Supporting Information

Mechanistic behaviour of alkylcobaloximes and imino-oxime complexes related to vitamin B₁₂

Basam M. Alzoubi, Fanny Vidali, Ralph Puchta, Carlos Dücker-Benfer, Alessandro Felluga, Lucio Randaccio, Giovanni Tauzher and Rudi van Eldik*

Table S1. Kinetic data for the reaction of *trans*- $[(CH_3)Co((DO)(DOH)pn)H_2O]^+$ with imidazole, 1-methylimidazole, pyrazole and 1,2,4-triazole as a function of temperature and pressure.^a

	k, M ⁻¹ s ⁻¹					
T, °C	imidazole	1-methylimidazole	pyrazole	1,2,4-triazole		
5	11.8 ± 0.1	8.4 ± 0.1	12.3 ± 0.1	9.7 ± 0.1		
10	22.2 ± 0.1	14.5 ± 0.1	23.3 ± 0.1	18.1 ± 0.1		
15	35.8 ± 0.1	26.4 ± 0.2	39.4 ± 0.2	29.8 ± 0.1		
20	59.4 ± 0.4	43.2 ± 0.8	66.2 ± 0.6	48.4 ± 0.2		
25	94.6 ± 1.4	68.0 ± 0.4	105.6 ± 1.8	74.0 ± 0.6		
ΔH^{\ddagger} , kJ mol ⁻¹	69 ± 2	70 ± 2	71 ± 2	67 ± 2		
ΔS^{\ddagger} , J mol ⁻¹ K ⁻¹	$+23 \pm 6$	$+27 \pm 5$	$+33 \pm 6$	$+17 \pm 7$		
Pressure, MPa	b k _{obs} , s ⁻¹					
10	4.20 ± 0.09	3.70 ± 0.05	5.29 ± 0.08	3.85 ± 0.04		
50	4.04 ± 0.19	3.56 ± 0.07	4.97 ± 0.04	3.66 ± 0.05		
90	3.86 ± 0.08	3.39 ± 0.04	4.72 ± 0.10	3.45 ± 0.04		
130	3.69 ± 0.02	3.22 ± 0.05	4.41 ± 0.10	3.28 ± 0.05		
ΔV^{\ddagger} , cm ³ mol ⁻¹	$+2.7 \pm 0.1$	$+2.9 \pm 0.1$	$+3.7 \pm 0.1$	$+3.4 \pm 0.1$		

^a $[Co^{III}] = 1 \times 10^{-4} M, pH 9, I = 0.1 M.$ ^b [nucleophile] = 0.05 M, T = 25 ^oC.

	k, M ⁻¹ s ⁻¹					
T, °C	imidazole	1-methylimidazole	pyrazole	1,2,4-triazole		
5	3.3 ± 0.1	3.3 ± 0.1	2.4 ± 0.1	2.4 ± 0.1		
10	5.5 ± 0.1	5.1 ± 0.1	4.1 ± 0.1	4.1 ± 0.1		
15	9.8 ± 0.1	8.4 ± 0.1	7.0 ± 0.1	6.9 ± 0.1		
20	16.5 ± 0.1	14.8 ± 0.1	11.7 ± 0.1	11.3 ± 0.1		
25	26.0 ± 0.2	24.3 ± 0.2	21.0 ± 0.1	20.2 ± 0.1		
ΔH^{\ddagger} , kJ mol ⁻¹	70 ± 1	67 ± 2	72 ± 2	70 ± 2		
ΔS^{\ddagger} , J mol ⁻¹ K ⁻¹	$+16 \pm 4$	$+7 \pm 8$	$+21 \pm 5$	$+16 \pm 5$		
Pressure, MPa	b k _{obs} , s ⁻¹					
10	1.12 ± 0.02	0.90 ± 0.04	0.90 ± 0.01	0.85 ± 0.01		
50	1.06 ± 0.01	0.84 ± 0.01	0.85 ± 0.01	0.80 ± 0.01		
90	1.00 ± 0.01	0.79 ± 0.01	0.79 ± 0.01	0.74 ± 0.02		
130	0.95 ± 0.01	0.73 ± 0.01	0.74 ± 0.01	0.69 ± 0.01		
ΔV^{\ddagger} , cm ³ mol ⁻¹	$+3.4 \pm 0.1$	$+4.3 \pm 0.1$	$+4.1 \pm 0.1$	$+4.4 \pm 0.1$		

