# Supplementary Material (ESI) for Dalton Transactions # This journal is (c) The Royal Society of Chemistry 2008 data_global _journal_name_full 'Dalton Trans.' _journal_coden_Cambridge 0222 _publ_contact_author_name 'Cameron Kepert' _publ_contact_author_email C.KEPERT@CHEM.USYD.EDU.AU _publ_section_title ; A nanoporous chiral metal-organic framework material that exhibits reversible guest adsorption ; loop_ _publ_author_name 'Cameron Kepert' 'Simon S. Iremonger' 'Peter D. Southon' # Attachment '1-guest.cif' # Supplementary Material (ESI) for Dalton Transactions # This journal is (c) The Royal Society of Chemistry 2008 data_1 _database_code_depnum_ccdc_archive 'CCDC 697885' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C60 H78 N28 O24 Ag4' _chemical_formula_weight 2006.93 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Ag Ag -0.8971 1.1015 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting hexagonal _symmetry_space_group_name_H-M 'P 61' _symmetry_int_tables_number 169 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x-y, z+1/3' '-x+y, -x, z+2/3' '-x, -y, z+1/2' 'y, -x+y, z+5/6' 'x-y, x, z+1/6' _cell_length_a 22.6827(19) _cell_length_b 22.6827(19) _cell_length_c 34.369(6) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 120.00 _cell_volume 15314(3) _cell_formula_units_Z 6 _cell_measurement_temperature 150(2) _cell_measurement_reflns_used 4431 _cell_measurement_theta_min 2.157 _cell_measurement_theta_max 15.631 _exptl_crystal_description 'hexagonal rod' _exptl_crystal_colour colourless _exptl_crystal_size_max 0.55 _exptl_crystal_size_mid 0.09 _exptl_crystal_size_min 0.09 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.093 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 4872 _exptl_absorpt_coefficient_mu 0.807 _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.741680 _exptl_absorpt_correction_T_max 1.000000 _exptl_absorpt_process_details 'SADABS, Bruker 1995' _exptl_special_details ; In a thin film of perfluoropolyether oil on a mohair fibre ; _diffrn_ambient_temperature 150(2) _diffrn_radiation_probe x-ray _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART 1000 CCD' _diffrn_measurement_method \w _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0.00 _diffrn_reflns_number 151921 _diffrn_reflns_av_R_equivalents 0.0409 _diffrn_reflns_av_sigmaI/netI 0.0298 _diffrn_reflns_limit_h_min -15 _diffrn_reflns_limit_h_max 0 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 18 _diffrn_reflns_limit_l_min -27 _diffrn_reflns_limit_l_max 27 _diffrn_reflns_theta_min 1.57 _diffrn_reflns_theta_max 16.52 _reflns_number_total 5453 _reflns_number_gt 4380 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART (BrukerAXS, 1997)' _computing_cell_refinement 'SMART (BrukerAXS, 1997)' _computing_data_reduction 'SAINT+ (BrukerAXS, 1997)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Ortep3, WebLab Viewer 3.7, OLEX, Mercury 1.4.2' _computing_publication_material XCIF _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Single crystals of 1.X(MeCN/EtOH) were found to be weakly diffracting. Such a problem is relatively common in the field of framework materials and is typical for highly porous materials with extensive structural disorder. Numerous attempts were made at growing the crystals under a variety of conditions to slow the crystallisation process and give less disordered crystals. Various other techniques, such as cold mounting or desolvating the crystals before analysis were also attempted. Data collection at the ChemMatCars beamline at the Advanced Photon Source, Argonne National Laboratory, gave no discernible improvement in data quality. All methods to obtain a better diffraction pattern were unsuccessful, indicating that it is likely that the limitations to the data and resulting refinement model are intrinsic to the inherent structural disorder. The structural model reported was refined against the best diffraction data obtained. When combined with the known chemical composition of the ligand and other structural information from related materials, a sound model of the framework structure was obtained, albeit with no information on anion location.. With the exception of the Ag(I) ions all atoms were modelled isotropically. A number of atoms in the ligand have unrealistically large thermal parameters and are heavily restrained. However, the composition of the ligand is definitively known from a combination of 1H and 13C NMR, IR and high resolution mass spectrometry. Due to the highly favourable interaction of the pi-orbitals throughout the ligand and steric considerations, it is highly probable that the Schiff base would adopt the E conformation giving a highly planar ligand. From this, the conformation of the ligand, while poorly resolved in the model, can be safely assumed to be correct. Hydrogen atoms were modelled on the aromatic linkers and all chiral centres with the exception of C54 and C64. Accurate hydrogen positions could not be calculated for C54 and C64 due to poor refinement of the chiral centres. As the NO3- anions and the Hydrogen atoms not mentioned previously are absent from the model the calculated molecular formula would be incorrect. The crystallographic information has therefore been changed to use the correct formula of [Ag4(L(S))3(NO3)4] (C60H78N28O24Ag4). This formula is consistent with the elemental analysis, gives a molecular weight of 2006.93 g mol-1 and a calculated crystal density of 1.3057 g cm-3. The asymmetric unit consists of three crystallographically distinct L1(S,S,S,S) ligands and four Ag(I) ions in a Ag4N12 metallocycle cluster. The Ag(I) ions are modelled anisotropically and lie on a plane parallel to the (0 0 1) face. The cluster comprises of two four-coordinate Ag(I) ions and two pseudo four-coordinate ions, the latter having two Ag-N distances that are more accurately described as interactions rather as