

Electronic Supporting Information

Figure S1. UV-vis spectra of L in the presence of 2 eq of Cu(II) at different pH values (Cu(II) = $1 \cdot 10^{-2}$ M, [L] = $5 \cdot 10^{-3}$ M, 298 K, 0.1 M NMe₄Cl)

Figure S2. Theoretical (—) and experimental (\diamond) titration curves for the system Cu(II)/L with different ligand and metal concentrations (*a*: [L] = 5x10⁻⁴ M [Cu(II)] = 4x10⁻⁴ M, [NMe₄OH] = 0.1 M; *b*: [L] = 5x10⁻³ M, [Cu(II)] = 4x10⁻³ M, [NMe₄OH] = 0.3 M; *c*: [L] = 5x10⁻⁴ M, [Cu(II)] = 9x10⁻⁴ M, [NMe₄OH] = 0.1 M; *d*: [L] = 1x10⁻³ M, [Cu(II)] = 1.8x10⁻³ M, [NMe₄OH] = 0.2 M; *e*: [L] = 2x10⁻³ M, [Cu(II)] = 3.8x10⁻³ M, [NMe₄OH] = 0.3 M; *f*: [L] = 5 x10⁻³ M, [Cu(II)] = 9x10⁻³ M, [NMe₄OH] = 0.3 M; *f*: [L] = 5 x10⁻³ M, [Cu(II)] = 9x10⁻³ M, [NMe₄OH] = 0.3 M; *f*: [L] = 5 x10⁻³ M, [Cu(II)] = 9x10⁻³ M, [NMe₄OH] = 0.3 M; *f*: [L] = 5 x10⁻³ M, [Cu(II)] = 9x10⁻³ M, [NMe₄OH] = 0.3 M; *f*: [L] = 5 x10⁻³ M, [Cu(II)] = 9x10⁻³ M, [NMe₄OH] = 0.3 M; *f*: [L] = 5 x10⁻³ M, [Cu(II)] = 9x10⁻³ M, [NMe₄OH] = 0.3 M; *f*: [L] = 5 x10⁻³ M, [Cu(II)] = 9x10⁻³ M, [NMe₄OH] = 0.3 M; *f*: [L] = 5 x10⁻³ M, [Cu(II)] = 9x10⁻³ M, [NMe₄OH] = 0.3 M; *f*: [L] = 5 x10⁻³ M, [Cu(II)] = 9x10⁻³ M, [NMe₄OH] = 0.3 M; *f*: [L] = 5 x10⁻³ M, [Cu(II)] = 9x10⁻³ M, [NMe₄OH] = 0.3 M; *f*: [L] = 5 x10⁻³ M, [Cu(II)] = 9x10⁻³ M, [NMe₄OH] = 0.3 M; f: [L] = 5 x10⁻³ M, [Cu(II)] = 9x10⁻³ M, [NMe₄OH] = 0.3 M; f: [L] = 5 x10⁻³ M, [Cu(II)] = 9x10⁻³ M, [NMe₄OH] = 0.3 M; f]

Table S1. Values of the variance of weighted square residuals (σ^2) for the titration curves relative to the system Cu(II)/L, reported in Figure S2

System Cu(II)/L

	σ^2	Cu(II) concentration	Ligand concentration
Curve <i>a</i>	3.3834	4x10 ⁻⁴ M	5x10 ⁻⁴ M
Curve <i>b</i>	2.5354	4x10 ⁻³ M	5x10 ⁻³ M
Curve <i>c</i>	3.7002	9x10 ⁻⁴ M	5x10 ⁻⁴ M
Curve <i>d</i>	4.5670	1.8x10 ⁻³ M	$1 \times 10^{-3} M$
Curve e	4.8904	3.8x10 ⁻³ M	2x10 ⁻³ M
Curve <i>f</i>	3.0978	9x10 ⁻³ M	5 x10 ⁻³ M
Entire set of curves <i>a</i> - <i>f</i>	3.6504		

Table S2. Protonation constants of ligand L determined in 0.1 mol dm⁻³ NMe₄Cl aqueous solutions, at 298.1 K

