13161 (12)	0.0185 (6)
H1A	0.3980	0.1337	0.1150	0.022*
C2	0.6704 (4)	0.0466 (2)	0.09438 (13)	0.0206 (7)
H2A	0.6699	0.0566	0.0530	0.025*
B4	0.5746 (4)	0.1181 (3)	0.19802 (13)	0.0200 (7)
H4	0.5192	0.1771	0.2248	0.024*
В5	0.4333 (5)	0.0143 (2)	0.18271 (14)	0.0240 (8)
Н5	0.2881	0.0082	0.1990	0.029*
B6	0.4896 (5)	-0.0293 (2)	0.11521 (14)	0.0237 (8)
H6	0.3838	-0.0628	0.0873	0.028*
B7	0.8773 (4)	0.0367 (2)	0.13102 (15)	0.0200 (7)
H7	1.0210	0.0412	0.1135	0.024*
B8	0.8165 (5)	0.0791 (3)	0.20084 (13)	0.0208 (8)
B9	0.6308 (5)	0.0027 (2)	0.22693 (14)	0.0215 (8)
H9	0.6156	-0.0119	0.2723	0.026*
B10	0.5808 (5)	-0.0895 (3)	0.17536 (15)	0.0264 (8)
H10	0.5358	-0.1635	0.1872	0.032*
B11	0.7283 (5)	-0.0668 (2)	0.11640 (13)	0.0226 (8)
H11	0.7776	-0.1261	0.0888	0.027*
B12	0.8187 (5)	-0.0485 (3)	0.18553 (14)	0.0223 (8)
H12	0.9269	-0.0967	0.2038	0.027*
C1'	0.6825 (4)	0.2703 (2)	0.07088 (12)	0.0214 (7)
H1A'	0.5709	0.2527	0.0501	0.026*
C2'	0.6376 (4)	0.31032 (19)	0.13362 (13)	0.0230 (7)
H2A'	0.5049	0.3090	0.1427	0.028*
B4'	0.9041 (5)	0.2260 (3)	0.06503 (14)	0.0219 (8)

H4'	0.9495	0.1668	0.0368	0.026*
B5'	0.8394 (5)	0.3420 (3)	0.03680 (15)	0.0270 (8)
H5'	0.8416	0.3554	-0.0089	0.032*
B6'	0.6614 (6)	0.3936 (3)	0.07935 (15)	0.0288 (9)
H6'	0.5476	0.4393	0.0620	0.035*
B7'	0.8272 (5)	0.2987 (3)	0.17714 (14)	0.0234 (8)
H7'	0.8224	0.2879	0.2231	0.028*
B8'	1.0090 (4)	0.2466 (2)	0.13358 (14)	0.0230 (7)
H8'	1.1256	0.2023	0.1505	0.028*
B9'	1.0474 (5)	0.3309 (3)	0.07689 (14)	0.0264 (8)
H9'	1.1877	0.3378	0.0573	0.032*
B10'	0.8996 (5)	0.4339 (3)	0.08584 (15)	0.0300 (9)
H10'	0.9436	0.5075	0.0728	0.036*
B11'	0.7600 (6)	0.4127 (2)	0.14684 (13)	0.0299 (8)
H11'	0.7090	0.4729	0.1735	0.036*
B12'	1.0000 (5)	0.3752 (3)	0.14570 (14)	0.0288 (9)
H12'	1.1087	0.4115	0.1714	0.035*
N1	0.9710 (3)	0.11126 (17)	0.24122 (9)	0.0229 (6)
H1	1.0990	0.0961	0.2332	0.028*
C4	1.1407 (4)	0.1731 (2)	0.32223 (12)	0.0256 (7)
H4A	1.1353	0.2401	0.3340	0.038*
H4B	1.2456	0.1642	0.2971	0.038*
H4C	1.1565	0.1321	0.3547	0.038*
N2	0.7994 (3)	0.1596 (2)	0.31860 (10)	0.0343 (7)
H2	0.6938	0.1394	0.2947	0.041*
C3	0.9637 (4)	0.1471 (2)	0.29305 (12)	0.0230 (7)
C5	0.7718 (5)	0.1953 (2)	0.37620 (11)	0.0345 (8)
H5A	0.7396	0.2641	0.3750	0.041*
H5B	0.8890	0.1886	0.3971	0.041*
C6	0.6200 (6)	0.1412 (3)	0.40579 (15)	0.0676 (14)
H6A	0.6566	0.0733	0.4092	0.081*
H6B	0.5053	0.1440	0.3834	0.081*
C7	0.5797 (6)	0.1821 (3)	0.46437 (15)	0.0698 (13)
H7A	0.6917	0.1750	0.4876	0.084*

H7B	0.5520	0.2512	0.4613	0.084*
C8	0.4150 (6)	0.1313 (3)	0.49291 (17)	0.0782 (15)
H8A	0.3047	0.1363	0.4695	0.117*
H8B	0.3906	0.1615	0.5287	0.117*
H8C	0.4455	0.0638	0.4986	0.117*

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co3	0.01460 (17)	0.02230 (18)	0.01557 (16)	0.0002 (2)	0.0006 (2)	-0.00209 (16)
C1	0.0128 (13)	0.0226 (15)	0.0201 (14)	0.0028 (12)	0.0002 (13)	-0.0004 (14)
C2	0.0158 (14)	0.0274 (18)	0.0186 (15)	0.0018 (13)	0.0011 (13)	-0.0046 (13)
B4	0.0164 (18)	0.027 (2)	0.0164 (17)	-0.0036 (16)	0.0034 (14)	-0.0022 (14)
В5	0.0198 (18)	0.0259 (19)	0.0263 (19)	0.0017 (16)	0.0027 (15)	-0.0004 (15)
B6	0.0213 (18)	0.0201 (18)	0.030 (2)	-0.0041 (15)	-0.0029 (15)	-0.0020 (15)
B7	0.0186 (16)	0.0237 (18)	0.0176 (16)	0.0040 (14)	-0.0074 (16)	-0.0044 (16)
B8	0.0166 (17)	0.029 (2)	0.0166 (17)	0.0048 (14)	0.0000 (14)	0.0004 (15)
B9	0.0185 (18)	0.026 (2)	0.0205 (17)	0.0036 (15)	0.0006 (14)	0.0010 (16)
B10	0.024 (2)	0.028 (2)	0.027 (2)	0.0008 (17)	-0.0029 (17)	-0.0032 (16)
B11	0.023 (2)	0.0198 (16)	0.0254 (16)	0.0038 (17)	-0.0020 (17)	-0.0022 (12)
B12	0.0209 (18)	0.026 (2)	0.0201 (18)	0.0026 (14)	0.0003 (14)	-0.0011 (15)
C1'	0.0172 (16)	0.0287 (18)	0.0182 (15)	0.0009 (13)	-0.0021 (12)	0.0015 (13)
C2'	0.0197 (15)	0.0223 (17)	0.0270 (16)	0.0031 (12)	0.0016 (14)	-0.0067 (15)
B4'	0.0181 (18)	0.027 (2)	0.0205 (18)	-0.0037 (16)	0.0025 (15)	-0.0020 (15)
B5'	0.0271 (18)	0.029 (2)	0.0255 (18)	-0.0003 (17)	0.0033 (16)	0.0059 (16)
B6'	0.033 (2)	0.022 (2)	0.031 (2)	-0.0006 (17)	0.0049 (17)	0.0007 (17)
B7'	0.0223 (16)	0.031 (2)	0.0166 (17)	-0.0033 (15)	-0.0011 (15)	-0.0089 (15)
B8'	0.0179 (16)	0.0317 (19)	0.0193 (16)	-0.0031 (15)	0.0008 (17)	-0.0056 (17)
B9'	0.0216 (17)	0.030 (2)	0.0273 (18)	-0.0090 (18)	0.0044 (14)	-0.0024 (17)
B10'	0.038 (2)	0.027 (2)	0.025 (2)	-0.0050 (18)	0.0060 (18)	0.0018 (17)
B11'	0.0320 (19)	0.0240 (17)	0.0337 (19)	-0.002 (2)	0.002 (2)	-0.0062 (13)
B12'	0.029 (2)	0.031 (2)	0.026 (2)	-0.0040 (17)	-0.0007 (16)	-0.0056 (16)
N1	0.0179 (13)	0.0300 (15)	0.0209 (14)	0.0018 (12)	0.0006 (11)	0.0007 (11)
C4	0.0233 (16)	0.0261 (17)	0.0275 (16)	-0.0013 (15)	-0.0046 (13)	-0.0041 (16)

N2	0.0260 (16)	0.0572 (19)	0.0196 (12)	-0.0037 (13)	0.0001 (10)	-0.0139 (12)
C3	0.0244 (17)	0.0228 (17)	0.0217 (16)	0.0015 (13)	-0.0006 (14)	0.0001 (13)
C5	0.0342 (19)	0.049 (2)	0.0204 (15)	0.0016 (17)	0.0019 (16)	-0.0085 (12)
C6	0.054 (2)	0.115 (4)	0.034 (2)	-0.045 (3)	0.0024 (19)	-0.012 (2)
C7	0.081 (3)	0.090 (4)	0.039 (2)	-0.033 (3)	-0.008 (2)	0.008 (2)
C8	0.079 (3)	0.099 (4)	0.057 (3)	0.004 (3)	0.008 (3)	-0.025 (3)

Table 2

Geometric parameters (Å, °)

Co3—C2'	2.035 (3)	C2'—B7'	1.700 (4)
Со3—С2	2.036 (3)	C2'—B6'	1.729 (4)
Co3—C1'	2.041 (3)	C2'—H2A'	0.9631
Co3—C1	2.050 (3)	B4'—B9'	1.782 (5)
Со3—В7	2.086 (3)	B4'—B5'	1.785 (5)
Co3—B4'	2.093 (3)	B4'—B8'	1.809 (5)
Со3—В7'	2.093 (3)	B4'—H4'	1.1000
Со3—В4	2.100 (3)	B5'—B9'	1.758 (5)
Со3—В8'	2.113 (3)	B5'—B6'	1.762 (5)
Со3—В8	2.116 (3)	B5'—B10'	1.767 (5)
C1—C2	1.610 (4)	B5'—H5'	1.1000
C1—B4	1.692 (4)	B6'—B11'	1.765 (5)
C1—B5	1.692 (4)	B6'—B10'	1.780 (5)
C1—B6	1.720 (4)	B6'—H6'	1.1000
C1—H1A	1.0078	B7'—B12'	1.775 (5)
C2—B11	1.691 (4)	B7'—B11'	1.785 (5)
C2—B7	1.707 (4)	B7'—B8'	1.798 (5)
C2—B6	1.721 (4)	B7'—H7'	1.1000
C2—H2A	0.9904	B8'—B12'	1.788 (5)
B4—B9	1.770 (5)	B8'—B9'	1.793 (5)
B4—B5	1.777 (5)	B8'—H8'	1.1000
B4—B8	1.794 (5)	B9'—B10'	1.771 (5)
B4—H4	1.1000	B9'—B12'	1.773 (5)
B5—B9	1.754 (5)	B9'—H9'	1.1000

B5—B6	1.754 (5)	B10'—B11'	1.775 (5)	
B5—B10	1.774 (5)	B10'—B12'	1.780 (5)	
B5—H5	1.1000	B10'—H10'	1.1000	
B6—B11	1.766 (5)	B11'—B12'	1.774 (5)	
B6—B10	1.770 (5)	B11'—H11'	1.1000	
В6—Н6	1.1000	B12'—H12'	1.1000	
B7—B12	1.791 (5)	N1—C3	1.325 (3)	
B7—B11	1.802 (4)	N1—H1	0.9479	
B7—B8	1.806 (5)	C4—C3	1.474 (4)	
B7—H7	1.1000	C4—H4A	0.9600	
B8—N1	1.518 (4)	C4—H4B	0.9600	
B8—B12	1.788 (5)	C4—H4C	0.9600	
B8—B9	1.791 (5)	N2—C3	1.322 (3)	
B9—B10	1.794 (5)	N2—C5	1.464 (3)	
B9—B12	1.795 (5)	N2—H2	0.9767	
В9—Н9	1.1000	C5—C6	1.482 (4)	
B10—B11	1.772 (5)	С5—Н5А	0.9700	
B10—B12	1.790 (5)	С5—Н5В	0.9700	
B10—H10	1.1000	С6—С7	1.525 (5)	
B11—B12	1.777 (4)	С6—Н6А	0.9700	
B11—H11	1.1000	С6—Н6В	0.9700	
B12—H12	1.1000	С7—С8	1.517 (3)	
C1'—C2'	1.617 (4)	С7—Н7А	0.9700	
C1'—B4'	1.686 (5)	С7—Н7В	0.9700	
C1'—B5'	1.689 (4)	C8—H8A	0.9600	
C1'—B6'	1.710 (5)	C8—H8B	0.9600	
C1'—H1A'	0.9612	C8—H8C	0.9600	
C2'—B11'	1.679 (4)			
C2'—Co3—C2	133.62	2 (11) B10—B	12—H12	121.2
C2'—Co3—C1'	46.75	(11) B7—B12	2—H12	121.0
C2—Co3—C1'	99.81	(12) B9—B12	2—H12	122.3
C2'—Co3—C1	100.22	2 (11) C2'—C1	'—B4'	112.4 (2)
C2—Co3—C1	46.42	(10) C2'—C1	'—B5'	111.8 (2)
C1'—Co3—C1	98.63	(11) B4'—C1	'—B5'	63.85 (19)

C2'—Co3—B7	175.84 (12)	C2'—C1'—B6'	62.54 (19)
С2—Со3—В7	48.91 (12)	B4'—C1'—B6'	116.5 (2)
C1'—Co3—B7	131.77 (13)	B5'—C1'—B6'	62.4 (2)
C1—Co3—B7	83.76 (11)	C2'—C1'—Co3	66.41 (14)
C2'—Co3—B4'	83.35 (13)	B4'—C1'—Co3	67.53 (15)
C2—Co3—B4'	95.04 (13)	B5'—C1'—Co3	125.5 (2)
C1'—Co3—B4'	48.13 (13)	B6'—C1'—Co3	125.5 (2)
C1—Co3—B4'	128.40 (12)	C2'—C1'—H1A'	113.3
B7—Co3—B4'	93.25 (14)	B4'—C1'—H1A'	129.1
C2'—Co3—B7'	48.61 (12)	B5'—C1'—H1A'	116.1
C2—Co3—B7'	176.87 (13)	B6'—C1'—H1A'	103.7
C1'—Co3—B7'	83.28 (14)	Co3—C1'—H1A'	112.9
C1—Co3—B7'	132.91 (12)	C1'—C2'—B11'	110.8 (2)
B7—Co3—B7'	129.04 (13)	C1'—C2'—B7'	111.8 (2)
B4'—Co3—B7'	87.35 (14)	B11'—C2'—B7'	63.77 (19)
C2'—Co3—B4	96.23 (13)	C1'—C2'—B6'	61.36 (19)
C2—Co3—B4	82.62 (12)	B11'—C2'—B6'	62.37 (19)
C1'—Co3—B4	129.43 (13)	B7'—C2'—B6'	115.9 (2)
C1—Co3—B4	48.09 (11)	C1'—C2'—Co3	66.83 (14)
В7—Со3—В4	87.31 (14)	B11'—C2'—Co3	125.4 (2)
B4'—Co3—B4	176.37 (13)	B7'—C2'—Co3	67.49 (15)
B7'—Co3—B4	95.09 (13)	B6'—C2'—Co3	124.79 (19)
C2'—Co3—B8'	83.75 (12)	C1'—C2'—H2A'	113.0
C2—Co3—B8'	129.92 (12)	B11'—C2'—H2A'	118.5
C1'—Co3—B8'	83.49 (13)	B7'—C2'—H2A'	129.1
C1—Co3—B8'	175.96 (12)	B6'—C2'—H2A'	105.9
B7—Co3—B8'	92.25 (13)	Co3—C2'—H2A'	110.7
B4'—Co3—B8'	50.96 (13)	C1'—B4'—B9'	103.0 (2)
B7'—Co3—B8'	50.61 (13)	C1'—B4'—B5'	58.15 (18)
B4—Co3—B8'	132.63 (13)	B9'—B4'—B5'	59.06 (19)
C2'—Co3—B8	130.41 (13)	C1'—B4'—B8'	104.6 (2)
С2—Со3—В8	83.44 (13)	B9'—B4'—B8'	59.91 (18)
C1'—Co3—B8	176.73 (13)	B5'—B4'—B8'	107.6 (2)
C1—Co3—B8	83.31 (12)	C1'—B4'—Co3	64.34 (15)