bonds. The equatorial ligands are u2 bridging, while the axial ligands are pseudo u4. The Ag-Ag distances show that only very weak argentophilic interactions exist, with only the Ag2-Ag4 distance less that the sum of their van der Waals radii (3.44 A). The structure was solved and refined in both of the enantiomeric, hexagonal chiral space groups P61 and P65. In each case the chirality of the ligand was held to the known (S,S,S,S) conformation. The space group P61 was selected on the basis of a more favourable Flack parameter,1 0.11(14) vs. 0.68(15), and after careful analysis of the hydrogen bonding interactions in the two structural models. The space group P65 gave a number of highly unlikely short contacts with the methyl groups of the ligand, which in P61 become reasonable hydrogen bonding interactions from the alcohol groups. Further, isotropic thermal displacement parameters for the methyl carbon and hydroxyl oxygen atoms were found to refine to more reasonable and similar values in this setting. The methyl group C55 and alcohol group O51 are modelled as rotationally disordered over two sites about the C54 chiral centre. The following reflections were omitted from the refinement as they were obscured by the beam stop: 0 1 0, 0 1 -1, 0 1 1, 0 2 -2, 0 2 2. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.2000P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.11(14) _chemical_absolute_configuration syn/ad _refine_ls_number_reflns 5453 _refine_ls_number_parameters 389 _refine_ls_number_restraints 655 _refine_ls_R_factor_all 0.1548 _refine_ls_R_factor_gt 0.1339 _refine_ls_wR_factor_ref 0.3922 _refine_ls_wR_factor_gt 0.3628 _refine_ls_goodness_of_fit_ref 1.739 _refine_ls_restrained_S_all 1.671 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Ag1 Ag 0.62924(14) 0.62934(14) 0.9699(5) 0.1417(12) Uani 1 1 d . A . Ag2 Ag 0.43161(15) 0.43119(15) 0.9702(5) 0.1575(14) Uani 1 1 d . A . Ag3 Ag 0.45750(15) 0.59425(16) 0.9699(5) 0.1714(16) Uani 1 1 d . . . Ag4 Ag 0.59423(16) 0.45789(16) 0.9702(5) 0.1726(16) Uani 1 1 d . . . N10 N 0.5154(11) 0.4938(11) 0.9206(7) 0.128(9) Uiso 1 1 d D . . N11 N 0.5476(12) 0.5630(13) 0.9215(8) 0.186(14) Uiso 1 1 d D . . C10 C 0.5554(19) 0.5884(12) 0.8850(10) 0.35(4) Uiso 1 1 d DU . . N12 N 0.5269(11) 0.5305(11) 0.8614(8) 0.167(12) Uiso 1 1 d D . . C13 C 0.5034(15) 0.4716(11) 0.8835(9) 0.185(17) Uiso 1 1 d D . . N20 N 0.5363(12) 0.6837(10) 0.9954(9) 0.173(12) Uiso 1 1 d D A . N21 N 0.6033(13) 0.7053(12) 0.9888(9) 0.190(14) Uiso 1 1 d D . . C20 C 0.6419(12) 0.7723(15) 0.9971(11) 0.30(3) Uiso 1 1 d DU A . N22 N 0.5947(11) 0.7918(12) 1.0078(7) 0.180(13) Uiso 1 1 d D . . C23 C 0.5287(12) 0.7360(14) 1.0074(10) 0.192(18) Uiso 1 1 d DU A . N30 N 0.6870(10) 0.5346(11) 0.9468(8) 0.146(10) Uiso 1 1 d D A . N31 N 0.7056(11) 0.6015(12) 0.9512(8) 0.167(12) Uiso 1 1 d D . . C30 C 0.7716(13) 0.6414(11) 0.9414(10) 0.21(2) Uiso 1 1 d D A . N32 N 0.7938(12) 0.5956(11) 0.9325(7) 0.216(16) Uiso 