Electronic Supplementary Information

Canopied *trans*-chelating bis(*N*-heterocyclic carbene) ligand: synthesis, structure and catalysis

Brad P. Morgan, Gabriela A. Galdamez, Robert J. Gilliard, Jr. and Rhett C. Smith*

Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COSMET), Clemson University, Clemson, SC 29634

Email: rhett@clemson.edu

List of Supporting Information Figures:

- ¹H NMR spectrum of [Ag(1)]AgBr₂ (DMSO, 300 MHz) Figure S1. Aromatic region of the ¹H NMR spectrum of [Ag(1)]AgBr₂ (DMSO, 300 MHz) Figure S2. Aliphatic region of the ¹H NMR spectrum of [Ag(1)]AgBr₂ (DMSO, 300 MHz) Figure S3. Figure S4. ¹H-¹H Correlated Spectrum (COSY) of [Ag(1)]AgBr₂ (DMSO, 300 MHz) Figure S5. Nuclear Overhauser Effect Difference (NOE-DIFF) Spectrum of [Ag(1)]AgBr₂ (DMSO, 300 MHz) for protons resonating at 5.43 ppm Nuclear Overhauser Effect Difference (NOE-DIFF) Spectrum of [Ag(1)]AgBr₂ (DMSO, Figure S6. 300 MHz) for protons resonating at 3.96 ppm Carbon-13 NMR spectrum of [Ag(1)]AgBr₂ (DMSO, 75 MHz) Figure S7. Aromatic region of the ¹³C NMR spectrum of [Ag(1)]AgBr₂ (DMSO, 75 MHz) Figure S8. Figure S9. Heteronuclear Multiple Quantum Coherence (HMQC) spectrum of [Ag(1)]AgBr₂ (300 MHz for ¹H, 75 MHz for ¹³C, in DMSO) Distortionless Enhancement by Polarization Transfer (DEPT-135) spectrum of Figure S10. $[Ag(1)]AgBr_2$ (DMSO, 75 MHz) Figure S11. Aromatic region of DEPT-135 spectrum of [Ag(1)]AgBr2 (DMSO, 75 MHz) Figure S12. ¹H NMR spectrum of $[H_21]Br_2$ (DMSO, 300 MHz) Aromatic region of the ¹H NMR spectrum of $[H_21]Br_2$ (DMSO, 300 MHz) Figure S13. ¹³C NMR spectrum of $[H_21]Br_2$ (CD₃CN, 75 MHz) Figure S14. Aromatic region of the ¹³C NMR spectrum of $[H_21]Br_2$ (CD₃CN, 75 MHz) Figure S15. ¹H NMR spectrum of [Cl₂Pd(**1**)] (CDCl₃, 300 MHz) Figure S16. Figure S17. Aliphatic region of the ¹H NMR spectrum of [Cl₂Pd(**1**)] (CDCl₃, 300 MHz) Figure S18. Aromatic region of the ¹H NMR spectrum of $[Cl_2Pd(1)]$ (CDCl₃, 300 MHz) ¹³C NMR spectrum of [Cl₂Pd(**1**)] (CDCl₃, 75 MHz) Figure S19. Aromatic region of the ¹³C NMR spectrum of [Cl₂Pd(1)] (CDCl₃, 75 MHz) Figure S20.
- **Figure S21.** ESI-MS of $[Cl_2Pd(1)]$ with theoretical isotopic distributions for major peak sets

Figure S1. Proton NMR spectrum of [Ag(1)]AgBr₂ (DMSO, 300 MHz)

Figure S2. Aromatic Region of the ¹H NMR spectrum of [Ag(1)]AgBr₂ (DMSO, 300 MHz)

Figure S3. Aliphatic Region of the ¹H NMR spectrum of [Ag(1)]AgBr₂ (DMSO, 300 MHz)

Figure S4. ¹H-¹H Correlated Spectrum (COSY) of [Ag(1)]AgBr₂ (DMSO, 300 MHz)

Figure S5. Nuclear Overhauser Effect Difference (NOE-DIFF) Spectrum of [Ag(1)]AgBr₂ (DMSO, 300 MHz) for protons resonating at 5.43 ppm

Figure S6. Nuclear Overhauser Effect Difference (NOE-DIFF) Spectrum of [Ag(1)]AgBr₂ (DMSO, 300 MHz) for protons resonating at 3.96 ppm

Figure S7. Carbon-13 NMR spectrum of [Ag(1)]AgBr₂ (DMSO, 75 MHz)

Figure S8. Aromatic region of the ¹³C NMR spectrum of [Ag(1)]AgBr₂ (DMSO, 75 MHz)

Figure S9. Heteronuclear Multiple Quantum Coherence (HMQC) spectrum of [Ag(1)]AgBr₂ (300 MHz for ¹H, 75 MHz for ¹³C, in DMSO)

 $[Ag(1)]AgBr_2$ (DMSO, 75 MHz)

Figure S11. Aromatic region of DEPT-135 spectrum of [Ag(1)]AgBr2 (DMSO, 75 MHz)

Figure S12. Proton NMR spectrum of [H₂1]Br₂ (DMSO, 300 MHz)

Figure S13. Aromatic Region of the ¹H NMR spectrum of $[H_21]Br_2$ (DMSO, 300 MHz)

Figure S14. ¹³C NMR spectrum of **[H₂1]Br₂** (CD₃CN, 75 MHz)

Figure S15. Aromatic region of the ¹³C NMR spectrum of **[H₂1]Br₂** (CD₃CN, 75 MHz)

Figure S16. ¹H NMR spectrum of [Cl₂Pd(1)] (CDCl₃, 300 MHz)

Figure S17. Aliphatic region of the ¹H NMR spectrum of [Cl₂Pd(1)] (CDCl₃, 300 MHz)

Figure S18. Aromatic region of the ¹H NMR spectrum of [Cl₂Pd(1)] (CDCl₃, 300 MHz)

Figure S19. ¹³C NMR spectrum of [Cl₂Pd(1)] (CDCl₃, 75 MHz)

Figure S20. Aromatic region of the ¹³C NMR spectrum of [Cl₂Pd(1)] (CDCl₃, 75 MHz)

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Figure S21. ESI-MS of $[Cl_2Pd(1)]$ (top) with theoretical isotopic distributions (bottom) for major peak sets