B7—Co3—B8	50.92 (13)	B9'—B4'—Co3	117.5 (2)
B4'—Co3—B8	132.28 (13)	B5'—B4'—Co3	117.6 (2)
В7'—Со3—В8	93.46 (14)	B8'—B4'—Co3	65.09 (15)
B4—Co3—B8	50.36 (13)	C1'—B4'—H4'	126.0
B8'—Co3—B8	94.73 (13)	B9'—B4'—H4'	121.7
C2—C1—B4	111.6 (2)	B5'—B4'—H4'	120.3
C2—C1—B5	110.8 (2)	B8'—B4'—H4'	122.8
B4—C1—B5	63.34 (18)	Co3—B4'—H4'	111.6
C2—C1—B6	62.12 (18)	C1'—B5'—B9'	103.9 (2)
B4—C1—B6	115.2 (2)	C1'—B5'—B6'	59.35 (19)
B5—C1—B6	61.86 (18)	B9'—B5'—B6'	108.9 (3)
C2—C1—Co3	66.35 (13)	C1'—B5'—B10'	105.0 (2)
B4—C1—Co3	67.52 (14)	B9'—B5'—B10'	60.3 (2)
B5—C1—Co3	124.87 (19)	B6'—B5'—B10'	60.6 (2)
B6—C1—Co3	124.82 (18)	C1'—B5'—B4'	58.00 (18)
C2—C1—H1A	123.1	B9'—B5'—B4'	60.4 (2)
B4—C1—H1A	118.1	B6'—B5'—B4'	109.0 (2)
B5—C1—H1A	115.0	B10'—B5'—B4'	109.1 (2)
B6—C1—H1A	114.5	C1'—B5'—H5'	125.3
Co3—C1—H1A	109.0	B9'—B5'—H5'	122.4
C1—C2—B11	111.8 (2)	B6'—B5'—H5'	120.5
C1—C2—B7	112.6 (2)	B10'—B5'—H5'	121.7
B11—C2—B7	64.05 (18)	B4'—B5'—H5'	121.0
C1—C2—B6	62.08 (17)	C1'—B6'—C2'	56.11 (17)
B11—C2—B6	62.3 (2)	C1'—B6'—B5'	58.21 (19)
В7—С2—В6	116.3 (2)	C2'—B6'—B5'	103.3 (2)
C1—C2—Co3	67.23 (14)	C1'—B6'—B11'	102.6 (3)
B11—C2—Co3	125.4 (2)	C2'—B6'—B11'	57.44 (18)
B7—C2—Co3	67.07 (15)	B5'—B6'—B11'	107.2 (3)
B6—C2—Co3	125.60 (19)	C1'—B6'—B10'	103.6 (2)
C1—C2—H2A	119.1	C2'—B6'—B10'	103.5 (3)
B11—C2—H2A	115.7	B5'—B6'—B10'	59.86 (19)
B7—C2—H2A	121.2	B11'—B6'—B10'	60.1 (2)
B6—C2—H2A	111.4	C1'—B6'—H6'	125.7

Со3—С2—Н2А	109.3	С2'—В6'—Н6'	125.7
C1—B4—B9	104.2 (2)	B5'—B6'—H6'	122.5
C1—B4—B5	58.34 (17)	B11'—B6'—H6'	123.0
B9—B4—B5	59.28 (18)	B10'—B6'—H6'	123.2
C1—B4—B8	105.2 (2)	C2'—B7'—B12'	103.5 (2)
B9—B4—B8	60.32 (19)	C2'—B7'—B11'	57.55 (18)
B5—B4—B8	107.8 (2)	B12'—B7'—B11'	59.8 (2)
C1—B4—Co3	64.39 (13)	C2'—B7'—B8'	104.7 (2)
B9—B4—Co3	118.3 (2)	B12'—B7'—B8'	60.04 (19)
B5—B4—Co3	117.6 (2)	B11'—B7'—B8'	107.9 (2)
B8—B4—Co3	65.27 (15)	C2'—B7'—Co3	63.91 (14)
C1—B4—H4	125.4	B12'—B7'—Co3	117.7 (2)
B9—B4—H4	121.0	B11'—B7'—Co3	116.6 (2)
B5—B4—H4	120.4	B8'—B7'—Co3	65.26 (15)
B8—B4—H4	122.5	C2'—B7'—H7'	126.2
Со3—В4—Н4	111.4	B12'—B7'—H7'	121.1
C1—B5—B9	104.8 (2)	B11'—B7'—H7'	120.6
C1—B5—B6	59.86 (17)	B8'—B7'—H7'	122.5
B9—B5—B6	109.5 (2)	Со3—В7'—Н7'	112.0
C1—B5—B10	105.7 (2)	B12'—B8'—B9'	59.35 (19)
B9—B5—B10	61.12 (19)	B12'—B8'—B7'	59.36 (19)
B6—B5—B10	60.21 (19)	B9'—B8'—B7'	106.4 (2)
C1—B5—B4	58.31 (17)	B12'—B8'—B4'	106.5 (2)
B9—B5—B4	60.17 (18)	B9'—B8'—B4'	59.29 (18)
B6—B5—B4	109.4 (2)	B7'—B8'—B4'	106.5 (2)
B10—B5—B4	109.4 (2)	B12'—B8'—Co3	116.1 (2)
C1—B5—H5	124.7	B9'—B8'—Co3	115.9 (2)
B9—B5—H5	121.8	B7'—B8'—Co3	64.13 (14)
B6—B5—H5	120.4	B4'—B8'—Co3	63.95 (14)
B10—B5—H5	121.5	B12'—B8'—H8'	120.9
B4—B5—H5	121.0	B9'—B8'—H8'	121.1
C1—B6—C2	55.80 (16)	B7'—B8'—H8'	123.2
C1—B6—B5	58.28 (18)	B4'—B8'—H8'	123.2
C2—B6—B5	103.0 (2)	Со3—В8'—Н8'	113.3

C1—B6—B11	103.3 (2)	B5'—B9'—B10'	60.1 (2)
C2—B6—B11	58.00 (18)	B5'—B9'—B12'	108.1 (3)
B5—B6—B11	107.6 (2)	B10'—B9'—B12'	60.3 (2)
C1—B6—B10	104.6 (2)	B5'—B9'—B4'	60.57 (19)
C2—B6—B10	104.0 (2)	B10'—B9'—B4'	109.1 (2)
B5—B6—B10	60.43 (19)	B12'—B9'—B4'	108.3 (2)
B11—B6—B10	60.15 (19)	B5'—B9'—B8'	109.6 (2)
С1—В6—Н6	125.3	B10'—B9'—B8'	109.6 (2)
С2—В6—Н6	125.8	B12'—B9'—B8'	60.18 (19)
B5—B6—H6	122.5	B4'—B9'—B8'	60.80 (18)
B11—B6—H6	122.6	В5'—В9'—Н9'	121.3
B10—B6—H6	122.6	B10'—B9'—H9'	121.0
C2—B7—B12	102.7 (2)	В12'—В9'—Н9'	121.9
C2—B7—B11	57.54 (18)	B4'—B9'—H9'	121.1
B12—B7—B11	59.28 (18)	B8'—B9'—H9'	120.5
С2—В7—В8	103.7 (2)	B5'—B10'—B9'	59.6 (2)
B12—B7—B8	59.59 (19)	B5'—B10'—B11'	106.6 (3)
B11—B7—B8	106.9 (2)	B9'—B10'—B11'	107.2 (3)
С2—В7—Со3	64.02 (14)	B5'—B10'—B12'	107.3 (3)
В12—В7—Со3	117.7 (2)	B9'—B10'—B12'	59.92 (19)
В11—В7—Со3	116.9 (2)	B11'—B10'—B12'	59.9 (2)
B8—B7—Co3	65.39 (15)	B5'—B10'—B6'	59.56 (19)
С2—В7—Н7	126.6	B9'—B10'—B6'	107.5 (2)
B12—B7—H7	121.5	B11'—B10'—B6'	59.5 (2)
B11—B7—H7	120.8	B12'—B10'—B6'	107.8 (3)
B8—B7—H7	123.2	B5'—B10'—H10'	122.5
Со3—В7—Н7	111.6	B9'—B10'—H10'	122.1
N1—B8—B12	114.0 (2)	B11'—B10'—H10'	122.5
N1—B8—B9	118.7 (2)	B12'—B10'—H10'	121.7
B12—B8—B9	60.22 (19)	B6'—B10'—H10'	121.9
N1—B8—B4	128.6 (3)	C2'—B11'—B6'	60.19 (19)
B12—B8—B4	107.0 (2)	C2'—B11'—B12'	104.4 (2)
B9—B8—B4	59.19 (18)	B6'—B11'—B12'	108.7 (2)
N1—B8—B7	120.0 (2)	C2'—B11'—B10'	105.8 (2)

B12—B8—B7	59.78 (18)	B6'—B11'—B10'	60.4 (2)
B9—B8—B7	107.6 (2)	B12'—B11'—B10'	60.2 (2)
B4—B8—B7	106.8 (2)	C2'—B11'—B7'	58.68 (17)
N1—B8—Co3	118.0 (2)	B6'—B11'—B7'	109.9 (2)
В12—В8—Со3	116.37 (19)	B12'—B11'—B7'	59.8 (2)
В9—В8—Со3	116.6 (2)	B10'—B11'—B7'	108.9 (3)
B4—B8—Co3	64.37 (15)	C2'—B11'—H11'	124.4
В7—В8—Со3	63.69 (14)	B6'—B11'—H11'	120.2
B5—B9—B4	60.55 (18)	B12'—B11'—H11'	122.7
B5—B9—B8	108.9 (2)	B10'—B11'—H11'	121.8
B4—B9—B8	60.50 (18)	B7'—B11'—H11'	120.9
B5—B9—B10	59.98 (19)	B9'—B12'—B11'	107.1 (2)
B4—B9—B10	108.8 (2)	B9'—B12'—B7'	108.3 (2)
B8—B9—B10	108.8 (2)	B11'—B12'—B7'	60.38 (19)
B5—B9—B12	107.4 (2)	B9'—B12'—B10'	59.8 (2)
B4—B9—B12	107.7 (2)	B11'—B12'—B10'	59.93 (19)
B8—B9—B12	59.81 (19)	B7'—B12'—B10'	109.1 (3)
B10—B9—B12	59.84 (19)	B9'—B12'—B8'	60.5 (2)
В5—В9—Н9	121.6	B11'—B12'—B8'	108.8 (2)
B4—B9—H9	121.3	B7'—B12'—B8'	60.60 (19)
B8—B9—H9	121.1	B10'—B12'—B8'	109.4 (3)
В10—В9—Н9	121.3	B9'—B12'—H12'	122.2
В12—В9—Н9	122.4	B11'—B12'—H12'	122.0
B6—B10—B11	59.81 (19)	B7'—B12'—H12'	121.1
B6—B10—B5	59.35 (19)	B10'—B12'—H12'	121.1
B11—B10—B5	106.5 (3)	B8'—B12'—H12'	120.7
B6—B10—B12	107.8 (2)	C3—N1—B8	131.7 (2)
B11—B10—B12	59.87 (19)	C3—N1—H1	107.7
B5—B10—B12	106.7 (2)	B8—N1—H1	119.9
B6—B10—B9	107.0 (2)	C3—C4—H4A	109.5
B11—B10—B9	107.4 (2)	C3—C4—H4B	109.5
B5—B10—B9	58.90 (19)	H4A—C4—H4B	109.5
B12—B10—B9	60.12 (18)	C3—C4—H4C	109.5
B6—B10—H10	122.0	Н4А—С4—Н4С	109.5

B11—B10—H10	122.2	Н4В—С4—Н4С	109.5
B5—B10—H10	123.0	C3—N2—C5	126.0 (2)
B12—B10—H10	121.8	C3—N2—H2	111.7
B9—B10—H10	122.2	C5—N2—H2	122.2
C2—B11—B6	59.68 (18)	N2—C3—N1	120.5 (3)
C2—B11—B10	105.2 (2)	N2—C3—C4	120.0 (2)
B6—B11—B10	60.04 (19)	N1—C3—C4	119.5 (3)
C2—B11—B12	104.0 (2)	N2—C5—C6	111.7 (3)
B6—B11—B12	108.5 (2)	N2—C5—H5A	109.3
B10—B11—B12	60.58 (19)	С6—С5—Н5А	109.3
C2—B11—B7	58.41 (17)	N2—C5—H5B	109.3
B6—B11—B7	109.4 (2)	C6—C5—H5B	109.3
B10—B11—B7	109.3 (2)	H5A—C5—H5B	107.9
B12—B11—B7	60.06 (19)	C5—C6—C7	112.5 (3)
C2—B11—H11	125.0	С5—С6—Н6А	109.1
B6—B11—H11	120.6	С7—С6—Н6А	109.1
B10—B11—H11	121.7	С5—С6—Н6В	109.1
B12—B11—H11	122.6	С7—С6—Н6В	109.1
B7—B11—H11	120.8	H6A—C6—H6B	107.8
B11—B12—B8	108.8 (2)	C8—C7—C6	112.4 (3)
B11—B12—B10	59.56 (19)	С8—С7—Н7А	109.1
B8—B12—B10	109.1 (2)	С6—С7—Н7А	109.1
B11—B12—B7	60.66 (18)	С8—С7—Н7В	109.1
B8—B12—B7	60.63 (19)	С6—С7—Н7В	109.1
B10—B12—B7	109.0 (2)	H7A—C7—H7B	107.9
B11—B12—B9	107.1 (2)	С7—С8—Н8А	109.5
B8—B12—B9	59.97 (18)	С7—С8—Н8В	109.5
B10—B12—B9	60.04 (18)	H8A—C8—H8B	109.5
B7—B12—B9	108.1 (2)	С7—С8—Н8С	109.5
B11—B12—H12	121.9	H8A—C8—H8C	109.5
B8—B12—H12	120.9	H8B—C8—H8C	109.5

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(7)

$D_{\rm x} = 1.281 {\rm Mg m}^{-3}$
Melting point: 541 K
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 5708 reflections
$\theta = 1-27.5^{\circ}$
$\mu = 0.76 \text{ mm}^{-1}$
T = 150 (2) K
Cell measurement pressure: 101.3 kPa
Prism, red
$0.55 \times 0.5 \times 0.2 \text{ mm}$

Data collection

Nonius KappaCCD area detector 5178 independent reflections diffractometer Radiation source: fine-focus sealed tube 4476 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.032$ Monochromator: graphite Detector resolution: 9.091 pixels mm⁻¹ $\theta_{max} = 27.5^{\circ}$ T = 150(2) K $\theta_{\min} = 2.1^{\circ}$ $h = -16 \rightarrow 16$ P = 101.3 kPa $k = -15 \rightarrow 15$ φ and ω scans to fill the Ewald sphere Absorption correction: none $l = -38 \rightarrow 38$ 44317 measured reflections

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.091$	$w = 1/[\sigma^2(F_o^2) + (0.0356P)^2 + 4.7024P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
5178 reflections	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
287 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
? constraints	Extinction correction: none
Primary atom site location: structure invariant direct	

Primary atom site location: structure-invariant direct methods

Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	у	Z.	$U_{ m iso}$ */ $U_{ m eq}$
Co3	0.490815 (17)	0.202972 (18)	0.158778 (7)	0.01531 (8)
C1	0.48508 (14)	0.33845 (15)	0.19828 (6)	0.0222 (4)
H1	0.4048	0.3751	0.1939	0.027*
C2	0.50162 (13)	0.22665 (15)	0.22601 (6)	0.0215 (4)
H2	0.4329	0.1834	0.2411	0.026*
B4	0.57549 (16)	0.35016 (17)	0.15532 (7)	0.0231 (4)
H4	0.5620	0.3920	0.1233	0.028*
B5	0.58761 (17)	0.42658 (18)	0.20683 (8)	0.0281 (5)
Н5	0.5797	0.5165	0.2073	0.034*
B6	0.53738 (18)	0.34743 (19)	0.25127 (8)	0.0282 (5)
H6	0.4969	0.3845	0.2803	0.034*
B7	0.60475 (15)	0.14967 (18)	0.20583 (7)	0.0217 (4)
H7	0.6104	0.0596	0.2068	0.026*
B8	0.66169 (15)	0.22970 (18)	0.16036 (7)	0.0210 (4)
B9	0.70142 (17)	0.35862 (19)	0.18395 (7)	0.0263 (4)
H9	0.7692	0.4048	0.1695	0.032*
B10	0.67831 (17)	0.35615 (19)	0.24250 (7)	0.0281 (5)
H10	0.7322	0.3995	0.2657	0.034*
B11	0.61629 (17)	0.22896 (19)	0.25617 (7)	0.0270 (5)
H11	0.6272	0.1893	0.2889	0.032*
B12	0.71870 (16)	0.23400 (19)	0.21528 (7)	0.0249 (4)
H12	0.7983	0.1975	0.2216	0.030*
C1'	0.39748 (14)	0.06456 (15)	0.16158 (6)	0.0218 (4)
H1'	0.4111	0.0270	0.1945	0.026*
C2'	0.32835 (13)	0.17501 (15)	0.15632 (6)	0.0210 (4)
H2'	0.2934	0.2160	0.1857	0.025*
B4'	0.49672 (16)	0.05658 (17)	0.12285 (7)	0.0238 (4)
H4'	0.5747	0.0151	0.1272	0.029*
B5'	0.37580 (17)	-0.02191 (19)	0.11853 (8)	0.0290 (5)
H5'	0.3772	-0.1119	0.1210	0.035*
B6'	0.26827 (16)	0.05325 (18)	0.14120 (7)	0.0250 (4)
H6'	0.2004	0.0135	0.1584	0.030*