1 1 d D . . C33 C 0.7402(14) 0.5286(11) 0.9345(10) 0.182(17) Uiso 1 1 d DU A . N40 N 0.4934(11) 0.5112(11) 1.0196(7) 0.132(9) Uiso 1 1 d D A . N41 N 0.5622(12) 0.5393(11) 1.0177(7) 0.146(10) Uiso 1 1 d D . . C40 C 0.5890(12) 0.5482(16) 1.0538(9) 0.22(2) Uiso 1 1 d D A . N42 N 0.5328(10) 0.5263(10) 1.0784(8) 0.190(15) Uiso 1 1 d D . . C43 C 0.4726(10) 0.4996(14) 1.0570(9) 0.175(16) Uiso 1 1 d D A . N50 N 0.3664(11) 0.5121(14) 0.9523(9) 0.206(15) Uiso 1 1 d D A . N51 N 0.3544(12) 0.4475(15) 0.9466(9) 0.187(13) Uiso 1 1 d D . . C50 C 0.2898(14) 0.4072(12) 0.9343(10) 0.190(18) Uiso 1 1 d D A . N52 N 0.2632(11) 0.4507(12) 0.9314(8) 0.175(13) Uiso 1 1 d D . . C53 C 0.3108(15) 0.5166(13) 0.9431(11) 0.23(2) Uiso 1 1 d DU A . N60 N 0.4458(15) 0.3477(13) 0.9875(10) 0.230(18) Uiso 1 1 d D . . N61 N 0.5114(13) 0.3606(12) 0.9873(10) 0.197(14) Uiso 1 1 d D A . C60 C 0.5136(12) 0.3044(15) 0.9979(11) 0.25(2) Uiso 1 1 d DU . . N62 N 0.4459(11) 0.2565(11) 1.0060(8) 0.174(13) Uiso 1 1 d D A . C63 C 0.4031(13) 0.2830(15) 0.9991(11) 0.22(2) Uiso 1 1 d D A . N13 N 0.524(2) 0.5317(17) 0.8200(9) 0.28(3) Uiso 1 1 d D . . C16 C 0.5037(14) 0.4794(15) 0.8037(4) 0.30(3) Uiso 1 1 d D . . N43 N 0.5368(15) 0.5280(17) 1.1205(9) 0.221(18) Uiso 1 1 d D A . C46 C 0.4838(13) 0.4984(17) 1.1362(4) 0.180(15) Uiso 1 1 d D . . C17 C 0.5074(10) 0.4856(11) 0.7603(3) 0.183(17) Uiso 1 1 d GD . . C18 C 0.5381(14) 0.4563(14) 0.7389(4) 0.25(3) Uiso 1 1 d GD . . H18 H 0.5560 0.4324 0.7516 0.302 Uiso 1 1 calc R . . C49 C 0.5422(15) 0.4626(15) 0.6986(4) 0.187(17) Uiso 1 1 d GD . . H49 H 0.5627 0.4430 0.6843 0.224 Uiso 1 1 calc R . . C47 C 0.5155(15) 0.4983(15) 0.6797(3) 0.23(2) Uiso 1 1 d GD . . C48 C 0.4848(18) 0.5277(18) 0.7011(5) 0.29(3) Uiso 1 1 d GD . . H48 H 0.4670 0.5515 0.6885 0.350 Uiso 1 1 calc R . . C19 C 0.4808(16) 0.5213(16) 0.7414(5) 0.22(2) Uiso 1 1 d GD . . H19 H 0.4602 0.5410 0.7557 0.259 Uiso 1 1 calc R . . N23 N 0.6139(18) 0.8604(14) 1.0162(9) 0.198(14) Uiso 1 1 d D A . C26 C 0.6173(15) 0.8714(10) 1.0493(8) 0.181(16) Uiso 1 1 d D . . N53 N 0.1964(14) 0.431(2) 0.9178(11) 0.28(2) Uiso 1 1 d D A . C56 C 0.1485(9) 0.408(2) 0.9377(10) 0.22(2) Uiso 1 1 d D . . C27 C 0.6488(10) 0.9432(8) 1.0636(6) 0.191(18) Uiso 1 1 d GD A . C28 C 0.6615(16) 0.9954(10) 1.0378(6) 0.25(3) Uiso 1 1 d GD . . H28 H 0.6505 0.9858 1.0116 0.304 Uiso 1 1 calc R A . C59 C 0.6906(17) 1.0621(9) 1.0511(7) 0.26(3) Uiso 1 1 d GD A . H59 H 0.6992 1.0970 1.0338 0.311 Uiso 1 1 calc R . . C57 C 0.7070(12) 1.0765(8) 1.0902(7) 0.148(13) Uiso 1 1 d GD . . C58 C 0.6943(15) 1.0243(9) 1.1161(6) 0.25(3) Uiso 1 1 d GD A . H58 H 0.7053 1.0339 1.1422 0.299 Uiso 1 1 calc R . . C29 C 0.6651(15) 0.9576(8) 1.1028(6) 0.22(2) Uiso 1 1 d GD . . H29 H 0.6566 0.9227 1.1200 0.258 Uiso 1 1 calc R A . N33 N 0.8618(14) 0.6195(19) 0.9223(9) 0.219(16) Uiso 1 1 d D A . C36 C 0.8703(10) 0.6260(19) 0.8890(8) 0.175(16) Uiso 1 1 d D . . N63 N 0.4250(18) 0.1909(14) 1.0217(10) 0.214(16) Uiso 1 1 d D . . C66 C 0.4066(16) 0.1460(11) 1.0000(9) 0.192(18) Uiso 1 1 d D A . C37 C 0.2907(12) -0.0590(9) 1.0409(6) 0.189(17) Uiso 1 1 d GD . . C38 C 0.2924(15) -0.0451(10) 1.0014(6) 0.21(2) Uiso 1 1 d GD . . H38 H 0.2685 -0.0804 0.9839 0.258 Uiso 1 1 calc R . . C69 C 0.3297(15) 0.0216(11) 0.9881(6) 0.27(3) Uiso 1 1 d GD A . H69 H 0.3308 0.0309 0.9617 0.318 Uiso 1 1 calc R . . C67 C 0.3653(11) 0.0743(9) 1.0144(7) 0.188(17) Uiso 1 1 d GD . . C68 C 0.3636(13) 0.0604(10) 1.0539(7) 0.198(18) Uiso 1 1 d GD A . H68 H 0.3875 0.0957 1.0714 0.238 Uiso 1 1 calc R . . C39 C 0.3263(14) -0.0063(10) 1.0671(6) 0.21(2) Uiso 1 1 d GD . . H39 H 0.3252 -0.0156 1.0936 0.250 Uiso 1 1 calc R A . C11 C 0.588(2) 0.6614(13) 0.8709(13) 0.34(4) Uiso 1 1 d DU . . H11 H 0.5585 0.6505 0.8482 0.409 Uiso 1 1 calc . . . O10 O 0.570(4) 0.702(2) 0.886(2) 0.46(4) Uiso 1 1 d D . . C12 C 0.650(4) 0.684(3) 0.848(3) 0.38(5) Uiso 1 1 d DU . . C14 C 0.466(2) 0.3989(13) 0.8676(11) 0.25(3) Uiso 1 1 d D . . H14 H 0.4767 0.3968 0.8403 0.305 Uiso 1 1 calc . . . O11 O 0.488(3) 0.362(2) 0.893(2) 0.42(4) Uiso 1 1 d D . . C15 C 0.390(2) 0.368(3) 0.874(3) 0.40(5) Uiso 1 1 d D . . C21 C 0.7183(12) 0.820(2) 0.9929(13) 0.31(3) Uiso 1 1 d DU . . H21 H 0.7339 0.8572 1.0118 0.369 Uiso 1 1 calc . . . O20 O 0.751(2) 0.781(3) 1.0001(17) 0.35(3) Uiso 1 1 d D A . C22 C 0.735(3) 0.849(3) 0.9513(15) 0.27(3) Uiso 1 1 d DU A . C24 C 0.4645(15) 0.738(2) 1.0184(12) 0.27(3) Uiso 1 1 d DU . . H24 H 0.4258 0.6914 1.0164 0.320 Uiso 1 1 calc . . . O21 O 0.468(2) 0.760(2) 1.0574(11) 0.275(18) Uiso 1 1 d D A . C25 C 0.453(3) 0.781(4) 0.9900(14) 0.30(4) Uiso 1 1 d DU A . C31 C 0.8179(17) 0.7184(12) 0.9450(13) 0.25(3) Uiso 1 1 d D . . H31 H 0.8555 0.7325 0.9265 0.301 Uiso 1 1 calc . . . O30 O 0.785(3) 0.752(2) 0.9360(18) 0.37(3) Uiso 1 1 d D A . C32 C 0.848(3) 0.733(2) 0.9864(14) 0.25(3) Uiso 1 1 d D A . C34 C 0.746(2) 0.4653(15) 0.9283(13) 0.28(3) Uiso 1 1 d DU . . H34 H 0.7921 0.4777 0.9372 0.337 Uiso 1 1 calc . . . O31 O 0.699(2) 0.4155(16) 0.9578(12) 0.273(18) Uiso 1 1 d D A . C35 C 0.742(3) 0.441(2) 0.8908(13) 0.27(3) Uiso 1 1 d DU A . C41 C 0.6627(13) 0.579(2) 1.0669(13) 0.40(6) Uiso 1 1 d D . . H41 H 0.6590 0.5774 1.0954 0.484 Uiso 1 1 calc . . . O40 O 0.692(3) 0.540(4) 1.059(5) 0.88(13) Uiso 1 1 d D A . C42 C 0.703(3) 0.653(3) 1.059(3) 0.37(5) Uiso 1 1 d D A . C44 C 0.4019(13) 0.474(2) 1.0743(11) 0.25(3) Uiso 1 1 d D . . H44 H 0.3692 0.4263 1.0685 0.303 Uiso 1 1 calc . . . O41 O 0.418(2) 0.490(3) 1.1182(10) 0.32(2) Uiso 1 1 d D A . C45 C 0.379(3) 0.524(3) 1.0616(16) 0.27(3) Uiso 1 1 d D A . C51 C 0.254(2) 0.3327(14) 0.9217(14) 0.32(4) Uiso 1 1 d D . . H51 H 0.2913 0.3232 0.9226 0.382 Uiso 1 1 calc . . . O50 O 0.211(3) 0.288(2) 0.9459(16) 0.41(3) Uiso 1 1 d D A . C52 C 0.241(3) 0.329(2) 0.8791(13) 0.26(3) Uiso 1 1 d D A . C54 C 0.300(2) 0.5774(16) 0.9440(14) 0.33(4) Uiso 1 1 d DU . . O51A O 0.259(3) 0.573(3) 0.9787(16) 0.29(3) Uiso 0.78(7) 1 d PD A 1 C55A C 0.372(3) 0.642(2) 