Equilibrium	Log K
$\mathbf{L} + \mathbf{H}^{+} = \left[\mathbf{L}\mathbf{H}\right]^{+}$	9.31(5)
$[LH]^{+} + H^{+} = [LH_2]^{2+}$	8.2(2)
$[LH_2]^{2+} + H^+ = [LH_3]^{3+}$	7.2(1)
$[LH_3]^{3+} + H^+ = [LH_4]^{4+}$	4.2(2)
$[LH_4]^{4+} + H^+ = [LH_5]^{5+}$	3.0(2)
$[LH_5]^{5+} + H^+ = [LH_6]^{6+}$	2.9(1)

Table S3. Intermetallic distances in [L₄Cu₈(µ-OH)₈(µ-NO₃)₃] (NO₃)₅·32H₂O

Cu1a Cu3a	2.760(2)	Cu1b Cu3b	2.760(2)
Cu2a Cu4a	2.701(2)	Cu2b Cu4b	2.701(2)
Cu1a Cu2a	8.263(2)	Cu1b Cu2b	7.753(2)
Cu3a Cu4a	8.278(3)	Cu3b Cu4b	7.800(2)

Table S4. O^{...}O hydrogen bonding distances (Å) between water molecules in the hexameric cluster localized in the **a**-based channels.

Ow17 Ow3	2.65(2)	
Ow15 Ow17	2.80(2)	
Ow3Ow15	2.74(2)	1-x,1-y,-z

Table S5. Hydrogen bonding distances (Å) involving the $NO_3^{-..}(H_2O)_2^{-..}NO_3$ group linking the hexameric clusters in the **a**-based channels (Ow6* is omitted from Figure 4a and 5 for clarity)

O81Ow12	3.14(3)	
O83Ow6	2.76(4)	
O83 Ow6*	3.16(5)	
O82 Ow6	3.21(4)	-x,-y+1,-z
O82 Ow6*	2.76(5)	-x,-y+1,-z
O82 N4a1	2.85(2)	
O83 N4a2	2.82(2)	

Table S6. O^{...}O hydrogen bonding distances (Å) between water molecules in the hexameric cluster localized in the **b**-based channels.

Table S7. Hydrogen bonding distances (Å) involving the $(NO_3)_2(H_2O)_2$ group linking the pentameric clusters in the **b**-based channels

O41 Ow8	3.21(2)	
O41 N4b2	2.81(1)	
O42Ow19	2.93(2)	
N4b2 Ow19'	2.72(2)	1-x, 1-y, 1-z

Table S8. O^{...}O hydrogen bonding distances (Å) for the water or water-nitrate chains localized in the **c** and **d** channels.

Ow1 Ow1'	1.84(3)	
Ow1 Ow2	3.21(3)	
Ow22 Ow2	2.75(3)	
Ow22Ow32	2.79(3)	
Ow32 Ow1'	2.95(3)	x-1/2,-y+1/2,+z
Ow26 Ow29	2.88(3)	
O71' Ow26	2.37(7)	-x+1/2+1,+y-1/2,-z+1
O72'Ow29	3.53(5)	-x+2,-y+1,-z+1

formula	$C_{92}H_{200}Cu_8N_{32}O_{64}$
M/ g mol ⁻¹	3287.16
Cryst syst	monoclinic
Space group	$P 2_1/a$
<i>a</i> / Å	19.647(1)
b / Å	28.417(2)
c / Å	26.741(1)
β /deg	96.067(5)
$V / Å^3$	14846(1)
T / K	298
Z	4
$Dc / g cm^{-3}$	1.471
μ / mm ⁻¹	2.079
Unique reflns	15340
Obsd reflns (I> 2sigma(I))	6102
R1, ^a wR2 ^b (all data)	0.0795, 0.2542

Table S9. Crystallographic data for the single crystal structure determination of $[L_4Cu_8(\mu - OH)_8(\mu - NO_3)_3] \cdot (NO_3)_5 \cdot 32H_2O$

^a R1 = $\Sigma \parallel Fo \mid - |Fc| \mid / \Sigma \mid Fo \mid$; ^b wR2 = $[\Sigma w(Fo^2 - Fc^2)^2 / \Sigma wFo^4]^{1/2}$