B7'	0.37193 (16)	0.25480 (18)	0.11356 (7)	0.0236 (4)
H7'	0.3671	0.3448	0.1119	0.028*
B8'	0.48077 (16)	0.17890 (19)	0.08906 (7)	0.0242 (4)
H8'	0.5471	0.2178	0.0706	0.029*
B9'	0.42582 (17)	0.0497 (2)	0.07121 (8)	0.0301 (5)
H9'	0.4597	0.0062	0.0423	0.036*
B10'	0.28507 (17)	0.04861 (18)	0.08240 (7)	0.0258 (4)
H10'	0.2281	0.0055	0.0604	0.031*
B11'	0.25225 (16)	0.17344 (18)	0.10961 (7)	0.0246 (4)
H11'	0.1724	0.2117	0.1064	0.029*
B12'	0.34778 (17)	0.1729 (2)	0.06572 (7)	0.0285 (5)
H12'	0.3301	0.2104	0.0331	0.034*
N1	0.72313 (12)	0.17851 (14)	0.12164 (5)	0.0259 (3)
C3	0.82638 (14)	0.17146 (16)	0.11021 (6)	0.0251 (4)
C4	0.91270 (15)	0.22218 (18)	0.13821 (7)	0.0310 (4)
H4A	0.8808	0.2725	0.1591	0.046*
H4B	0.9623	0.2609	0.1194	0.046*
H4C	0.9504	0.1658	0.1542	0.046*
N2	0.85516 (12)	0.11870 (15)	0.07307 (5)	0.0299 (4)
C5	0.77663 (16)	0.0715 (2)	0.04176 (6)	0.0348 (5)
H5A	0.8067	0.0735	0.0119	0.042*
H5B	0.7122	0.1165	0.0418	0.042*
C6	0.74567 (19)	-0.0461 (2)	0.05292 (8)	0.0458 (6)
H6A	0.8089	-0.0914	0.0526	0.069*
H6B	0.6952	-0.0726	0.0312	0.069*
H6C	0.7134	-0.0484	0.0820	0.069*
C7	0.96970 (15)	0.0977 (2)	0.06152 (7)	0.0335 (5)
H7A	0.9758	0.0255	0.0481	0.040*
H7B	1.0124	0.0979	0.0887	0.040*
C8	1.01459 (18)	0.1822 (2)	0.02960 (8)	0.0488 (7)
H8A	0.9728	0.1823	0.0026	0.073*
H8B	1.0881	0.1646	0.0227	0.073*
H8C	1.0114	0.2535	0.0432	0.073*
H1A	0.675 (2)	0.139 (2)	0.1030 (8)	0.050 (7)*

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co3	0.01254 (12)	0.01649 (12)	0.01691 (13)	-0.00022 (8)	-0.00131 (8)	-0.00228 (8)
C1	0.0194 (8)	0.0218 (9)	0.0253 (9)	-0.0002 (7)	0.0007 (7)	-0.0069 (7)
C2	0.0200 (8)	0.0264 (9)	0.0180 (8)	-0.0027 (7)	-0.0002 (6)	-0.0020 (7)
B4	0.0211 (9)	0.0220 (10)	0.0261 (10)	-0.0052 (8)	0.0003 (8)	0.0009 (8)
B5	0.0254 (10)	0.0236 (10)	0.0353 (12)	-0.0044 (8)	-0.0016 (9)	-0.0075 (9)
B6	0.0246 (10)	0.0336 (11)	0.0263 (10)	-0.0040 (9)	0.0016 (8)	-0.0107 (9)
B7	0.0188 (9)	0.0248 (10)	0.0216 (10)	0.0005 (8)	-0.0029 (7)	-0.0008 (8)
B8	0.0139 (8)	0.0282 (10)	0.0210 (9)	-0.0010 (7)	0.0008 (7)	-0.0044 (8)
B9	0.0219 (10)	0.0315 (11)	0.0256 (11)	-0.0078 (8)	0.0007 (8)	-0.0057 (9)
B10	0.0222 (10)	0.0350 (12)	0.0271 (11)	-0.0046 (9)	-0.0013 (8)	-0.0124 (9)
B11	0.0215 (10)	0.0381 (12)	0.0213 (10)	-0.0032 (9)	-0.0026 (8)	-0.0035 (9)
B12	0.0190 (9)	0.0332 (12)	0.0224 (10)	-0.0014 (8)	-0.0035 (8)	-0.0054 (9)
C1'	0.0195 (8)	0.0200 (8)	0.0259 (9)	-0.0027 (7)	-0.0036 (7)	0.0009 (7)
C2'	0.0142 (8)	0.0257 (9)	0.0230 (9)	-0.0022 (6)	-0.0003 (6)	-0.0028 (7)
B4'	0.0192 (9)	0.0214 (10)	0.0308 (11)	0.0014 (7)	-0.0029 (8)	-0.0064 (8)
B5'	0.0247 (10)	0.0233 (10)	0.0391 (13)	-0.0017 (8)	-0.0054 (9)	-0.0081 (9)
B6'	0.0202 (10)	0.0246 (10)	0.0302 (11)	-0.0052 (8)	-0.0026 (8)	-0.0017 (9)
B7'	0.0202 (9)	0.0216 (10)	0.0290 (11)	0.0009 (8)	-0.0066 (8)	0.0017 (8)
B8'	0.0199 (9)	0.0346 (11)	0.0182 (9)	-0.0038 (8)	-0.0013 (7)	-0.0006 (8)
B9'	0.0216 (10)	0.0402 (13)	0.0284 (11)	0.0001 (9)	-0.0018 (8)	-0.0149 (10)
B10'	0.0205 (9)	0.0304 (11)	0.0265 (11)	-0.0038 (8)	-0.0027 (8)	-0.0087 (9)
B11'	0.0163 (9)	0.0275 (11)	0.0299 (11)	-0.0007 (8)	-0.0039 (8)	-0.0027 (9)
B12'	0.0237 (10)	0.0383 (12)	0.0235 (11)	-0.0058 (9)	-0.0045 (8)	0.0024 (9)
N1	0.0158 (7)	0.0383 (9)	0.0236 (8)	-0.0023 (6)	0.0004 (6)	-0.0093 (7)
C3	0.0192 (8)	0.0338 (10)	0.0222 (9)	-0.0009 (7)	0.0019 (7)	-0.0010 (8)
C4	0.0181 (9)	0.0442 (12)	0.0306 (10)	-0.0041 (8)	0.0028 (7)	-0.0076 (9)
N2	0.0190 (7)	0.0489 (11)	0.0217 (8)	0.0014 (7)	0.0025 (6)	-0.0072 (7)
C5	0.0257 (10)	0.0587 (14)	0.0198 (9)	0.0045 (9)	-0.0004 (7)	-0.0132 (9)
C6	0.0353 (12)	0.0637 (16)	0.0385 (12)	-0.0062 (11)	0.0022 (10)	-0.0233 (12)
C7	0.0200 (9)	0.0537 (13)	0.0269 (10)	0.0054 (9)	0.0039 (7)	-0.0022 (9)

	C8	0.0297 (11)	0.0797 (19)	0.0369 (13)	0.0085 (11)	0.0082(9)	0.0189 (13)
--	----	-------------	-------------	-------------	-------------	-----------	-------------

Table 3

Geometric parameters (Å, °)

Co3—C1	2.0324 (18)	C2'—B7'	1.696 (3)
Со3—С2	2.0384 (18)	C2'—B6'	1.721 (3)
Co3—C2'	2.0465 (17)	C2'—H2'	1.1000
Co3—C1'	2.0481 (17)	B4'—B9'	1.781 (3)
Co3—B4	2.082 (2)	B4'—B5'	1.784 (3)
Co3—B4'	2.085 (2)	B4'—B8'	1.813 (3)
Со3—В7	2.0995 (19)	B4'—H4'	1.1000
Co3—B7'	2.100 (2)	B5'—B6'	1.755 (3)
Co3—B8'	2.112 (2)	B5'—B9'	1.777 (3)
Со3—В8	2.1464 (19)	B5'—B10'	1.783 (3)
C1—C2	1.609 (3)	B5'—H5'	1.1000
C1—B5	1.685 (3)	B6'—B11'	1.755 (3)
C1—B4	1.713 (3)	B6'—B10'	1.774 (3)
C1—B6	1.718 (3)	В6'—Н6'	1.1000
C1—H1	1.1000	B7'—B12'	1.772 (3)
C2—B11	1.686 (3)	B7'—B11'	1.790 (3)
С2—В7	1.698 (3)	B7'—B8'	1.794 (3)
С2—В6	1.713 (3)	B7'—H7'	1.1000
С2—Н2	1.1000	B8'—B12'	1.794 (3)
B4—B9	1.786 (3)	B8'—B9'	1.797 (3)
B4—B5	1.808 (3)	B8'—H8'	1.1000
B4—B8	1.823 (3)	B9'—B10'	1.779 (3)
B4—H4	1.1000	B9'—B12'	1.794 (3)
B5—B6	1.758 (3)	В9'—Н9'	1.1000
B5—B10	1.774 (3)	B10'—B11'	1.773 (3)
B5—B9	1.775 (3)	B10'—B12'	1.775 (3)
В5—Н5	1.1000	B10'—H10'	1.1000
B6—B11	1.751 (3)	B11'—B12'	1.770 (3)
B6—B10	1.772 (3)	B11'—H11'	1.1000

B6—H6	1.1000	B12'—H12'	1.1000
B7—B12	1.771 (3)	N1—C3	1.329 (2)
B7—B11	1.797 (3)	N1—H1A	0.94 (3)
B7—B8	1.818 (3)	C3—N2	1.334 (2)
B7—H7	1.1000	C3—C4	1.494 (3)
B8—N1	1.522 (2)	C4—H4A	0.9600
B8—B12	1.791 (3)	C4—H4B	0.9600
B8—B9	1.792 (3)	C4—H4C	0.9600
B9—B10	1.777 (3)	N2—C5	1.470 (2)
B9—B12	1.798 (3)	N2—C7	1.485 (2)
В9—Н9	1.1000	C5—C6	1.520 (3)
B10—B12	1.770 (3)	C5—H5A	0.9700
B10—B11	1.778 (3)	С5—Н5В	0.9700
B10—H10	1.1000	С6—Н6А	0.9600
B11—B12	1.766 (3)	С6—Н6В	0.9600
B11—H11	1.1000	С6—Н6С	0.9600
B12—H12	1.1000	С7—С8	1.512 (3)
C1'—C2'	1.604 (2)	С7—Н7А	0.9700
C1'—B5'	1.687 (3)	С7—Н7В	0.9700
C1'—B4'	1.695 (3)	C8—H8A	0.9600
C1'—B6'	1.722 (3)	C8—H8B	0.9600
С1'—Н1'	1.1000	C8—H8C	0.9600
C2'—B11'	1.688 (3)		
C1—Co3—C2	46.55 (7)	B7—B12—H12	120.7
C1—Co3—C2'	96.99 (7)	B8—B12—H12	120.1
C2—Co3—C2'	97.12 (7)	B9—B12—H12	122.6
C1—Co3—C1'	128.71 (7)	C2'—C1'—B5'	111.33 (14)
C2—Co3—C1'	96.51 (7)	C2'—C1'—B4'	111.70 (14)
C2'—Co3—C1'	46.13 (7)	B5'—C1'—B4'	63.70 (12)
C1—Co3—B4	49.20 (8)	C2'—C1'—B6'	62.22 (11)
С2—Со3—В4	83.91 (8)	B5'—C1'—B6'	61.99 (12)
C2'—Co3—B4	129.74 (8)	B4'—C1'—B6'	115.46 (14)
C1'—Co3—B4	175.86 (8)	C2'—C1'—Co3	66.89 (9)
C1—Co3—B4'	175.47 (8)	B5'—C1'—Co3	124.99 (13)

C2—Co3—B4'	128.95 (8)	B4'—C1'—Co3	66.93 (9)
C2'—Co3—B4'	82.73 (8)	B6'—C1'—Co3	125.34 (12)
C1'—Co3—B4'	48.41 (8)	C2'—C1'—H1'	121.3
B4—Co3—B4'	133.95 (8)	B5'—C1'—H1'	116.8
С1—Со3—В7	83.35 (8)	B4'—C1'—H1'	118.5
С2—Со3—В7	48.43 (7)	B6'—C1'—H1'	115.3
C2'—Co3—B7	129.52 (8)	Со3—С1'—Н1'	107.0
C1'—Co3—B7	95.66 (8)	C1'—C2'—B11'	111.79 (14)
B4—Co3—B7	87.70 (8)	C1'—C2'—B7'	112.62 (14)
B4'—Co3—B7	93.32 (8)	B11'—C2'—B7'	63.86 (12)
C1—Co3—B7'	96.11 (8)	C1'—C2'—B6'	62.24 (11)
C2—Co3—B7'	129.84 (8)	B11'—C2'—B6'	61.95 (12)
C2'—Co3—B7'	48.28 (8)	B7'—C2'—B6'	115.70 (14)
C1'—Co3—B7'	82.91 (8)	C1'—C2'—Co3	66.99 (9)
B4—Co3—B7'	93.65 (8)	B11'-C2'-Co3	125.68 (12)
B4'—Co3—B7'	87.09 (8)	B7'—C2'—Co3	67.51 (9)
B7—Co3—B7'	177.70 (8)	B6'—C2'—Co3	125.44 (12)
C1—Co3—B8'	133.33 (8)	C1'—C2'—H2'	120.9
C2—Co3—B8'	179.58 (8)	B11'—C2'—H2'	116.5
C2'—Co3—B8'	83.29 (7)	B7'—C2'—H2'	118.0
C1'—Co3—B8'	83.84 (8)	B6'—C2'—H2'	115.5
B4—Co3—B8'	95.76 (8)	Со3—С2'—Н2'	106.5
B4'—Co3—B8'	51.17 (9)	C1'—B4'—B9'	103.76 (14)
B7—Co3—B8'	131.32 (8)	C1'—B4'—B5'	57.93 (11)
B7'—Co3—B8'	50.42 (8)	B9'—B4'—B5'	59.77 (13)
C1—Co3—B8	84.17 (7)	C1'—B4'—B8'	104.80 (14)
С2—Со3—В8	83.78 (7)	B9'—B4'—B8'	59.99 (13)
C2'—Co3—B8	178.83 (8)	B5'—B4'—B8'	107.97 (15)
C1'—Co3—B8	133.08 (8)	C1'—B4'—Co3	64.67 (9)
B4—Co3—B8	51.05 (8)	B9'—B4'—Co3	118.08 (13)
B4'—Co3—B8	96.12 (8)	B5'—B4'—Co3	117.81 (13)
B7—Co3—B8	50.69 (8)	B8'—B4'—Co3	65.20 (10)
B7'—Co3—B8	131.53 (8)	C1'—B4'—H4'	125.8
B8'—Co3—B8	95.81 (8)	B9'—B4'—H4'	121.1

C2—C1—B5	111.41 (14)	B5'—B4'—H4'	120.2
C2—C1—B4	112.00 (14)	B8'—B4'—H4'	122.7
B5—C1—B4	64.29 (12)	Co3—B4'—H4'	111.3
C2—C1—B6	61.90 (12)	C1'—B5'—B6'	59.98 (12)
B5—C1—B6	62.20 (12)	C1'—B5'—B9'	104.30 (15)
B4—C1—B6	116.15 (14)	B6'—B5'—B9'	108.53 (16)
C2—C1—Co3	66.92 (9)	C1'—B5'—B10'	105.29 (15)
B5—C1—Co3	125.44 (12)	B6'—B5'—B10'	60.19 (12)
B4—C1—Co3	66.90 (9)	B9'—B5'—B10'	59.98 (13)
B6—C1—Co3	125.18 (13)	C1'—B5'—B4'	58.37 (11)
C2—C1—H1	121.4	B6'—B5'—B4'	109.38 (15)
B5—C1—H1	116.3	B9'—B5'—B4'	60.03 (12)
B4—C1—H1	118.0	B10'—B5'—B4'	108.48 (16)
B6—C1—H1	115.3	C1'—B5'—H5'	124.7
Co3—C1—H1	107.0	B6'—B5'—H5'	120.4
C1—C2—B11	111.73 (14)	B9'—B5'—H5'	122.6
C1—C2—B7	112.36 (14)	B10'—B5'—H5'	122.2
B11—C2—B7	64.12 (12)	B4'—B5'—H5'	121.1
C1—C2—B6	62.19 (12)	C2'—B6'—C1'	55.54 (10)
B11—C2—B6	61.99 (13)	C2'—B6'—B11'	58.09 (11)
B7—C2—B6	115.88 (14)	C1'—B6'—B11'	103.29 (14)
C1—C2—Co3	66.53 (9)	C2'—B6'—B5'	102.83 (14)
B11—C2—Co3	125.96 (12)	C1'—B6'—B5'	58.03 (11)
B7—C2—Co3	67.66 (9)	B11'—B6'—B5'	108.26 (16)
B6—C2—Co3	125.08 (13)	C2'—B6'—B10'	103.75 (15)
C1—C2—H2	121.3	C1'—B6'—B10'	104.18 (14)
B11—C2—H2	116.2	B11'—B6'—B10'	60.33 (12)
B7—C2—H2	117.8	B5'—B6'—B10'	60.68 (13)
B6—C2—H2	115.5	C2'—B6'—H6'	126.0
Co3—C2—H2	106.7	C1'—B6'—H6'	125.7
C1—B4—B9	102.57 (14)	B11'—B6'—H6'	122.2
C1—B4—B5	57.09 (11)	B5'—B6'—H6'	122.3
B9—B4—B5	59.20 (12)	B10'—B6'—H6'	122.7
C1—B4—B8	104.79 (14)	C2'—B7'—B12'	103.51 (15)