0.953(4) 0.66(8) Uiso 0.78(7) 1 d PDU A 1 O51B O 0.367(7) 0.637(3) 0.951(9) 0.66(8) Uiso 0.22(7) 1 d PD A 2 C55B C 0.278(16) 0.588(10) 0.904(3) 0.29(3) Uiso 0.22(7) 1 d PDU A 2 C61 C 0.5743(15) 0.294(2) 1.0031(13) 0.24(2) Uiso 1 1 d DU A . H61 H 0.6105 0.3416 1.0041 0.291 Uiso 1 1 calc . . . O60 O 0.578(2) 0.275(3) 1.0421(12) 0.29(2) Uiso 1 1 d D . . C62 C 0.599(3) 0.272(4) 0.9733(15) 0.32(3) Uiso 1 1 d DU . . C64 C 0.3260(13) 0.244(2) 1.0030(15) 0.27(3) Uiso 1 1 d D . . O61 O 0.296(2) 0.282(3) 1.006(2) 0.39(3) Uiso 1 1 d D A . C65 C 0.296(3) 0.176(2) 1.015(3) 0.41(6) Uiso 1 1 d D A . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Ag1 0.135(2) 0.139(2) 0.1072(18) -0.014(2) 0.013(2) 0.0363(17) Ag2 0.147(3) 0.147(3) 0.126(2) 0.013(2) -0.018(2) 0.034(2) Ag3 0.137(2) 0.152(2) 0.140(2) -0.032(2) -0.020(2) 0.008(2) Ag4 0.141(2) 0.148(3) 0.152(3) 0.014(2) 0.033(2) 0.014(2) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Ag1 N21 2.18(2) . ? Ag1 N31 2.21(2) . ? Ag1 N11 2.38(2) . ? Ag1 N41 2.46(2) . ? Ag2 N51 2.12(2) . ? Ag2 N60 2.16(2) . ? Ag2 N40 2.37(2) . ? Ag2 N10 2.42(2) . ? Ag3 N50 2.06(2) . ? Ag3 N20 2.11(2) . ? Ag3 C55A 2.72(11) . ? Ag4 N30 2.11(2) . ? Ag4 N61 2.14(2) . ? N10 C13 1.348(16) . ? N10 N11 1.360(17) . ? N11 C10 1.353(16) . ? C10 N12 1.399(16) . ? C10 C11 1.517(14) . ? N12 C13 1.391(15) . ? N12 N13 1.425(16) . ? C13 C14 1.528(15) . ? N20 C23 1.347(16) . ? N20 N21 1.362(17) . ? N21 C20 1.352(17) . ? C20 N22 1.395(16) . ? C20 C21 1.522(15) . ? N22 C23 1.396(16) . ? N22 N23 1.421(16) . ? C23 C24 1.526(14) . ? N30 C33 1.349(16) . ? N30 N31 1.364(17) . ? N31 C30 1.349(16) . ? C30 N32 1.396(16) . ? C30 C31 1.528(15) . ? N32 C33 1.395(16) . ? N32 N33 1.400(16) . ? C33 C34 1.526(14) . ? N40 C43 1.350(16) . ? N40 N41 1.362(17) . ? N41 C40 1.353(16) . ? C40 N42 1.396(16) . ? C40 C41 1.520(14) . ? N42 C43 1.394(16) . ? N42 N43 1.449(16) . ? C43 C44 1.526(15) . ? N50 C53 1.353(16) . ? N50 N51 1.363(17) . ? N51 C50 1.350(16) . ? C50 N52 1.394(16) . ? C50 C51 1.525(15) . ? N52 C53 1.396(16) . ? N52 N53 1.426(16) . ? C53 C54 1.519(14) . ? N60 C63 1.352(16) . ? N60 N61 1.365(17) . ? N61 C60 1.351(16) . ? C60 N62 1.395(16) . ? C60 C61 1.522(14) . ? N62 C63 1.395(15) . ? N62 N63 1.422(16) . ? C63 C64 1.520(15) . ? N13 C16 1.18(2) . ? C16 C17 1.496(7) . ? N43 C46 1.18(2) . ? C46 C47 1.497(13) 4_665 ? C17 C18 1.3900 . ? C17 C19 1.3900 . ? C18 C49 1.3900 . ? C49 C47 1.3900 . ? C47 C48 1.3900 . ? C47 C46 1.497(7) 4_664 ? C48 C19 1.3900 . ? N23 C26 1.159(19) . ? C26 C27 1.496(7) . ? N53 C56 1.16(2) . ? C56 C57 1.50(8) 5_454 ? C27 C28 1.3900 . ? C27 C29 1.3900 . ? C28 C59 1.3900 . ? C59 C57 1.3900 . ? C57 C58 1.3900 . ? C57 C56 1.496(7) 6_665 ? C58 C29 1.3900 . ? N33 C36 1.158(19) . ? C36 C37 1.499(7) 5_664 ? N63 C66 1.158(19) . ? C66 C67 1.496(7) . ? C37 C38 1.3900 . ? C37 C39 1.3900 . ? C37 C36 1.499(7) 6_545 ? C38 C69 1.3900 . ? C69 C67 1.3900 . ? C67 C68 1.3900 . ? C68 C39 1.3900 . ? C11 O10 1.30(3) . ? C11 