B9—B4—B8	59.53 (12)	C2'—B7'—B11'	57.84 (11)
B5—B4—B8	107.18 (14)	B12'—B7'—B11'	59.61 (12)
C1—B4—Co3	63.90 (9)	C2'—B7'—B8'	104.67 (14)
B9—B4—Co3	117.89 (13)	B12'—B7'—B8'	60.41 (12)
B5—B4—Co3	116.32 (13)	B11'—B7'—B8'	108.20 (15)
B8—B4—Co3	66.31 (9)	C2'—B7'—Co3	64.21 (9)
C1—B4—H4	126.5	B12'—B7'—Co3	118.09 (13)
B9—B4—H4	121.7	B11'—B7'—Co3	117.33 (13)
B5—B4—H4	121.2	B8'—B7'—Co3	65.14 (9)
B8—B4—H4	122.3	С2'—В7'—Н7'	126.1
Со3—В4—Н4	111.5	B12'—B7'—H7'	121.0
C1—B5—B6	59.82 (12)	B11'—B7'—H7'	120.3
C1—B5—B10	105.22 (16)	B8'—B7'—H7'	122.5
B6—B5—B10	60.24 (13)	Со3—В7'—Н7'	111.6
C1—B5—B9	104.18 (15)	B12'—B8'—B7'	59.17 (12)
B6—B5—B9	108.57 (16)	B12'—B8'—B9'	59.95 (12)
B10—B5—B9	60.10 (12)	B7'—B8'—B9'	106.71 (14)
C1—B5—B4	58.61 (11)	B12'—B8'—B4'	106.53 (15)
B6—B5—B4	109.49 (15)	B7'—B8'—B4'	106.14 (14)
B10—B5—B4	108.51 (15)	B9'—B8'—B4'	59.14 (12)
B9—B5—B4	59.77 (12)	B12'—B8'—Co3	116.43 (13)
C1—B5—H5	124.7	B7'—B8'—Co3	64.44 (9)
B6—B5—H5	120.4	B9'—B8'—Co3	115.99 (13)
B10—B5—H5	122.1	B4'—B8'—Co3	63.63 (9)
B9—B5—H5	122.7	B12'—B8'—H8'	120.7
B4—B5—H5	121.0	B7'—B8'—H8'	123.2
C2—B6—C1	55.92 (11)	B9'—B8'—H8'	120.8
C2—B6—B11	58.24 (12)	B4'—B8'—H8'	123.6
C1—B6—B11	103.68 (14)	Со3—В8'—Н8'	113.2
C2—B6—B5	103.24 (15)	B5'—B9'—B10'	60.18 (13)
C1—B6—B5	57.98 (12)	B5'—B9'—B4'	60.20 (12)
B11—B6—B5	108.52 (15)	B10'—B9'—B4'	108.79 (15)
C2—B6—B10	104.00 (15)	B5'—B9'—B12'	107.20 (15)
C1—B6—B10	103.89 (15)	B10'—B9'—B12'	59.56 (12)

B11—B6—B10	60.63 (13)	B4'—B9'—B12'	107.89 (15)
B5—B6—B10	60.32 (13)	B5'—B9'—B8'	109.02 (15)
С2—В6—Н6	125.7	B10'—B9'—B8'	108.87 (15)
С1—В6—Н6	125.6	B4'—B9'—B8'	60.87 (12)
B11—B6—H6	121.9	B12'—B9'—B8'	59.95 (12)
В5—В6—Н6	122.3	В5'—В9'—Н9'	121.7
В10—В6—Н6	122.9	B10'—B9'—H9'	121.3
C2—B7—B12	102.98 (14)	B4'—B9'—H9'	121.2
C2—B7—B11	57.61 (11)	B12'—B9'—H9'	122.5
B12—B7—B11	59.34 (12)	B8'—B9'—H9'	120.8
С2—В7—В8	105.26 (14)	B11'—B10'—B6'	59.30 (12)
B12—B7—B8	59.86 (11)	B11'—B10'—B12'	59.87 (12)
B11—B7—B8	108.00 (15)	B6'—B10'—B12'	107.68 (15)
С2—В7—Со3	63.90 (9)	B11'—B10'—B9'	107.79 (15)
B12—B7—Co3	117.75 (13)	B6'—B10'—B9'	107.58 (15)
В11—В7—Со3	116.78 (13)	B12'—B10'—B9'	60.64 (13)
B8—B7—Co3	65.99 (9)	B11'—B10'—B5'	106.24 (14)
С2—В7—Н7	126.1	B6'—B10'—B5'	59.14 (12)
В12—В7—Н7	121.6	B12'—B10'—B5'	107.77 (15)
B11—B7—H7	120.6	B9'—B10'—B5'	59.84 (13)
B8—B7—H7	122.0	B11'—B10'—H10'	122.5
Co3H7			
C05—D7—II7	111.6	B6'—B10'—H10'	122.3
N1—B8—B12	111.6 120.91 (15)	B6'—B10'—H10' B12'—B10'—H10'	122.3 121.4
N1—B8—B12 N1—B8—B9	111.6 120.91 (15) 121.47 (15)	B6'—B10'—H10' B12'—B10'—H10' B9'—B10'—H10'	122.3 121.4 121.5
N1—B8—B12 N1—B8—B9 B12—B8—B9	111.6 120.91 (15) 121.47 (15) 60.24 (12)	B6'—B10'—H10' B12'—B10'—H10' B9'—B10'—H10' B5'—B10'—H10'	122.3 121.4 121.5 122.6
N1—B8—B12 N1—B8—B9 B12—B8—B9 N1—B8—B7	111.6 120.91 (15) 121.47 (15) 60.24 (12) 123.07 (16)	B6'—B10'—H10' B12'—B10'—H10' B9'—B10'—H10' B5'—B10'—H10' C2'—B11'—B6'	122.3 121.4 121.5 122.6 59.96 (12)
N1—B8—B12 N1—B8—B9 B12—B8—B9 N1—B8—B7 B12—B8—B7	111.6 120.91 (15) 121.47 (15) 60.24 (12) 123.07 (16) 58.77 (11)	B6'—B10'—H10' B12'—B10'—H10' B9'—B10'—H10' B5'—B10'—H10' C2'—B11'—B6' C2'—B11'—B12'	122.3 121.4 121.5 122.6 59.96 (12) 103.91 (14)
N1—B8—B12 N1—B8—B9 B12—B8—B9 N1—B8—B7 B12—B8—B7 B9—B8—B7	111.6 120.91 (15) 121.47 (15) 60.24 (12) 123.07 (16) 58.77 (11) 106.39 (14)	B6'—B10'—H10' B12'—B10'—H10' B9'—B10'—H10' B5'—B10'—H10' C2'—B11'—B6' C2'—B11'—B12' B6'—B11'—B12'	122.3 121.4 121.5 122.6 59.96 (12) 103.91 (14) 108.74 (16)
N1—B8—B12 N1—B8—B9 B12—B8—B9 N1—B8—B7 B12—B8—B7 B9—B8—B7 N1—B8—B7	111.6 120.91 (15) 121.47 (15) 60.24 (12) 123.07 (16) 58.77 (11) 106.39 (14) 124.14 (16)	B6'—B10'—H10' B12'—B10'—H10' B9'—B10'—H10' B5'—B10'—H10' C2'—B11'—B6' C2'—B11'—B12' B6'—B11'—B12' C2'—B11'—B10'	122.3 121.4 121.5 122.6 59.96 (12) 103.91 (14) 108.74 (16) 105.19 (15)
N1—B8—B12 N1—B8—B9 B12—B8—B9 N1—B8—B7 B12—B8—B7 B9—B8—B7 N1—B8—B4 B12—B8—B4	111.6 120.91 (15) 121.47 (15) 60.24 (12) 123.07 (16) 58.77 (11) 106.39 (14) 124.14 (16) 106.52 (14)	B6'—B10'—H10' B12'—B10'—H10' B9'—B10'—H10' B5'—B10'—H10' C2'—B11'—B6' C2'—B11'—B12' B6'—B11'—B12' C2'—B11'—B10' B6'—B11'—B10'	122.3 121.4 121.5 122.6 59.96 (12) 103.91 (14) 108.74 (16) 105.19 (15) 60.38 (12)
N1—B8—B12 N1—B8—B9 B12—B8—B9 N1—B8—B7 B12—B8—B7 B9—B8—B7 N1—B8—B4 B12—B8—B4 B12—B8—B4 B9—B8—B4	111.6 120.91 (15) 121.47 (15) 60.24 (12) 123.07 (16) 58.77 (11) 106.39 (14) 124.14 (16) 106.52 (14) 59.21 (12)	B6'—B10'—H10' B12'—B10'—H10' B9'—B10'—H10' B5'—B10'—H10' C2'—B11'—B6' C2'—B11'—B12' B6'—B11'—B12' C2'—B11'—B10' B6'—B11'—B10'	122.3 121.4 121.5 122.6 59.96 (12) 103.91 (14) 108.74 (16) 105.19 (15) 60.38 (12) 60.11 (13)
N1—B8—B12 N1—B8—B9 B12—B8—B9 N1—B8—B7 B12—B8—B7 B9—B8—B7 N1—B8—B4 B12—B8—B4 B9—B8—B4 B9—B8—B4 B7—B8—B4	111.6 120.91 (15) 121.47 (15) 60.24 (12) 123.07 (16) 58.77 (11) 106.39 (14) 124.14 (16) 106.52 (14) 59.21 (12) 105.42 (13)	B6'—B10'—H10' B12'—B10'—H10' B9'—B10'—H10' B5'—B10'—H10' C2'—B11'—B6' C2'—B11'—B12' B6'—B11'—B12' C2'—B11'—B10' B6'—B11'—B10' B12'—B11'—B10'	122.3 121.4 121.5 122.6 59.96 (12) 103.91 (14) 108.74 (16) 105.19 (15) 60.38 (12) 60.11 (13) 58.30 (11)
N1—B8—B12 N1—B8—B9 B12—B8—B9 N1—B8—B7 B12—B8—B7 B9—B8—B7 N1—B8—B4 B12—B8—B4 B9—B8—B4 B9—B8—B4 B7—B8—B4 N1—B8—Co3	111.6 120.91 (15) 121.47 (15) 60.24 (12) 123.07 (16) 58.77 (11) 106.39 (14) 124.14 (16) 106.52 (14) 59.21 (12) 105.42 (13) 114.59 (12)	B6'—B10'—H10' B12'—B10'—H10' B9'—B10'—H10' B5'—B10'—H10' C2'—B11'—B6' C2'—B11'—B12' B6'—B11'—B12' B6'—B11'—B10' B12'—B11'—B10' C2'—B11'—B10' B12'—B11'—B7'	122.3 121.4 121.5 122.6 59.96 (12) 103.91 (14) 108.74 (16) 105.19 (15) 60.38 (12) 60.11 (13) 58.30 (11) 109.43 (14)

В9—В8—Со3	114.44 (12)	B10'—B11'—B7'	108.35 (15)
В7—В8—Со3	63.32 (9)	C2'—B11'—H11'	124.9
B4—B8—Co3	62.64 (9)	B6'—B11'—H11'	120.2
B5—B9—B10	59.91 (13)	B12'—B11'—H11'	122.7
B5—B9—B4	61.03 (12)	B10'—B11'—H11'	122.1
B10—B9—B4	109.36 (15)	B7'—B11'—H11'	121.2
B5—B9—B8	110.01 (14)	B11'—B12'—B7'	60.71 (12)
B10—B9—B8	109.25 (15)	B11'—B12'—B10'	60.02 (12)
B4—B9—B8	61.26 (11)	B7'—B12'—B10'	109.11 (15)
B5—B9—B12	106.72 (15)	B11'—B12'—B9'	107.26 (16)
B10—B9—B12	59.34 (12)	B7'—B12'—B9'	107.81 (15)
B4—B9—B12	107.83 (14)	B10'—B12'—B9'	59.80 (13)
B8—B9—B12	59.86 (12)	B11'—B12'—B8'	109.07 (15)
В5—В9—Н9	121.4	B7'—B12'—B8'	60.41 (12)
В10—В9—Н9	121.3	B10'—B12'—B8'	109.19 (16)
B4—B9—H9	120.7	B9'—B12'—B8'	60.10 (12)
B8—B9—H9	120.3	B11'—B12'—H12'	121.6
В12—В9—Н9	123.0	B7'—B12'—H12'	121.2
B12—B10—B6	107.30 (15)	B10'—B12'—H12'	121.1
B12—B10—B5	108.02 (15)	B9'—B12'—H12'	122.5
B6—B10—B5	59.44 (13)	B8'—B12'—H12'	120.8
B12—B10—B9	60.92 (12)	C3—N1—B8	134.90 (16)
B6—B10—B9	107.85 (15)	C3—N1—H1A	114.8 (16)
B5—B10—B9	59.99 (13)	B8—N1—H1A	110.1 (16)
B12—B10—B11	59.71 (12)	N1—C3—N2	120.28 (17)
B6—B10—B11	59.09 (13)	N1—C3—C4	121.33 (17)
B5—B10—B11	106.60 (15)	N2—C3—C4	118.39 (16)
B9—B10—B11	108.17 (15)	C3—C4—H4A	109.5
B12—B10—H10	121.5	C3—C4—H4B	109.5
B6—B10—H10	122.4	H4A—C4—H4B	109.5
B5—B10—H10	122.3	С3—С4—Н4С	109.5
B9—B10—H10	121.1	Н4А—С4—Н4С	109.5
B11—B10—H10	122.5	H4B—C4—H4C	109.5
C2—B11—B6	59.77 (12)	C3—N2—C5	122.90 (16)

C2—B11—B12	103.68 (14)	C3—N2—C7	122.26 (16)
B6—B11—B12	108.40 (16)	C5—N2—C7	114.75 (15)
C2—B11—B10	104.87 (16)	N2—C5—C6	113.34 (18)
B6—B11—B10	60.27 (13)	N2—C5—H5A	108.9
B12—B11—B10	59.90 (12)	С6—С5—Н5А	108.9
C2—B11—B7	58.26 (11)	N2—C5—H5B	108.9
B6—B11—B7	109.17 (15)	C6—C5—H5B	108.9
B12—B11—B7	59.61 (11)	H5A—C5—H5B	107.7
B10—B11—B7	108.07 (15)	С5—С6—Н6А	109.5
C2—B11—H11	125.0	С5—С6—Н6В	109.5
B6—B11—H11	120.4	H6A—C6—H6B	109.5
B12—B11—H11	122.9	С5—С6—Н6С	109.5
B10—B11—H11	122.3	H6A—C6—H6C	109.5
B7—B11—H11	121.4	H6B—C6—H6C	109.5
B11—B12—B10	60.39 (13)	N2—C7—C8	112.50 (18)
B11—B12—B7	61.04 (12)	N2—C7—H7A	109.1
B10—B12—B7	109.60 (14)	С8—С7—Н7А	109.1
B11—B12—B8	110.57 (14)	N2—C7—H7B	109.1
B10—B12—B8	109.62 (15)	С8—С7—Н7В	109.1
B7—B12—B8	61.37 (11)	Н7А—С7—Н7В	107.8
B11—B12—B9	107.78 (15)	С7—С8—Н8А	109.5
B10—B12—B9	59.74 (13)	С7—С8—Н8В	109.5
B7—B12—B9	108.15 (14)	H8A—C8—H8B	109.5
B8—B12—B9	59.90 (12)	С7—С8—Н8С	109.5
B11—B12—H12	120.8	H8A—C8—H8C	109.5
B10—B12—H12	121.0	H8B—C8—H8C	109.5

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(12)

Crystal data $C_{18}H_{36}B_{18}CoN$ $M_r = 519.99$ Monoclinic, $P2_1$

 $D_{\rm x} = 1.285 \text{ Mg m}^{-3}$ Melting point: 556 K Mo *K* α radiation

	$\lambda = 0.71073 \text{ Å}$
Hall symbol: P 2yb	Cell parameters from 5519 reflections
<i>a</i> = 13.6244 (2) Å	$\theta = 1-26.0^{\circ}$
<i>b</i> = 12.4912 (2) Å	$\mu = 0.65 \text{ mm}^{-1}$
<i>c</i> = 16.4535 (3) Å	T = 150 (2) K
$\beta = 106.3098 \ (10)^{\circ}$	Cell measurement pressure: 101.3 kPa
V = 2687.45 (8) Å ³	Plate, red
Z = 4	$0.4 \times 0.4 \times 0.25 \text{ mm}$
$F_{000} = 1072$	

Nonius KappaCCD area detector diffractometer	10583 independent reflections
Radiation source: fine-focus sealed tube	10184 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.044$
Detector resolution: 9.091 pixels mm ⁻¹	$\theta_{\text{max}} = 26.1^{\circ}$
T = 150(2) K	$\theta_{\min} = 1.7^{\circ}$
P = 101.3 kPa	$h = -16 \rightarrow 16$
ϕ and ω scans to fill the Ewald sphere	$k = -15 \rightarrow 15$
Absorption correction: none	$l = -10 \rightarrow 20$
38101 measured reflections	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.085$	$w = 1/[\sigma^2(F_o^2) + (0.0349P)^2 + 2.0205P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
10583 reflections	$\Delta \rho_{\rm max} = 0.48 \ e \ {\rm \AA}^{-3}$
694 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
1 restraint	Extinction correction: none
? constraints	Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.010 (10)

Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	у	z	$U_{ m iso}$ */ $U_{ m eq}$
Co13	-0.02134 (2)	-0.44298 (3)	-0.15698 (2)	0.01691 (8)
C11	-0.1069 (2)	-0.5796 (2)	-0.17573 (18)	0.0219 (6)
H11	-0.0996	-0.6139	-0.1127	0.026*
C12	-0.0125 (2)	-0.5839 (2)	-0.21761 (17)	0.0221 (6)
H12	0.0612	-0.6211	-0.1849	0.026*
B14	-0.1803 (2)	-0.4672 (2)	-0.20403 (19)	0.0215 (6)
H14	-0.2227	-0.4248	-0.1659	0.026*
B15	-0.2204 (2)	-0.5963 (3)	-0.2482 (2)	0.0242 (6)
H15	-0.2869	-0.6362	-0.2361	0.029*
B16	-0.1134 (3)	-0.6712 (2)	-0.2544 (2)	0.0239 (7)
H16	-0.1096	-0.7587	-0.2463	0.029*
B17	-0.0120 (3)	-0.4741 (2)	-0.27961 (19)	0.0209 (6)
H17	0.0556	-0.4361	-0.2912	0.025*
B18	-0.1233 (2)	-0.3993 (2)	-0.27549 (19)	0.0193 (6)
B19	-0.2334 (2)	-0.4842 (3)	-0.3156 (2)	0.0248 (7)
H19	-0.3087	-0.4510	-0.3490	0.030*
B110	-0.1909 (3)	-0.6088 (3)	-0.3464 (2)	0.0246 (6)
H110	-0.2383	-0.6554	-0.3999	0.030*
B111	-0.0550 (3)	-0.6035 (3)	-0.3233 (2)	0.0264 (7)
H111	-0.0130	-0.6477	-0.3608	0.032*
B112	-0.1294 (3)	-0.4882 (3)	-0.3620 (2)	0.0238 (7)
H112	-0.1371	-0.4571	-0.4260	0.029*
C21	0.0763 (2)	-0.4834 (2)	-0.04202 (17)	0.0214 (6)
H21	0.0763	-0.5713	-0.0379	0.026*
C22	-0.0213 (2)	-0.4134 (2)	-0.03493 (16)	0.0214 (6)
H22	-0.0902	-0.4514	-0.0257	0.026*
B24	0.1379 (2)	-0.4258 (2)	-0.10783 (19)	0.0218 (6)
H24	0.1795	-0.4681	-0.1466	0.026*
B25	0.1884 (2)	-0.4222 (3)	0.0052 (2)	0.0255 (7)
H25	0.2600	-0.4637	0.0375	0.031*
B26	0.0856 (3)	-0.4171 (3)	0.0515 (2)	0.0266 (7)
H26	0.0897	-0.4548	0.1128	0.032*
B27	-0.0357 (2)	-0.3004 (2)	-0.09481 (19)	0.0219 (6)

H27	-0.1086	-0.2600	-0.1250	0.026*
B28	0.0693 (2)	-0.3024 (2)	-0.1415 (2)	0.0215 (6)
H28	0.0666	-0.2623	-0.2016	0.026*
B29	0.1852 (2)	-0.3033 (2)	-0.0559 (2)	0.0238 (6)
H29	0.2554	-0.2661	-0.0630	0.029*
B210	0.1531 (3)	-0.2982 (3)	0.0417 (2)	0.0259 (7)
H210	0.2026	-0.2569	0.0972	0.031*
B211	0.0169 (3)	-0.2975 (3)	0.0177 (2)	0.0265 (7)
H211	-0.0234	-0.2571	0.0584	0.032*
B212	0.0774 (2)	-0.2260 (3)	-0.0475 (2)	0.0242 (6)
H212	0.0773	-0.1380	-0.0488	0.029*
N1	-0.13460 (17)	-0.2742 (2)	-0.29684 (14)	0.0219 (5)
C1A	-0.2460 (2)	-0.2393 (2)	-0.3196 (2)	0.0292 (7)
H1A1	-0.2812	-0.2696	-0.3743	0.035*
H1A2	-0.2769	-0.2694	-0.2783	0.035*
C2A	-0.2639 (2)	-0.1204 (2)	-0.32337 (18)	0.0250 (6)
C3A	-0.2590 (2)	-0.0622 (2)	-0.25019 (19)	0.0299 (7)
H3A	-0.2444	-0.0967	-0.1981	0.036*
C4A	-0.2759 (2)	0.0471 (3)	-0.2550 (2)	0.0352 (7)
H4A	-0.2715	0.0859	-0.2059	0.042*
C5A	-0.2992 (2)	0.0991 (2)	-0.3323 (2)	0.0359 (7)
H5A	-0.3112	0.1725	-0.3353	0.043*
C6A	-0.3047 (2)	0.0414 (3)	-0.4047 (2)	0.0350 (7)
H6A	-0.3197	0.0762	-0.4567	0.042*
C7A	-0.2879 (2)	-0.0682 (2)	-0.40073 (19)	0.0301 (7)
H7A	-0.2927	-0.1067	-0.4501	0.036*
C1B	-0.0808 (2)	-0.2430 (2)	-0.36206 (19)	0.0274 (6)
H1B1	-0.1233	-0.2652	-0.4172	0.033*
H1B2	-0.0176	-0.2833	-0.3506	0.033*
C2B	-0.0555 (2)	-0.1252 (2)	-0.36718 (19)	0.0267 (6)
C3B	-0.0223 (2)	-0.0601 (2)	-0.2970 (2)	0.0308 (7)
H3B	-0.0175	-0.0874	-0.2434	0.037*
C4B	0.0040 (2)	0.0461 (3)	-0.3060 (2)	0.0393 (8)
H4B	0.0252	0.0899	-0.2586	0.047*

C5B	-0.0014 (3)	0.0865 (2)	-0.3854 (3)	0.0431 (9)
H5B	0.0154	0.1576	-0.3916	0.052*
C6B	-0.0318 (3)	0.0209 (3)	-0.4551 (3)	0.0430 (9)
H6B	-0.0338	0.0475	-0.5084	0.052*
C7B	-0.0593 (2)	-0.0840 (2)	-0.4466 (2)	0.0320 (7)
H7B	-0.0805	-0.1274	-0.4943	0.038*
Co23	0.38502 (2)	0.22591 (3)	-0.14808 (2)	0.01743 (8)
C31	0.4421 (2)	0.3633 (2)	-0.18378 (17)	0.0216 (6)
H31	0.4942	0.3977	-0.1261	0.026*
C32	0.3196 (2)	0.3653 (2)	-0.20025 (18)	0.0229 (6)
H32	0.2842	0.4017	-0.1545	0.028*
B34	0.4830 (2)	0.2522 (2)	-0.22498 (19)	0.0219 (6)
H34	0.5569	0.2112	-0.2003	0.026*
B35	0.4755 (3)	0.3834 (3)	-0.2742 (2)	0.0253 (7)
H35	0.5446	0.4257	-0.2788	0.030*
B36	0.3722 (3)	0.4541 (3)	-0.2551 (2)	0.0260 (7)
H36	0.3740	0.5416	-0.2467	0.031*
B37	0.2624 (3)	0.2539 (2)	-0.2549 (2)	0.0241 (7)
H37	0.1922	0.2143	-0.2500	0.029*
B38	0.3672 (3)	0.1816 (3)	-0.27615 (19)	0.0221 (6)
B39	0.4254 (3)	0.2688 (3)	-0.3366 (2)	0.0265 (7)
H39	0.4618	0.2365	-0.3832	0.032*
B310	0.3574 (3)	0.3923 (3)	-0.3539 (2)	0.0280 (7)
H310	0.3491	0.4394	-0.4120	0.034*
B311	0.2581 (3)	0.3845 (3)	-0.3036 (2)	0.0282 (7)
H311	0.1852	0.4274	-0.3277	0.034*
B312	0.2900 (3)	0.2695 (3)	-0.3550 (2)	0.0279 (7)
H312	0.2380	0.2376	-0.4137	0.034*
C41	0.4045 (2)	0.2674 (2)	-0.02411 (17)	0.0247 (6)
H41	0.4095	0.3553	-0.0208	0.030*
C42	0.4977 (2)	0.1961 (2)	-0.03832 (17)	0.0214 (6)
H42	0.5685	0.2329	-0.0448	0.026*
B44	0.2884 (2)	0.2118 (3)	-0.0693 (2)	0.0257 (7)
H44	0.2162	0.2554	-0.0950	0.031*

B45	0.3475 (3)	0.2081 (3)	0.0422 (2)	0.0288 (7)
H45	0.3140	0.2508	0.0865	0.035*
B46	0.4813 (3)	0.2008 (3)	0.0619 (2)	0.0274 (7)
H46	0.5346	0.2381	0.1176	0.033*
B47	0.4535 (2)	0.0829 (2)	-0.09480 (19)	0.0216 (6)
H47	0.4906	0.0413	-0.1372	0.026*
B48	0.3162 (2)	0.0877 (2)	-0.1140 (2)	0.0232 (6)
H48	0.2623	0.0482	-0.1683	0.028*
B49	0.2922 (3)	0.0909 (3)	-0.0125 (2)	0.0282 (7)
H49	0.2221	0.0556	-0.0033	0.034*
B410	0.4103 (3)	0.0834 (3)	0.0677 (2)	0.0269 (7)
H410	0.4167	0.0426	0.1282	0.032*
B411	0.5098 (3)	0.0798 (3)	0.0174 (2)	0.0241 (7)
H411	0.5824	0.0380	0.0454	0.029*
B412	0.3937 (3)	0.0105 (3)	-0.0284 (2)	0.0244 (7)
H412	0.3904	-0.0775	-0.0298	0.029*
N2	0.36208 (17)	0.0571 (2)	-0.29825 (14)	0.0219 (4)
C1C	0.4409 (3)	0.0270 (2)	-0.3441 (2)	0.0325 (7)
H1C1	0.4211	0.0603	-0.3996	0.039*
H1C2	0.5061	0.0576	-0.3131	0.039*
C2C	0.4564 (2)	-0.0906 (2)	-0.35572 (19)	0.0266 (6)
C3C	0.4438 (2)	-0.1306 (3)	-0.4369 (2)	0.0356 (7)
H3C	0.4234	-0.0851	-0.4834	0.043*
C4C	0.4616 (3)	-0.2379 (3)	-0.4489 (2)	0.0403 (8)
H4C	0.4531	-0.2639	-0.5034	0.048*
C5C	0.4916 (3)	-0.3065 (3)	-0.3806 (2)	0.0407 (8)
H5C	0.5023	-0.3787	-0.3889	0.049*
C6C	0.5058 (2)	-0.2669 (3)	-0.2995 (2)	0.0375 (7)
H6C	0.5264	-0.3126	-0.2532	0.045*
C7C	0.4894 (2)	-0.1600 (2)	-0.2871 (2)	0.0328 (7)
H7C	0.5006	-0.1338	-0.2324	0.039*
C1D	0.2539 (2)	0.0221 (2)	-0.34392 (19)	0.0284 (6)
H1D1	0.2074	0.0544	-0.3158	0.034*
H1D2	0.2364	0.0499	-0.4013	0.034*

C2D	0.2365 (2)	-0.0974 (2)	-0.34803 (18)	0.0247 (6)
C3D	0.2056 (2)	-0.1462 (2)	-0.42599 (19)	0.0299 (7)
H3D	0.1954	-0.1048	-0.4746	0.036*
C4D	0.1893 (2)	-0.2555 (2)	-0.4336 (2)	0.0354 (7)
H4D	0.1680	-0.2875	-0.4867	0.042*
C5D	0.2051 (2)	-0.3162 (2)	-0.3609 (2)	0.0347 (7)
H5D	0.1966	-0.3901	-0.3652	0.042*
C6D	0.2332 (2)	-0.2690 (3)	-0.2827 (2)	0.0324 (6)
H6D	0.2423	-0.3107	-0.2343	0.039*
C7D	0.2479 (2)	-0.1596 (2)	-0.2753 (2)	0.0311 (7)
H7D	0.2654	-0.1274	-0.2222	0.037*
H1	-0.103 (3)	-0.242 (3)	-0.250 (2)	0.033 (9)*
H2	0.372 (3)	0.020 (3)	-0.251 (2)	0.038 (10)*

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co13	0.01697 (16)	0.01564 (16)	0.01764 (16)	-0.00007 (14)	0.00408 (12)	-0.00062 (14)
C11	0.0226 (13)	0.0185 (13)	0.0239 (14)	-0.0037 (11)	0.0052 (11)	0.0001 (11)
C12	0.0233 (13)	0.0174 (13)	0.0254 (14)	0.0000 (11)	0.0066 (11)	-0.0006 (11)
B14	0.0207 (14)	0.0199 (15)	0.0215 (14)	-0.0021 (11)	0.0022 (11)	0.0009 (11)
B15	0.0231 (15)	0.0222 (16)	0.0250 (16)	-0.0041 (13)	0.0029 (12)	0.0026 (12)
B16	0.0262 (16)	0.0161 (15)	0.0275 (16)	-0.0049 (12)	0.0045 (13)	-0.0008 (12)
B17	0.0268 (16)	0.0176 (15)	0.0189 (14)	-0.0009 (12)	0.0077 (12)	-0.0017 (11)
B18	0.0230 (15)	0.0143 (13)	0.0189 (14)	-0.0014 (12)	0.0029 (12)	-0.0002 (11)
B19	0.0220 (15)	0.0219 (15)	0.0255 (16)	-0.0040 (12)	-0.0016 (13)	0.0020 (12)
B110	0.0264 (16)	0.0207 (14)	0.0248 (15)	-0.0066 (12)	0.0039 (12)	0.0010 (12)
B111	0.0346 (18)	0.0188 (15)	0.0278 (17)	-0.0046 (14)	0.0119 (14)	-0.0041 (13)
B112	0.0311 (17)	0.0189 (14)	0.0217 (16)	-0.0073 (13)	0.0080 (13)	-0.0014 (12)
C21	0.0196 (13)	0.0217 (13)	0.0205 (13)	0.0031 (10)	0.0021 (11)	-0.0002 (10)
C22	0.0210 (13)	0.0252 (15)	0.0186 (13)	0.0019 (11)	0.0067 (10)	0.0005 (10)
B24	0.0188 (14)	0.0223 (16)	0.0226 (14)	0.0030 (12)	0.0034 (11)	-0.0021 (12)
B25	0.0237 (15)	0.0234 (17)	0.0274 (16)	0.0039 (13)	0.0037 (12)	0.0000 (13)
B26	0.0251 (16)	0.0316 (19)	0.0206 (15)	-0.0007 (13)	0.0023 (12)	-0.0032 (13)

B27	0.0210 (15)	0.0214 (16)	0.0219 (15)	-0.0001 (12)	0.0033 (12)	-0.0024 (12)
B28	0.0200 (14)	0.0191 (15)	0.0251 (15)	-0.0017 (11)	0.0058 (12)	-0.0015 (12)
B29	0.0212 (15)	0.0235 (16)	0.0248 (15)	-0.0001 (12)	0.0036 (12)	-0.0026 (12)
B210	0.0291 (16)	0.0238 (17)	0.0223 (15)	0.0007 (13)	0.0028 (13)	-0.0061 (12)
B211	0.0241 (16)	0.0321 (19)	0.0238 (16)	0.0012 (13)	0.0078 (12)	-0.0085 (13)
B212	0.0245 (16)	0.0202 (14)	0.0256 (16)	0.0007 (13)	0.0036 (13)	-0.0045 (12)
N1	0.0246 (11)	0.0185 (11)	0.0213 (11)	-0.0006 (11)	0.0046 (9)	0.0003 (10)
C1A	0.0233 (14)	0.0250 (15)	0.0352 (16)	0.0001 (11)	0.0014 (12)	0.0046 (12)
C2A	0.0209 (13)	0.0211 (14)	0.0303 (15)	0.0003 (11)	0.0029 (11)	0.0013 (11)
C3A	0.0283 (15)	0.0310 (16)	0.0276 (15)	0.0034 (12)	0.0033 (12)	0.0019 (12)
C4A	0.0286 (15)	0.0326 (16)	0.0372 (16)	0.0014 (14)	-0.0024 (12)	-0.0115 (15)
C5A	0.0289 (16)	0.0210 (14)	0.054 (2)	0.0011 (12)	0.0045 (14)	0.0013 (14)
C6A	0.0350 (16)	0.0296 (17)	0.0403 (17)	0.0038 (14)	0.0104 (13)	0.0116 (14)
C7A	0.0335 (16)	0.0287 (15)	0.0265 (15)	0.0062 (13)	0.0058 (12)	-0.0016 (12)
C1B	0.0357 (16)	0.0207 (14)	0.0289 (15)	-0.0020 (11)	0.0144 (13)	0.0030 (11)
C2B	0.0226 (13)	0.0211 (14)	0.0363 (16)	-0.0006 (11)	0.0083 (12)	0.0043 (12)
C3B	0.0292 (16)	0.0233 (15)	0.0386 (17)	0.0001 (12)	0.0076 (13)	0.0030 (12)
C4B	0.0267 (15)	0.0252 (16)	0.064 (2)	-0.0037 (14)	0.0084 (14)	-0.0069 (16)
C5B	0.0306 (17)	0.0179 (15)	0.082 (3)	0.0025 (12)	0.0175 (17)	0.0160 (16)
C6B	0.0363 (18)	0.0355 (18)	0.061 (2)	0.0068 (14)	0.0206 (17)	0.0240 (17)
C7B	0.0299 (16)	0.0277 (16)	0.0395 (17)	0.0001 (13)	0.0116 (13)	0.0068 (13)
Co23	0.01757 (16)	0.01612 (17)	0.01863 (16)	0.00174 (14)	0.00510 (13)	0.00062 (14)
C31	0.0236 (14)	0.0191 (13)	0.0220 (14)	-0.0002 (11)	0.0064 (11)	0.0025 (11)
C32	0.0214 (14)	0.0195 (13)	0.0269 (14)	0.0048 (11)	0.0052 (11)	0.0024 (11)
B34	0.0238 (15)	0.0223 (16)	0.0214 (15)	0.0024 (12)	0.0094 (12)	0.0012 (11)
B35	0.0292 (16)	0.0230 (16)	0.0249 (16)	-0.0004 (13)	0.0097 (13)	0.0015 (13)
B36	0.0286 (17)	0.0194 (15)	0.0284 (17)	0.0006 (13)	0.0055 (13)	0.0020 (13)
B37	0.0231 (15)	0.0179 (16)	0.0278 (17)	0.0026 (12)	0.0016 (13)	0.0002 (12)
B38	0.0271 (16)	0.0194 (15)	0.0190 (15)	-0.0002 (12)	0.0050 (12)	0.0009 (12)
B39	0.0352 (18)	0.0213 (15)	0.0239 (16)	-0.0003 (13)	0.0101 (14)	0.0002 (12)
B310	0.0352 (18)	0.0235 (16)	0.0244 (17)	-0.0007 (15)	0.0068 (14)	0.0025 (13)
B311	0.0274 (17)	0.0193 (15)	0.0332 (19)	0.0000 (14)	0.0007 (14)	0.0023 (14)
B312	0.0333 (18)	0.0208 (15)	0.0251 (17)	0.0025 (14)	0.0006 (14)	0.0018 (13)
C41	0.0330 (16)	0.0232 (13)	0.0205 (14)	0.0048 (12)	0.0117 (12)	-0.0007 (11)

C42	0.0214 (13)	0.0214 (14)	0.0205 (13)	0.0027 (11)	0.0048 (10)	0.0009 (10)
B44	0.0254 (15)	0.0261 (17)	0.0281 (16)	0.0021 (14)	0.0117 (12)	0.0040 (13)
B45	0.0339 (17)	0.0274 (18)	0.0294 (16)	0.0052 (15)	0.0159 (14)	0.0039 (14)
B46	0.0337 (17)	0.0287 (19)	0.0197 (15)	0.0017 (14)	0.0074 (13)	0.0003 (13)
B47	0.0243 (15)	0.0168 (15)	0.0234 (15)	0.0017 (11)	0.0061 (12)	0.0040 (11)
B48	0.0208 (15)	0.0225 (16)	0.0279 (16)	-0.0013 (12)	0.0096 (12)	0.0020 (12)
B49	0.0250 (16)	0.0311 (17)	0.0318 (17)	0.0014 (13)	0.0134 (14)	0.0046 (14)
B410	0.0335 (17)	0.0262 (18)	0.0255 (16)	0.0037 (13)	0.0158 (13)	0.0056 (13)
B411	0.0281 (16)	0.0226 (17)	0.0217 (15)	0.0035 (13)	0.0072 (13)	0.0060 (12)
B412	0.0284 (16)	0.0217 (15)	0.0250 (16)	-0.0008 (13)	0.0106 (13)	0.0025 (13)
N2	0.0254 (11)	0.0177 (11)	0.0215 (11)	0.0007 (11)	0.0051 (9)	-0.0008 (11)
C1C	0.0353 (17)	0.0263 (16)	0.0395 (17)	-0.0015 (12)	0.0167 (14)	-0.0013 (13)
C2C	0.0247 (14)	0.0242 (14)	0.0349 (16)	-0.0009 (12)	0.0151 (12)	-0.0050 (12)
C3C	0.0330 (16)	0.0439 (19)	0.0313 (16)	0.0028 (14)	0.0113 (13)	-0.0038 (14)
C4C	0.0402 (19)	0.0414 (19)	0.0420 (19)	-0.0068 (15)	0.0160 (15)	-0.0188 (15)
C5C	0.0316 (17)	0.0276 (16)	0.069 (2)	-0.0023 (13)	0.0246 (17)	-0.0117 (16)
C6C	0.0324 (16)	0.0316 (16)	0.0533 (19)	0.0003 (15)	0.0196 (14)	0.0039 (16)
C7C	0.0339 (17)	0.0312 (16)	0.0348 (17)	0.0010 (13)	0.0119 (14)	-0.0027 (13)
C1D	0.0281 (15)	0.0221 (14)	0.0296 (15)	0.0001 (11)	-0.0006 (12)	-0.0023 (11)
C2D	0.0258 (14)	0.0181 (13)	0.0298 (15)	-0.0002 (11)	0.0074 (11)	0.0017 (11)
C3D	0.0351 (16)	0.0229 (15)	0.0280 (15)	-0.0008 (12)	0.0027 (13)	0.0025 (12)
C4D	0.0395 (17)	0.0242 (16)	0.0378 (17)	-0.0050 (13)	0.0034 (14)	-0.0071 (13)
C5D	0.0322 (17)	0.0173 (13)	0.056 (2)	-0.0023 (12)	0.0142 (15)	0.0027 (13)
C6D	0.0342 (16)	0.0261 (14)	0.0426 (17)	0.0034 (14)	0.0199 (13)	0.0113 (14)
C7D	0.0347 (17)	0.0310 (16)	0.0292 (16)	0.0037 (13)	0.0114 (13)	0.0014 (13)

Table 4

Geometric parameters (Å, °)

Co13—C11	2.041 (3)	Co23—C32	2.032 (3)
Co13—C22	2.042 (3)	Co23—C31	2.038 (3)
Co13—C12	2.043 (3)	Co23—C41	2.048 (3)
Co13—C21	2.047 (3)	Co23—C42	2.050 (3)
Co13—B27	2.090 (3)	Co23—B37	2.086 (3)

Co13—B17	2.093 (3)	Co23—B47	2.090 (3)
Co13—B24	2.103 (3)	Co23—B44	2.098 (3)
Co13—B14	2.107 (3)	Co23—B34	2.107 (3)
Co13—B28	2.121 (3)	Co23—B48	2.114 (3)
Co13—B18	2.123 (3)	Co23—B38	2.126 (3)
C11—C12	1.621 (4)	C31—C32	1.614 (4)
C11—B15	1.680 (4)	C31—B35	1.692 (4)
C11—B16	1.711 (4)	C31—B34	1.706 (4)
C11—B14	1.711 (4)	C31—B36	1.715 (4)
C11—H11	1.1000	C31—H31	1.1000
C12—B111	1.690 (4)	C32—B311	1.689 (4)
C12—B17	1.711 (4)	C32—B36	1.709 (4)
C12—B16	1.725 (4)	C32—B37	1.719 (4)
C12—H12	1.1000	С32—Н32	1.1000
B14—B19	1.787 (4)	B34—B39	1.795 (4)
B14—B15	1.791 (4)	B34—B38	1.797 (4)
B14—B18	1.794 (4)	B34—B35	1.819 (4)
B14—H14	1.1000	B34—H34	1.1000
B15—B16	1.759 (5)	B35—B36	1.763 (5)
B15—B19	1.765 (4)	B35—B310	1.771 (5)
B15—B110	1.778 (5)	B35—B39	1.783 (5)
B15—H15	1.1000	В35—Н35	1.1000
B16—B110	1.766 (5)	B36—B310	1.760 (5)
B16—B111	1.773 (5)	B36—B311	1.764 (5)
B16—H16	1.1000	B36—H36	1.1000
B17—B112	1.790 (4)	B37—B312	1.799 (5)
B17—B18	1.798 (4)	B37—B38	1.805 (5)
B17—B111	1.799 (4)	B37—B311	1.811 (4)
B17—H17	1.1000	В37—Н37	1.1000
B18—N1	1.599 (4)	B38—N2	1.594 (4)
B18—B112	1.788 (4)	B38—B312	1.796 (4)
B18—B19	1.803 (4)	B38—B39	1.802 (4)
B19—B110	1 783 (5)	B39B310	1 782 (5)
	1.785 (5)	D57 D510	1.762 (3)

B19—H19	1.1000	В39—Н39	1.1000
B110—B112	1.777 (5)	B310—B311	1.775 (5)
B110—B111	1.784 (5)	B310—B312	1.785 (5)
B110—H110	1.1000	B310—H310	1.1000
B111—B112	1.774 (5)	B311—B312	1.782 (5)
B111—H111	1.1000	B311—H311	1.1000
B112—H112	1.1000	В312—Н312	1.1000
C21—C22	1.623 (4)	C41—C42	1.622 (4)
C21—B25	1.689 (4)	C41—B45	1.679 (4)
C21—B24	1.704 (4)	C41—B44	1.696 (4)
C21—B26	1.720 (4)	C41—B46	1.720 (4)
C21—H21	1.1000	C41—H41	1.1000
C22—B211	1.692 (4)	C42—B411	1.700 (4)
C22—B27	1.701 (4)	C42—B47	1.706 (4)
C22—B26	1.727 (4)	C42—B46	1.726 (4)
С22—Н22	1.1000	С42—Н42	1.1000
B24—B29	1.782 (4)	B44—B49	1.769 (5)
B24—B25	1.793 (4)	B44—B45	1.785 (5)
B24—B28	1.808 (4)	B44—B48	1.801 (5)
B24—H24	1.1000	B44—H44	1.1000
B25—B26	1.773 (5)	B45—B46	1.762 (5)
B25—B210	1.777 (4)	B45—B410	1.770 (5)
B25—B29	1.787 (4)	B45—B49	1.772 (5)
B25—H25	1.1000	B45—H45	1.1000
B26—B211	1.768 (5)	B46—B411	1.769 (5)
B26—B210	1.778 (5)	B46—B410	1.774 (5)
B26—H26	1.1000	B46—H46	1.1000
B27—B212	1.781 (4)	B47—B412	1.782 (4)
B27—B211	1.788 (4)	B47—B411	1.790 (4)
B27—B28	1.804 (4)	B47—B48	1.809 (4)
B27—H27	1.1000	B47—H47	1.1000
B28—B212	1.794 (4)	B48—B412	1.788 (4)
B28—B29	1.797 (4)	B48—B49	1.790 (5)
B28—H28	1.1000	B48—H48	1.1000

B29—B210	1.779 (4)	B49—B410	1.773 (5)
B29—B212	1.795 (4)	B49—B412	1.787 (5)
B29—H29	1.1000	B49—H49	1.1000
B210—B212	1.782 (4)	B410—B411	1.776 (5)
B210—B211	1.785 (5)	B410—B412	1.783 (4)
B210—H210	1.1000	B410—H410	1.1000
B211—B212	1.767 (5)	B411—B412	1.774 (5)
B211—H211	1.1000	B411—H411	1.1000
B212—H212	1.1000	B412—H412	1.1000
N1—C1B	1.511 (3)	N2—C1D	1.519 (4)
N1—C1A	1.522 (4)	N2—C1C	1.523 (4)
N1—H1	0.87 (4)	N2—H2	0.89 (4)
C1A—C2A	1.503 (4)	C1C—C2C	1.503 (4)
C1A—H1A1	0.9700	C1C—H1C1	0.9700
C1A—H1A2	0.9700	C1C—H1C2	0.9700
C2A—C7A	1.385 (4)	C2C—C3C	1.391 (4)
C2A—C3A	1.392 (4)	C2C—C7C	1.394 (4)
C3A—C4A	1.382 (5)	C3C—C4C	1.386 (5)
СЗА—НЗА	0.9300	СЗС—НЗС	0.9300
C4A—C5A	1.383 (5)	C4C—C5C	1.381 (5)
C4A—H4A	0.9300	C4C—H4C	0.9300
C5A—C6A	1.377 (5)	C5C—C6C	1.384 (5)
С5А—Н5А	0.9300	C5C—H5C	0.9300
C6A—C7A	1.387 (4)	C6C—C7C	1.379 (5)
С6А—Н6А	0.9300	С6С—Н6С	0.9300
С7А—Н7А	0.9300	C7C—H7C	0.9300
C1B—C2B	1.519 (4)	C1D—C2D	1.511 (4)
C1B—H1B1	0.9700	C1D—H1D1	0.9700
C1B—H1B2	0.9700	C1D—H1D2	0.9700
С2В—С3В	1.380 (4)	C2D—C3D	1.375 (4)
С2В—С7В	1.392 (4)	C2D—C7D	1.398 (4)
C3B—C4B	1.393 (4)	C3D—C4D	1.384 (4)
СЗВ—НЗВ	0.9300	C3D—H3D	0.9300
C4B—C5B	1.382 (5)	C4D—C5D	1.381 (5)

C4B—H4B	0.9300	C4D—H4I	0.9300	
C5B—C6B	1.375 (5)	C5D—C6I	0 1.369 (5)	
C5B—H5B	0.9300	C5D—H5I	0.9300	
C6B—C7B	1.382 (4)	C6D—C7I	D 1.382 (5)	
C6B—H6B	0.9300	C6D—H6I	0.9300	
С7В—Н7В	0.9300	C7D—H7I	0.9300	
C11—Co13—C	222 98.	20 (11)	C32—Co23—C31	46.72 (11)
C11—Co13—C	C12 46.	77 (11)	C32—Co23—C41	97.03 (11)
C22—Co13—C	C12 13	0.71 (11)	C31—Co23—C41	96.92 (11)
C11—Co13—C	221 97.	40 (11)	C32—Co23—C42	131.23 (11)
C22—Co13—C	C21 46	78 (11)	C31—Co23—C42	98.92 (11)
C12—Co13—C	C21 97.	26 (11)	C41—Co23—C42	46.63 (11)
C11—Co13—I	327 13	1.18 (12)	C32—Co23—B37	49.32 (11)
C22—Co13—I	3 27 48.	59 (11)	C31—Co23—B37	84.02 (12)
C12—Co13—I	3 27 17	7.90 (12)	C41—Co23—B37	130.21 (13)
C21—Co13—I	827 83.	34 (11)	C42—Co23—B37	175.78 (13)
C11—Co13—I	817 83.	44 (12)	C32—Co23—B47	179.47 (13)
C22—Co13—H	317 17	6.63 (12)	C31—Co23—B47	132.78 (12)
C12—Co13—I	317 48.	84 (11)	C41—Co23—B47	83.17 (12)
C21—Co13—I	317 13	0.18 (12)	C42—Co23—B47	48.65 (11)
B27—Co13—I	317 132	2.01 (12)	B37—Co23—B47	130.85 (12)
C11—Co13—I	324 12	8.86 (12)	C32—Co23—B44	93.21 (12)
C22—Co13—H	824 83.	56 (11)	C31—Co23—B44	127.24 (12)
C12—Co13—I	3 24 94.	59 (11)	C41—Co23—B44	48.28 (12)
C21—Co13—H	324 48	47 (11)	C42—Co23—B44	83.42 (12)
B27—Co13—I	324 87.	31 (12)	B37—Co23—B44	92.39 (13)
B17—Co13—I	3 24 93.	12 (12)	B47—Co23—B44	87.29 (13)
C11—Co13—I	B 14 48.	70 (11)	C32—Co23—B34	83.67 (12)
C22—Co13—H	314 95.	96 (11)	C31—Co23—B34	48.58 (11)
C12—Co13—H	814 83.	82 (11)	C41—Co23—B34	129.18 (12)
C21—Co13—I	314 12	9.68 (12)	C42—Co23—B34	96.49 (12)
B27—Co13—I	314 94	24 (12)	B37—Co23—B34	87.72 (13)
B17—Co13—I	B 14 8 7.	34 (13)	B47—Co23—B34	95.82 (12)
B24—Co13—I	314 17	7.46 (12)	B44—Co23—B34	175.78 (13)

C11—Co13—B28	177.90 (12)	C32—Co23—B48	129.55 (12)
C22—Co13—B28	83.83 (12)	C31—Co23—B48	176.27 (12)
C12—Co13—B28	131.31 (11)	C41—Co23—B48	83.45 (12)
C21—Co13—B28	83.57 (12)	C42—Co23—B48	84.05 (12)
B27—Co13—B28	50.72 (12)	B37—Co23—B48	92.90 (13)
B17—Co13—B28	94.51 (12)	B47—Co23—B48	50.95 (12)
B24—Co13—B28	50.68 (12)	B44—Co23—B48	50.63 (12)
B14—Co13—B28	131.79 (11)	B34—Co23—B48	133.58 (12)
C11—Co13—B18	82.96 (11)	C32—Co23—B38	83.68 (12)
C22—Co13—B18	132.54 (12)	C31—Co23—B38	83.12 (12)
C12—Co13—B18	83.46 (11)	C41—Co23—B38	179.07 (13)
C21—Co13—B18	179.26 (12)	C42—Co23—B38	132.44 (12)
B27—Co13—B18	95.93 (12)	B37—Co23—B38	50.73 (13)
B17—Co13—B18	50.48 (12)	B47—Co23—B38	96.11 (12)
B24—Co13—B18	131.70 (12)	B44—Co23—B38	132.35 (13)
B14—Co13—B18	50.17 (12)	B34—Co23—B38	50.24 (12)
B28—Co13—B18	96.09 (12)	B48—Co23—B38	96.57 (12)
C12—C11—B15	112.1 (2)	C32—C31—B35	111.8 (2)
C12—C11—B16	62.28 (18)	C32—C31—B34	112.5 (2)
B15—C11—B16	62.51 (18)	B35—C31—B34	64.73 (18)
C12—C11—B14	112.6 (2)	C32—C31—B36	61.70 (18)
B15—C11—B14	63.74 (18)	B35—C31—B36	62.32 (18)
B16—C11—B14	116.2 (2)	B34—C31—B36	116.6 (2)
C12—C11—Co13	66.69 (13)	C32—C31—Co23	66.46 (14)
B15-C11-Co13	125.73 (19)	B35—C31—Co23	126.66 (19)
B16-C11-Co13	125.41 (19)	B34—C31—Co23	67.82 (14)
B14-C11-Co13	67.66 (13)	B36—C31—Co23	124.79 (19)
C12—C11—H11	121.0	C32—C31—H31	121.7
B15—C11—H11	116.2	B35—C31—H31	115.7
B16—C11—H11	115.1	B34—C31—H31	117.2
B14—C11—H11	117.8	B36—C31—H31	115.6
Co13—C11—H11	106.7	Co23—C31—H31	106.6
C11—C12—B111	111.1 (2)	C31—C32—B311	111.6 (2)
C11—C12—B17	111.3 (2)	C31—C32—B36	62.07 (18)