C12 1.45(4) . ? C14 O11 1.48(4) . ? C14 C15 1.51(4) . ? C21 O20 1.44(4) . ? C21 C22 1.54(4) . ? C24 O21 1.42(3) . ? C24 C25 1.50(4) . ? C31 O30 1.35(3) . ? C31 C32 1.54(4) . ? C34 C35 1.38(3) . ? C34 O31 1.50(3) . ? C41 O40 1.37(4) . ? C41 C42 1.47(4) . ? C44 C45 1.54(4) . ? C44 O41 1.55(3) . ? C51 O50 1.29(3) . ? C51 C52 1.49(4) . ? C54 O51B 1.47(5) . ? C54 O51A 1.48(4) . ? C54 C55B 1.53(5) . ? C54 C55A 1.58(5) . ? C61 C62 1.37(3) . ? C61 O60 1.42(3) . ? C64 O61 1.34(3) . ? C64 C65 1.41(3) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N21 Ag1 N31 150.6(9) . . ? N21 Ag1 N11 106.0(9) . . ? N31 Ag1 N11 95.1(8) . . ? N21 Ag1 N41 99.0(9) . . ? N31 Ag1 N41 101.8(8) . . ? N11 Ag1 N41 88.8(9) . . ? N51 Ag2 N60 139.1(11) . . ? N51 Ag2 N40 111.3(9) . . ? N60 Ag2 N40 100.6(10) . . ? N51 Ag2 N10 95.9(9) . . ? N60 Ag2 N10 107.0(9) . . ? N40 Ag2 N10 93.8(7) . . ? N50 Ag3 N20 167.0(12) . . ? N50 Ag3 C55A 72.7(15) . . ? N20 Ag3 C55A 98.0(16) . . ? N30 Ag4 N61 162.5(11) . . ? C13 N10 N11 110.2(9) . . ? C13 N10 Ag2 119.7(15) . . ? N11 N10 Ag2 118.2(11) . . ? C10 N11 N10 110.5(9) . . ? C10 N11 Ag1 118.8(16) . . ? N10 N11 Ag1 122.9(14) . . ? N11 C10 N12 103.8(12) . . ? N11 C10 C11 130.5(14) . . ? N12 C10 C11 125.7(15) . . ? C13 N12 C10 111.0(16) . . ? C13 N12 N13 124.4(17) . . ? C10 N12 N13 124.5(18) . . ? N10 C13 N12 104.4(12) . . ? N10 C13 C14 129.8(14) . . ? N12 C13 C14 125.4(14) . . ? C23 N20 N21 110.2(9) . . ? C23 N20 Ag3 123.7(16) . . ? N21 N20 Ag3 122.3(13) . . ? C20 N21 N20 110.5(9) . . ? C20 N21 Ag1 132.2(16) . . ? N20 N21 Ag1 117.3(13) . . ? N21 C20 N22 104.0(12) . . ? N21 C20 C21 130.3(14) . . ? N22 C20 C21 125.6(15) . . ? C20 N22 C23 110.9(16) . . ? C20 N22 N23 122.4(18) . . ? C23 N22 N23 126.6(18) . . ? N20 C23 N22 104.4(12) . . ? N20 C23 C24 130.1(14) . . ? N22 C23 C24 125.5(14) . . ? C33 N30 N31 110.7(9) . . ? C33 N30 Ag4 127.6(15) . . ? N31 N30 Ag4 120.2(12) . . ? C30 N31 N30 109.9(9) . . ? C30 N31 Ag1 130.2(14) . . ? N30 N31 Ag1 119.9(12) . . ? N31 C30 N32 104.4(12) . . ? N31 C30 C31 130.2(14) . . ? N32 C30 C31 124.8(14) . . ? C33 N32 C30 111.0(16) . . ? C33 N32 N33 128.7(18) . . ? C30 N32 N33 120.3(18) . . ? N30 C33 N32 104.0(12) . . ? N30 C33 C34 130.3(14) . . ? N32 C33 C34 125.3(15) . . ? C43 N40 N41 110.1(9) . . ? C43 N40 Ag2 121.3(14) . . ? N41 N40 Ag2 115.1(11) . . ? C40 N41 N40 110.5(9) . . ? C40 N41 Ag1 116.3(15) . . ? N40 N41 Ag1 120.5(12) . . ? N41 C40 N42 103.9(12) . . ? N41 C40 C41 130.4(14) . . ? N42 C40 C41 125.6(15) . . ? C43 N42 C40 111.0(16) . . ? C43 N42 N43 124.8(17) . . ? C40 N42 N43 124.1(17) . . ? N40 C43 N42 104.2(12) . . ? N40 C43 C44 130.0(14) . . ? N42 C43 C44 125.1(14) . . ? C53 N50 N51 110.7(9) . . ? C53 N50 Ag3 123.4(18) . . ? N51 N50 Ag3 125.8(16) . . ? C50 N51 N50 109.9(9) . . ? C50 N51 Ag2 135.4(17) . . ? N50 N51 Ag2 113.1(15) . . ? N51 C50 N52 104.4(12) . . ? N51 C50 C51 129.7(14) . . ? N52 C50 C51 125.6(14) . . ? C50 N52 C53 111.2(16) . . ? C50 N52 N53 