B111—C12—B17	63.89 (17)	B311—C32—B36	62.55 (19)
C11—C12—B16	61.40 (17)	C31—C32—B37	111.8 (2)
B111—C12—B16	62.54 (18)	B311—C32—B37	64.20 (18)
B17—C12—B16	115.7 (2)	B36—C32—B37	116.4 (2)
C11—C12—Co13	66.53 (13)	C31—C32—Co23	66.82 (13)
B111—C12—Co13	125.26 (18)	B311—C32—Co23	125.60 (19)
B17-C12-Co13	67.10 (13)	B36—C32—Co23	125.46 (19)
B16-C12-Co13	124.44 (19)	B37—C32—Co23	66.97 (14)
C11—C12—H12	122.0	С31—С32—Н32	121.5
B111—C12—H12	116.3	B311—C32—H32	116.2
B17—C12—H12	118.3	В36—С32—Н32	114.9
B16—C12—H12	115.6	В37—С32—Н32	118.1
Co13—C12—H12	107.2	Со23—С32—Н32	106.9
C11—B14—B19	102.6 (2)	C31—B34—B39	102.4 (2)
C11—B14—B15	57.27 (16)	C31—B34—B38	104.1 (2)
B19—B14—B15	59.10 (17)	B39—B34—B38	60.23 (18)
C11—B14—B18	103.8 (2)	C31—B34—B35	57.25 (16)
B19—B14—B18	60.47 (17)	B39—B34—B35	59.12 (17)
B15—B14—B18	107.4 (2)	B38—B34—B35	107.5 (2)
C11—B14—Co13	63.63 (13)	C31—B34—Co23	63.60 (13)
B19—B14—Co13	118.2 (2)	B39—B34—Co23	117.6 (2)
B15—B14—Co13	116.31 (19)	B38—B34—Co23	65.42 (14)
B18—B14—Co13	65.39 (14)	B35—B34—Co23	116.20 (18)
C11—B14—H14	126.9	С31—В34—Н34	126.8
B19—B14—H14	121.1	B39—B34—H34	121.5
B15—B14—H14	121.1	B38—B34—H34	122.5
B18—B14—H14	122.6	B35—B34—H34	121.0
Co13—B14—H14	111.8	Co23—B34—H34	112.0
C11—B15—B16	59.61 (17)	C31—B35—B36	59.50 (17)
C11—B15—B19	104.9 (2)	C31—B35—B310	104.4 (2)
B16—B15—B19	108.9 (2)	B36—B35—B310	59.75 (19)
C11—B15—B110	105.0 (2)	C31—B35—B39	103.5 (2)
B16—B15—B110	59.91 (19)	B36—B35—B39	108.1 (2)
B19—B15—B110	60.43 (19)	B310—B35—B39	60.17 (19)

C11—B15—B14	58.99 (16)	C31—B35—B34	58.01 (16)
B16—B15—B14	109.8 (2)	B36—B35—B34	108.7 (2)
B19—B15—B14	60.35 (17)	B310—B35—B34	108.2 (2)
B110—B15—B14	109.1 (2)	B39—B35—B34	59.77 (17)
C11—B15—H15	124.7	С31—В35—Н35	125.3
B16—B15—H15	120.5	B36—B35—H35	120.9
B19—B15—H15	122.1	B310—B35—H35	122.4
B110—B15—H15	122.2	B39—B35—H35	122.8
B14—B15—H15	120.5	B34—B35—H35	121.4
C11—B16—C12	56.31 (16)	C32—B36—C31	56.24 (16)
C11—B16—B15	57.88 (17)	C32—B36—B310	104.2 (2)
C12—B16—B15	103.6 (2)	C31—B36—B310	103.8 (2)
C11—B16—B110	104.2 (2)	C32—B36—B35	104.0 (2)
C12—B16—B110	104.3 (2)	C31—B36—B35	58.18 (17)
B15—B16—B110	60.58 (19)	B310—B36—B35	60.36 (19)
C11—B16—B111	103.2 (2)	C32—B36—B311	58.16 (18)
C12—B16—B111	57.77 (17)	C31—B36—B311	103.5 (2)
B15—B16—B111	108.2 (2)	B310—B36—B311	60.5 (2)
B110—B16—B111	60.55 (19)	B35—B36—B311	108.5 (2)
C11—B16—H16	125.6	С32—В36—Н36	125.2
C12—B16—H16	125.4	С31—В36—Н36	125.6
B15—B16—H16	122.2	B310—B36—H36	122.9
B110—B16—H16	122.6	B35—B36—H36	121.9
B111—B16—H16	122.4	B311—B36—H36	122.1
C12—B17—B112	102.7 (2)	C32—B37—B312	102.2 (2)
C12—B17—B18	104.5 (2)	C32—B37—B38	103.9 (2)
B112—B17—B18	59.77 (18)	B312—B37—B38	59.79 (18)
C12—B17—B111	57.49 (16)	C32—B37—B311	57.10 (17)
B112—B17—B111	59.22 (18)	B312—B37—B311	59.14 (19)
B18—B17—B111	107.4 (2)	B38—B37—B311	107.1 (2)
C12—B17—Co13	64.06 (13)	С32—В37—Со23	63.71 (14)
B112—B17—Co13	117.7 (2)	B312—B37—Co23	117.7 (2)
B18—B17—Co13	65.63 (14)	B38—B37—Co23	65.77 (14)
B111—B17—Co13	116.83 (19)	B311—B37—Co23	116.29 (19)

C12—B17—H17	126.4	С32—В37—Н37	127.0
B112—B17—H17	121.6	B312—B37—H37	121.6
B18—B17—H17	122.6	B38—B37—H37	122.7
B111—B17—H17	120.8	B311—B37—H37	121.1
Co13—B17—H17	111.6	Со23—В37—Н37	111.7
N1—B18—B112	116.8 (2)	N2—B38—B312	116.9 (2)
N1—B18—B14	125.0 (2)	N2—B38—B34	124.2 (2)
B112—B18—B14	107.2 (2)	B312—B38—B34	107.3 (2)
N1—B18—B17	122.0 (2)	N2—B38—B39	117.5 (2)
B112—B18—B17	59.90 (17)	B312—B38—B39	59.43 (19)
B14—B18—B17	107.7 (2)	B34—B38—B39	59.83 (18)
N1—B18—B19	118.4 (2)	N2—B38—B37	123.1 (2)
B112—B18—B19	59.73 (18)	B312—B38—B37	59.96 (19)
B14—B18—B19	59.58 (17)	B34—B38—B37	107.6 (2)
B17—B18—B19	107.7 (2)	B39—B38—B37	107.4 (2)
N1—B18—Co13	116.77 (18)	N2—B38—Co23	117.76 (19)
B112—B18—Co13	116.30 (19)	B312—B38—Co23	115.9 (2)
B14—B18—Co13	64.44 (13)	B34—B38—Co23	64.33 (14)
B17—B18—Co13	63.88 (14)	B39—B38—Co23	116.37 (19)
B19—B18—Co13	116.58 (18)	B37—B38—Co23	63.50 (14)
B15—B19—B110	60.17 (18)	B310—B39—B35	59.59 (18)
B15—B19—B14	60.55 (17)	B310—B39—B312	60.10 (19)
B110—B19—B14	109.0 (2)	B35—B39—B312	107.7 (2)
B15—B19—B112	107.1 (2)	B310—B39—B34	108.8 (2)
B110—B19—B112	59.69 (18)	B35—B39—B34	61.12 (18)
B14—B19—B112	107.5 (2)	B312—B39—B34	107.9 (2)
B15—B19—B18	108.1 (2)	B310—B39—B38	108.8 (2)
B110—B19—B18	108.3 (2)	B35—B39—B38	108.9 (2)
B14—B19—B18	59.94 (17)	B312—B39—B38	60.12 (18)
B112—B19—B18	59.72 (17)	B34—B39—B38	59.95 (17)
B15—B19—H19	121.8	В310—В39—Н39	121.4
B110—B19—H19	121.2	В35—В39—Н39	121.4
B14—B19—H19	121.3	В312—В39—Н39	122.0
B112—B19—H19	122.5	B34—B39—H39	121.2

B18—B19—H19	121.7	B38—B39—H39	121.2
B16—B110—B112	107.7 (2)	B36—B310—B35	59.89 (19)
B16—B110—B15	59.51 (19)	B36—B310—B311	59.87 (19)
B112—B110—B15	107.0 (2)	B35—B310—B311	107.7 (2)
B16—B110—B19	107.8 (2)	B36—B310—B39	108.2 (2)
B112—B110—B19	60.30 (19)	B35—B310—B39	60.24 (19)
B15—B110—B19	59.40 (19)	B311—B310—B39	108.0 (2)
B16—B110—B111	59.90 (19)	B36—B310—B312	108.1 (2)
B112—B110—B111	59.74 (19)	B35—B310—B312	108.1 (2)
B15—B110—B111	106.8 (2)	B311—B310—B312	60.05 (19)
B19—B110—B111	107.9 (2)	B39—B310—B312	60.01 (19)
B16—B110—H110	121.8	B36—B310—H310	121.7
B112—B110—H110	121.9	B35—B310—H310	121.8
B15—B110—H110	122.7	В311—В310—Н310	121.9
B19—B110—H110	121.6	B39—B310—H310	121.6
B111—B110—H110	122.1	B312—B310—H310	121.6
C12—B111—B16	59.69 (17)	C32—B311—B36	59.29 (18)
C12—B111—B112	104.3 (2)	C32—B311—B310	104.5 (2)
B16—B111—B112	107.6 (2)	B36—B311—B310	59.65 (19)
C12—B111—B110	105.0 (2)	C32—B311—B312	104.1 (2)
B16—B111—B110	59.55 (19)	B36—B311—B312	108.1 (2)
B112—B111—B110	59.93 (19)	B310—B311—B312	60.3 (2)
C12—B111—B17	58.62 (17)	C32—B311—B37	58.71 (17)
B16—B111—B17	109.1 (2)	B36—B311—B37	109.2 (2)
B112—B111—B17	60.14 (18)	B310—B311—B37	108.7 (2)
B110—B111—B17	108.6 (2)	B312—B311—B37	60.10 (19)
C12—B111—H111	124.6	С32—В311—Н311	125.1
B16—B111—H111	121.1	B36—B311—H311	121.0
B112—B111—H111	122.8	B310—B311—H311	122.3
B110—B111—H111	122.3	B312—B311—H311	122.6
B17—B111—H111	120.9	B37—B311—H311	120.8
B111—B112—B110	60.33 (19)	B311—B312—B39	107.6 (2)
B111—B112—B18	109.0 (2)	B311—B312—B310	59.7 (2)
B110—B112—B18	109.3 (2)	B39—B312—B310	59.89 (19)

B111—B112—B19	108.1 (2)	B311—B312—B38	108.8 (2)
B110—B112—B19	60.01 (19)	B39—B312—B38	60.45 (18)
B18—B112—B19	60.55 (18)	B310—B312—B38	108.9 (2)
B111—B112—B17	60.64 (18)	B311—B312—B37	60.76 (19)
B110—B112—B17	109.4 (2)	B39—B312—B37	108.4 (2)
B18—B112—B17	60.34 (17)	B310—B312—B37	108.8 (2)
B19—B112—B17	108.7 (2)	B38—B312—B37	60.25 (18)
B111—B112—H112	121.4	B311—B312—H312	121.7
B110—B112—H112	121.0	B39—B312—H312	121.9
B18—B112—H112	120.9	B310—B312—H312	121.5
B19—B112—H112	121.7	B38—B312—H312	121.0
B17—B112—H112	121.0	B37—B312—H312	121.1
C22—C21—B25	112.1 (2)	C42—C41—B45	112.0 (2)
C22—C21—B24	112.2 (2)	C42—C41—B44	112.5 (2)
B25—C21—B24	63.79 (18)	B45—C41—B44	63.86 (19)
C22—C21—B26	62.12 (17)	C42—C41—B46	62.12 (18)
B25—C21—B26	62.66 (18)	B45—C41—B46	62.45 (19)
B24—C21—B26	116.0 (2)	B44—C41—B46	116.1 (2)
C22—C21—Co13	66.43 (13)	C42—C41—Co23	66.73 (14)
B25-C21-Co13	125.62 (19)	B45—C41—Co23	125.5 (2)
B24—C21—Co13	67.48 (13)	B44—C41—Co23	67.40 (14)
B26—C21—Co13	124.96 (18)	B46—C41—Co23	125.13 (19)
C22—C21—H21	121.3	C42—C41—H41	121.0
B25—C21—H21	116.0	B45—C41—H41	116.2
B24—C21—H21	118.0	B44—C41—H41	117.9
B26—C21—H21	115.2	B46—C41—H41	115.3
Co13—C21—H21	107.0	Co23—C41—H41	106.9
C21—C22—B211	111.0 (2)	C41—C42—B411	110.6 (2)
C21—C22—B27	111.7 (2)	C41—C42—B47	111.3 (2)
B211—C22—B27	63.61 (18)	B411—C42—B47	63.40 (17)
C21—C22—B26	61.70 (17)	C41—C42—B46	61.73 (18)
B211—C22—B26	62.28 (18)	B411—C42—B46	62.16 (18)
B27—C22—B26	115.7 (2)	B47—C42—B46	115.3 (2)
C21—C22—Co13	66.79 (13)	C41—C42—Co23	66.64 (14)

B211—C22—Co13	124.99 (18)	B411—C42—Co23	124.43 (18)
B27—C22—Co13	67.19 (14)	B47—C42—Co23	66.92 (13)
B26—C22—Co13	124.91 (18)	B46—C42—Co23	124.69 (19)
C21—C22—H22	121.7	C41—C42—H42	121.8
B211—C22—H22	116.8	B411—C42—H42	117.1
B27—C22—H22	118.3	В47—С42—Н42	118.6
B26—C22—H22	115.5	B46—C42—H42	115.5
Со13—С22—Н22	107.0	Со23—С42—Н42	107.4
C21—B24—B29	103.5 (2)	C41—B44—B49	103.4 (2)
C21—B24—B25	57.69 (17)	C41—B44—B45	57.60 (17)
B29—B24—B25	59.98 (17)	B49—B44—B45	59.79 (19)
C21—B24—B28	104.5 (2)	C41—B44—B48	104.7 (2)
B29—B24—B28	60.07 (17)	B49—B44—B48	60.19 (18)
B25—B24—B28	108.2 (2)	B45—B44—B48	108.2 (2)
C21—B24—Co13	64.05 (13)	C41—B44—Co23	64.33 (14)
B29—B24—Co13	117.83 (18)	B49—B44—Co23	117.9 (2)
B25—B24—Co13	117.09 (19)	B45—B44—Co23	117.19 (19)
B28—B24—Co13	65.16 (13)	B48—B44—Co23	65.14 (14)
C21—B24—H24	126.2	C41—B44—H44	126.1
B29—B24—H24	121.0	B49—B44—H44	121.1
B25—B24—H24	120.2	B45—B44—H44	120.3
B28—B24—H24	122.6	B48—B44—H44	122.5
Co13—B24—H24	111.8	Со23—В44—Н44	111.7
C21—B25—B26	59.53 (17)	C41—B45—B46	59.91 (18)
C21—B25—B210	104.7 (2)	C41—B45—B410	105.1 (2)
B26—B25—B210	60.13 (18)	B46—B45—B410	60.28 (19)
C21—B25—B29	103.9 (2)	C41—B45—B49	104.0 (2)
B26—B25—B29	108.3 (2)	B46—B45—B49	108.7 (2)
B210—B25—B29	59.91 (18)	B410—B45—B49	60.10 (19)
C21—B25—B24	58.52 (17)	C41—B45—B44	58.54 (18)
B26—B25—B24	109.1 (2)	B46—B45—B44	109.6 (2)
B210—B25—B24	108.1 (2)	B410—B45—B44	108.3 (2)
B29—B25—B24	59.70 (17)	B49—B45—B44	59.65 (19)
C21—B25—H25	124.9	C41—B45—H45	124.8