124(2) . . ? C53 N52 N53 124(2) . . ? N50 C53 N52 103.8(12) . . ? N50 C53 C54 130.2(14) . . ? N52 C53 C54 126.1(15) . . ? C63 N60 N61 110.3(9) . . ? C63 N60 Ag2 133.9(17) . . ? N61 N60 Ag2 115.8(15) . . ? C60 N61 N60 110.3(9) . . ? C60 N61 Ag4 128.1(16) . . ? N60 N61 Ag4 121.5(14) . . ? N61 C60 N62 104.0(12) . . ? N61 C60 C61 130.1(14) . . ? N62 C60 C61 125.8(14) . . ? C63 N62 C60 111.3(16) . . ? C63 N62 N63 125.1(18) . . ? C60 N62 N63 123.5(18) . . ? N60 C63 N62 104.0(12) . . ? N60 C63 C64 130.2(14) . . ? N62 C63 C64 125.7(14) . . ? C16 N13 N12 117(3) . . ? N13 C16 C17 114(2) . . ? C46 N43 N42 114(3) . . ? N43 C46 C47 117(7) . 4_665 ? C18 C17 C19 120.0 . . ? C18 C17 C16 120.0 . . ? C19 C17 C16 120.0 . . ? C17 C18 C49 120.0 . . ? C47 C49 C18 120.0 . . ? C48 C47 C49 120.0 . . ? C48 C47 C46 119.95(7) . 4_664 ? C49 C47 C46 119.95(7) . 4_664 ? C19 C48 C47 120.0 . . ? C48 C19 C17 120.0 . . ? C26 N23 N22 113(2) . . ? N23 C26 C27 120.1(19) . . ? C56 N53 N52 124(3) . . ? N53 C56 C57 125(9) . 5_454 ? C28 C27 C29 120.0 . . ? C28 C27 C26 120.0 . . ? C29 C27 C26 120.0 . . ? C59 C28 C27 120.0 . . ? C28 C59 C57 120.0 . . ? C58 C57 C59 120.0 . . ? C58 C57 C56 119.98(6) . 6_665 ? C59 C57 C56 119.99(5) . 6_665 ? C57 C58 C29 120.0 . . ? C58 C29 C27 120.0 . . ? C36 N33 N32 112(2) . . ? N33 C36 C37 117.4(18) . 5_664 ? C66 N63 N62 118(2) . . ? N63 C66 C67 120(2) . . ? C38 C37 C39 120.0 . . ? C38 C37 C36 119.82(14) . 6_545 ? C39 C37 C36 119.82(13) . 6_545 ? C37 C38 C69 120.0 . . ? C67 C69 C38 120.0 . . ? C68 C67 C69 120.0 . . ? C68 C67 C66 119.99(6) . . ? C69 C67 C66 120.0 . . ? C67 C68 C39 120.0 . . ? C68 C39 C37 120.0 . . ? O10 C11 C12 124(3) . . ? O10 C11 C10 119(3) . . ? C12 C11 C10 115(3) . . ? O11 C14 C15 107(3) . . ? O11 C14 C13 104(2) . . ? C15 C14 C13 110(3) . . ? O20 C21 C20 108(2) . . ? O20 C21 C22 109(3) . . ? C20 C21 C22 110(2) . . ? O21 C24 C25 113(3) . . ? O21 C24 C23 111(2) . . ? C25 C24 C23 110(2) . . ? O30 C31 C30 112(3) . . ? O30 C31 C32 114(3) . . ? C30 C31 C32 107(2) . . ? C35 C34 O31 117(3) . . ? C35 C34 C33 118(3) . . ? O31 C34 C33 104.0(19) . . ? O40 C41 C42 118(4) . . ? O40 C41 C40 114(3) . . ? C42 C41 C40 113(3) . . ? C43 C44 C45 107(2) . . ? C43 C44 O41 102(2) . . ? C45 C44 O41 104(3) . . ? O50 C51 C52 123(3) . . ? O50 C51 C50 118(3) . . ? C52 C51 C50 109(2) . . ? O51B C54 O51A 104(10) . . ? O51B C54 C53 106(3) . . ? O51A C54 C53 109(3) . . ? O51B C54 C55B 106(4) . . ? O51A C54 C55B 120(10) . . ? C53 C54 C55B 110(3) . . ? O51B C54 C55A 1(10) . . ? O51A C54 C55A 104(3) . . ? C53 C54 C55A 106(3) . . ? C55B C54 C55A 107(10) . . ? C54 C55A Ag3 107(3) . . ? C62 C61 O60 120(3) . . ? C62 C61 C60 122(3) . . ? O60 C61 C60 111(2) . . ? O61 C64 C65 124(3) . . ? O61 C64 C63 117(3) . . ? C65 C64 C63 116(3) . . ? _diffrn_measured_fraction_theta_max 0.999 _diffrn_reflns_theta_full 16.52 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 1.054 _refine_diff_density_min -0.596 _refine_diff_density_rms 0.182