B26—B25—H25	120.6	B46—B45—H45	120.2
B210—B25—H25	122.4	B410—B45—H45	122.2
B29—B25—H25	122.8	B49—B45—H45	122.7
B24—B25—H25	121.3	B44—B45—H45	121.1
C21—B26—C22	56.18 (16)	C41—B46—C42	56.16 (16)
C21—B26—B211	103.1 (2)	C41—B46—B45	57.64 (18)
C22—B26—B211	57.88 (17)	C42—B46—B45	103.4 (2)
C21—B26—B25	57.81 (17)	C41—B46—B411	103.1 (2)
C22—B26—B25	103.5 (2)	C42—B46—B411	58.20 (17)
B211—B26—B25	107.9 (2)	B45—B46—B411	107.7 (2)
C21—B26—B210	103.4 (2)	C41—B46—B410	103.3 (2)
C22—B26—B210	103.9 (2)	C42—B46—B410	104.0 (2)
B211—B26—B210	60.45 (19)	B45—B46—B410	60.07 (19)
B25—B26—B210	60.03 (18)	B411—B46—B410	60.16 (18)
C21—B26—H26	125.9	C41—B46—H46	126.0
C22—B26—H26	125.5	C42—B46—H46	125.3
B211—B26—H26	122.4	B45—B46—H46	122.5
B25—B26—H26	122.4	B411—B46—H46	122.4
B210—B26—H26	123.1	B410—B46—H46	123.2
C22—B27—B212	103.6 (2)	C42—B47—B412	103.8 (2)
C22—B27—B211	57.96 (17)	C42—B47—B411	58.15 (16)
B212—B27—B211	59.37 (18)	B412—B47—B411	59.56 (18)
C22—B27—B28	105.0 (2)	C42—B47—B48	104.9 (2)
B212—B27—B28	60.07 (17)	B412—B47—B48	59.73 (17)
B211—B27—B28	107.8 (2)	B411—B47—B48	107.7 (2)
C22—B27—Co13	64.21 (13)	C42—B47—Co23	64.43 (13)
B212—B27—Co13	118.05 (19)	B412—B47—Co23	117.65 (19)
B211—B27—Co13	117.29 (19)	B411—B47—Co23	117.55 (18)
B28—B27—Co13	65.52 (13)	B48—B47—Co23	65.19 (14)
С22—В27—Н27	125.8	С42—В47—Н47	125.6
B212—B27—H27	121.2	B412—B47—H47	121.3
B211—B27—H27	120.5	B411—B47—H47	120.3
B28—B27—H27	122.4	B48—B47—H47	122.8
Co13—B27—H27	111.5	Со23—В47—Н47	111.6

B212—B28—B29	59.98 (17)	B412—B48—B49	59.92 (18)
B212—B28—B27	59.33 (17)	B412—B48—B44	106.7 (2)
B29—B28—B27	107.1 (2)	B49—B48—B44	59.02 (17)
B212—B28—B24	106.7 (2)	B412—B48—B47	59.40 (17)
B29—B28—B24	59.25 (16)	B49—B48—B47	106.8 (2)
B27—B28—B24	106.6 (2)	B44—B48—B47	106.4 (2)
B212—B28—Co13	115.89 (19)	B412—B48—Co23	116.20 (19)
B29—B28—Co13	116.25 (18)	B49—B48—Co23	116.10 (19)
B27—B28—Co13	63.76 (13)	B44—B48—Co23	64.24 (14)
B24—B28—Co13	64.16 (13)	B47—B48—Co23	63.86 (13)
B212—B28—H28	120.8	B412—B48—H48	120.6
B29—B28—H28	120.5	B49—B48—H48	120.8
B27—B28—H28	123.2	B44—B48—H48	123.3
B24—B28—H28	123.2	B47—B48—H48	123.3
Co13—B28—H28	113.4	Co23—B48—H48	113.3
B210—B29—B24	108.5 (2)	B44—B49—B45	60.56 (18)
B210—B29—B25	59.76 (18)	B44—B49—B410	108.9 (2)
B24—B29—B25	60.32 (17)	B45—B49—B410	59.90 (19)
B210—B29—B212	59.81 (18)	B44—B49—B412	108.2 (2)
B24—B29—B212	107.8 (2)	B45—B49—B412	107.6 (2)
B25—B29—B212	107.2 (2)	B410—B49—B412	60.09 (18)
B210—B29—B28	108.8 (2)	B44—B49—B48	60.79 (17)
B24—B29—B28	60.68 (16)	B45—B49—B48	109.2 (2)
B25—B29—B28	108.9 (2)	B410—B49—B48	109.1 (2)
B212—B29—B28	59.94 (17)	B412—B49—B48	59.98 (18)
B210—B29—H29	121.5	B44—B49—H49	121.1
B24—B29—H29	121.4	B45—B49—H49	121.5
B25—B29—H29	121.8	B410—B49—H49	121.2
B212—B29—H29	122.4	B412—B49—H49	122.2
B28—B29—H29	120.9	B48—B49—H49	120.8
B25—B210—B26	59.84 (18)	B45—B410—B49	60.00 (19)
B25—B210—B29	60.34 (18)	B45—B410—B46	59.65 (19)
B26—B210—B29	108.4 (2)	B49—B410—B46	108.1 (2)
B25—B210—B212	108.2 (2)	B45—B410—B411	107.1 (2)

B26—B210—B212	107.6 (2)	B49—B410—B411	107.8 (2)
B29—B210—B212	60.53 (18)	B46—B410—B411	59.79 (18)
B25—B210—B211	107.0 (2)	B45—B410—B412	107.9 (2)
B26—B210—B211	59.50 (19)	B49—B410—B412	60.34 (19)
B29—B210—B211	107.7 (2)	B46—B410—B412	108.1 (2)
B212—B210—B211	59.39 (18)	B411—B410—B412	59.81 (18)
B25—B210—H210	121.9	B45—B410—H410	122.2
B26—B210—H210	121.8	B49—B410—H410	121.5
B29—B210—H210	121.2	B46—B410—H410	121.7
B212—B210—H210	121.7	B411—B410—H410	122.2
B211—B210—H210	122.6	B412—B410—H410	121.6
C22—B211—B212	104.5 (2)	C42—B411—B46	59.64 (17)
C22—B211—B26	59.84 (17)	C42—B411—B412	104.4 (2)
B212—B211—B26	108.8 (2)	B46—B411—B412	108.7 (2)
C22—B211—B210	105.1 (2)	C42—B411—B410	105.0 (2)
B212—B211—B210	60.22 (18)	B46—B411—B410	60.05 (18)
B26—B211—B210	60.05 (18)	B412—B411—B410	60.29 (18)
C22—B211—B27	58.44 (16)	C42—B411—B47	58.46 (16)
B212—B211—B27	60.12 (18)	B46—B411—B47	109.2 (2)
B26—B211—B27	109.4 (2)	B412—B411—B47	60.00 (17)
B210—B211—B27	108.6 (2)	B410—B411—B47	108.5 (2)
C22—B211—H211	124.7	C42—B411—H411	124.8
B212—B211—H211			
DZIZ DZII IIZII	122.3	B46—B411—H411	120.6
B26—B211—H211	122.3 120.5	B46—B411—H411 B412—B411—H411	120.6 122.4
B26—B211—H211 B210—B211—H211	122.3 120.5 122.2	B46—B411—H411 B412—B411—H411 B410—B411—H411	120.6 122.4 122.1
B26—B211—H211 B210—B211—H211 B27—B211—H211	122.3 120.5 122.2 121.0	B46—B411—H411 B412—B411—H411 B410—B411—H411 B47—B411—H411	120.6 122.4 122.1 121.1
B26—B211—H211 B210—B211—H211 B27—B211—H211 B211—B212—B27	122.3 120.5 122.2 121.0 60.51 (18)	B46—B411—H411 B412—B411—H411 B410—B411—H411 B47—B411—H411 B411—B412—B47	120.6 122.4 122.1 121.1 60.43 (18)
B26—B211—H211 B26—B211—H211 B210—B211—H211 B27—B211—H211 B211—B212—B27 B211—B212—B210	122.3 120.5 122.2 121.0 60.51 (18) 60.39 (19)	B46—B411—H411 B412—B411—H411 B410—B411—H411 B47—B411—H411 B411—B412—B47 B411—B412—B410	120.6 122.4 122.1 121.1 60.43 (18) 59.90 (18)
B26—B211—H211 B26—B211—H211 B210—B211—H211 B27—B211—H211 B211—B212—B27 B211—B212—B210 B27—B212—B210	122.3 120.5 122.2 121.0 60.51 (18) 60.39 (19) 109.0 (2)	B46—B411—H411 B412—B411—H411 B410—B411—H411 B47—B411—H411 B411—B412—B47 B411—B412—B410 B47—B412—B410	120.6 122.4 122.1 121.1 60.43 (18) 59.90 (18) 108.6 (2)
B212 B211 H211 B26—B211—H211 B210—B211—H211 B27—B211—H211 B211—B212—B27 B211—B212—B210 B27—B212—B210 B211—B212—B28	122.3 120.5 122.2 121.0 60.51 (18) 60.39 (19) 109.0 (2) 109.2 (2)	B46—B411—H411 B412—B411—H411 B410—B411—H411 B47—B411—H411 B411—B412—B47 B411—B412—B410 B47—B412—B410 B411—B412—B49	120.6 122.4 122.1 121.1 60.43 (18) 59.90 (18) 108.6 (2) 107.3 (2)
B212 B211 H211 B26—B211—H211 B210—B211—H211 B27—B211—H211 B211—B212—B27 B211—B212—B210 B27—B212—B210 B211—B212—B28 B27—B212—B28	122.3 120.5 122.2 121.0 60.51 (18) 60.39 (19) 109.0 (2) 109.2 (2) 60.60 (17)	B46—B411—H411 B412—B411—H411 B410—B411—H411 B47—B411—H411 B411—B412—B47 B411—B412—B410 B47—B412—B410 B411—B412—B49 B47—B412—B49	120.6 122.4 122.1 121.1 60.43 (18) 59.90 (18) 108.6 (2) 107.3 (2) 108.1 (2)
B212 B211 H211 B26—B211—H211 B210—B211—H211 B27—B211—H211 B211—B212—B27 B211—B212—B210 B27—B212—B210 B211—B212—B28 B27—B212—B28 B210—B212—B28	122.3 120.5 122.2 121.0 60.51 (18) 60.39 (19) 109.0 (2) 109.2 (2) 60.60 (17) 108.8 (2)	B46—B411—H411 B412—B411—H411 B410—B411—H411 B47—B411—H411 B411—B412—B47 B411—B412—B410 B47—B412—B410 B411—B412—B49 B47—B412—B49 B410—B412—B49	120.6 122.4 122.1 121.1 60.43 (18) 59.90 (18) 108.6 (2) 107.3 (2) 108.1 (2) 59.57 (19)
B212 B211 H211 B26—B211—H211 B210—B211—H211 B27—B211—H211 B211—B212—B27 B211—B212—B210 B27—B212—B210 B211—B212—B28 B27—B212—B28 B210—B212—B28 B210—B212—B28	122.3 120.5 122.2 121.0 60.51 (18) 60.39 (19) 109.0 (2) 109.2 (2) 60.60 (17) 108.8 (2) 107.8 (2)	B46—B411—H411 B412—B411—H411 B410—B411—H411 B47—B411—H411 B411—B412—B47 B411—B412—B410 B47—B412—B410 B411—B412—B49 B47—B412—B49 B410—B412—B49 B411—B412—B48	120.6 122.4 122.1 121.1 60.43 (18) 59.90 (18) 108.6 (2) 107.3 (2) 108.1 (2) 59.57 (19) 109.3 (2)

B210—B212—B29	59.65 (18)	B410—B412—B48	108.8 (2)
B28—B212—B29	60.09 (17)	B49—B412—B48	60.10 (18)
B211—B212—H212	121.3	B411—B412—H412	121.6
B27—B212—H212	121.1	B47—B412—H412	121.2
B210—B212—H212	121.3	B410—B412—H412	121.6
B28—B212—H212	121.0	B49—B412—H412	122.4
B29—B212—H212	122.2	B48—B412—H412	120.7
C1B—N1—C1A	113.6 (2)	C1D—N2—C1C	113.9 (2)
C1B—N1—B18	111.9 (2)	C1D—N2—B38	111.6 (2)
C1A—N1—B18	111.2 (2)	C1C—N2—B38	111.2 (2)
C1B—N1—H1	107 (2)	C1D—N2—H2	100 (2)
C1A—N1—H1	107 (2)	C1C—N2—H2	111 (2)
B18—N1—H1	105 (2)	B38—N2—H2	109 (2)
C2A—C1A—N1	115.6 (2)	C2C—C1C—N2	116.6 (2)
C2A—C1A—H1A1	108.4	C2C—C1C—H1C1	108.1
N1—C1A—H1A1	108.4	N2—C1C—H1C1	108.1
C2A—C1A—H1A2	108.4	C2C—C1C—H1C2	108.1
N1—C1A—H1A2	108.4	N2—C1C—H1C2	108.1
H1A1—C1A— H1A2	107.4	H1C1—C1C—H1C2	107.3
C7A—C2A—C3A	119.3 (3)	C3C—C2C—C7C	118.6 (3)
C7A—C2A—C1A	119.8 (3)	C3C—C2C—C1C	119.3 (3)
C3A—C2A—C1A	120.9 (3)	C7C—C2C—C1C	122.0 (3)
C4A—C3A—C2A	120.0 (3)	C4C—C3C—C2C	120.3 (3)
С4А—С3А—Н3А	120.0	С4С—С3С—Н3С	119.8
С2А—С3А—НЗА	120.0	С2С—С3С—Н3С	119.8
C3A—C4A—C5A	120.6 (3)	C5C—C4C—C3C	120.5 (3)
СЗА—С4А—Н4А	119.7	С5С—С4С—Н4С	119.7
С5А—С4А—Н4А	119.7	С3С—С4С—Н4С	119.7
C6A—C5A—C4A	119.5 (3)	C4C—C5C—C6C	119.5 (3)
С6А—С5А—Н5А	120.3	С4С—С5С—Н5С	120.3
C4A—C5A—H5A	120.3	С6С—С5С—Н5С	120.3
C5A—C6A—C7A	120.5 (3)	C7C—C6C—C5C	120.2 (3)
С5А—С6А—Н6А	119.7	С7С—С6С—Н6С	119.9

С7А—С6А—Н6А	119.7	С5С—С6С—Н6С	119.9
C2A—C7A—C6A	120.1 (3)	C6C—C7C—C2C	120.8 (3)
С2А—С7А—Н7А	119.9	С6С—С7С—Н7С	119.6
С6А—С7А—Н7А	119.9	С2С—С7С—Н7С	119.6
N1—C1B—C2B	116.9 (2)	C2D—C1D—N2	115.1 (2)
N1—C1B—H1B1	108.1	C2D—C1D—H1D1	108.5
C2B—C1B—H1B1	108.1	N2-C1D-H1D1	108.5
N1—C1B—H1B2	108.1	C2D—C1D—H1D2	108.5
C2B—C1B—H1B2	108.1	N2-C1D-H1D2	108.5
H1B1—C1B—H1B2	107.3	H1D1—C1D—H1D2	107.5
C3B—C2B—C7B	119.0 (3)	C3D—C2D—C7D	118.9 (3)
C3B—C2B—C1B	123.4 (3)	C3D—C2D—C1D	118.9 (3)
C7B—C2B—C1B	117.4 (3)	C7D—C2D—C1D	122.2 (3)
C2B—C3B—C4B	120.4 (3)	C2D—C3D—C4D	121.4 (3)
С2В—С3В—Н3В	119.8	C2D—C3D—H3D	119.3
С4В—С3В—Н3В	119.8	C4D—C3D—H3D	119.3
C5B—C4B—C3B	120.1 (3)	C5D—C4D—C3D	118.8 (3)
C5B—C4B—H4B	120.0	C5D—C4D—H4D	120.6
C3B—C4B—H4B	120.0	C3D—C4D—H4D	120.6
C6B—C5B—C4B	119.6 (3)	C6D—C5D—C4D	120.7 (3)
С6В—С5В—Н5В	120.2	C6D—C5D—H5D	119.6
C4B—C5B—H5B	120.2	C4D—C5D—H5D	119.6
C5B—C6B—C7B	120.5 (3)	C5D—C6D—C7D	120.3 (3)
С5В—С6В—Н6В	119.8	C5D—C6D—H6D	119.8
С7В—С6В—Н6В	119.8	C7D—C6D—H6D	119.8
C6B—C7B—C2B	120.4 (3)	C6D—C7D—C2D	119.7 (3)
С6В—С7В—Н7В	119.8	C6D—C7D—H7D	120.2
С2В—С7В—Н7В	119.8	C2D—C7D—H7D	120.2

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Data collection:

- (2) COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997)
- (6) CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.29.8 (release 17-03-2006 CrysAlis171 .NET) (compiled Mar 17 2006,10:57:34)
- (7) COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997)
- (12) COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997)

Cell refinement:

- (2) COLLECT and DENZO
- (6) CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.29.8 (release 17-03-2006 CrysAlis171 .NET) (compiled Mar 17 2006,10:57:34)
- (7) COLLECT and DENZO
- (12) COLLECT and DENZO

Data reduction:

- (2) COLLECT and DENZO
- (6) CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.29.8 (release 17-03-2006 CrysAlis171 .NET) (compiled Mar 17 2006,10:57:34)
- (7) COLLECT and DENZO
- (12) COLLECT and DENZO

Program(s) used to solve structure:

- (2) *SIR92* (Altomare *et al.*, 1994)
- (6) *SIR92* (Altomare *et al.*, 1994)
- (7) *SIR92* (Altomare *et al.*, 1994)
- (12) SIR92 (Altomare *et al.*, 1994)

Program(s) used to refine structure:

(2) SHELXL97 (Sheldrick,	1997)
ſ	ر ک) DILLALY (Dileidiner,	1))))

- (6) *SHELXL97* (Sheldrick, 1997)
- (7) SHELXL97 (Sheldrick, 1997)
- (12) *SHELXL97* (Sheldrick, 1997)

Molecular graphics:

(2)	?
(6)	?
(7)	?
(12)	?

Software used to prepare material for publication:

(2)	?
(6)	?
(7)	?
(12)	?

References

Figures