Table S2. Kinetic data for the reaction of *trans*-[(CH₃)Co((DO)(DOH)pn)MeOH]⁺ with imidazole, 1-methylimidazole, pyrazole, and 1,2,4-triazole as a function of temperature and pressure.^a

^a [Co^{III}]= 1 x 10⁻⁴ M. ^b [Nucleophile] = 0.05 M, T = 25 °C.

T, °C	trans-[(CH ₂ Cl)Co(Hdmg) ₂ H ₂ O]			trans-[(CH ₂ Br)Co(Hdmg) ₂ H ₂ O]		
	k, s ⁻¹	K, M ⁻¹	$k K, M^{-1}s^{-1}$	k, s ⁻¹	K, M ⁻¹	k K, M ⁻¹ s ⁻¹
20	4.1 ± 0.2	2.01 ± 0.08	8.2 ± 0.7	2.4 ± 0.2	1.51 ± 0.08	3.6 ± 0.5
25	8.0 ± 0.3	1.71 ± 0.08	13.7 ± 1.2	4.2 ± 0.3	1.44 ± 0.08	6.0 ± 0.8
30	15.4 ± 0.4	1.43 ± 0.08	22.0 ± 1.8	8.0 ± 0.4	1.30 ± 0.08	10.4 ± 1.2
35	28 ± 0.4	1.22 ± 0.08	34.2 ± 2.7	12.0 ± 0.3	1.33 ± 0.07	16.0 ± 1.2
40	47.0 ± 0.5	1.19 ± 0.08	55.9 ± 4.4	21.0 ± 0.3	1.34 ± 0.08	28.1 ± 2.1
ΔH^{\ddagger} , kJ mol ⁻¹			71 ± 1			76 ± 5
ΔS^{\ddagger} , J K ⁻¹ mol ⁻¹			$+14 \pm 3$			$+25 \pm 5$
Pressure, MPa	^b k, s ⁻¹					
10	5.13 ± 0.20			5.24 ± 0.10		
50	4.76 ± 0.10			4.69 ± 0.20		
80	4.48 ± 0.30			4.42 ± 0.10		
120	4.07 +0.20			3.99 ± 0.30		
ΔV^{\ddagger} , cm ³ mol ⁻¹	$+5.2 \pm 0.2$			$+6.0 \pm 0.2$		

Table S3. Kinetic data for the reaction of *trans*-[(R)Co(Hdmg)₂H₂O] with pyridine where $R = CH_2Cl$ and CH_2Br as a function of temperature and pressure.^a

^a [Co^{III}]= 1 x 10⁻³ M, pH = 8, I = 0.1 M. ^bT = 25 °C, [Py] = 0.64 M

trans-[(R)Co(Hdmg) ₂ H ₂ O]						
	Thiourea			Pyridine		
	$R = CH_2Cl$	$R = CH_2Br$	$R = CH_2I$		$R = CH_2I$	
T, °C		k, M ⁻¹ s ⁻¹		k, s ⁻¹	K, M ⁻¹	k K, M ⁻¹ s ⁻¹
20	10.4 ± 0.2	4.2 ± 0.2	4.1 ± 0.1	2.6 ± 0.1	1.04 ± 0.09	2.7 ± 0.3
25	17.8 ± 0.3	7.3 ± 0.2	6.6 ± 0.1	5.7 ± 0.2	0.86 ± 0.08	4.9 ± 0.6
30	27.9 ± 0.5	11.7 ± 0.5	11.3 ± 0.1	15.0 ± 0.2	0.54 ± 0.08	8.1 ± 1.3
35	46 ± 1	19.6 ± 0.5	20.0 ± 0.2	62.0 ± 0.2	0.21 ±0.07	13.0 ± 4.4
40	74 ± 1	32.7 ± 0.4	28.7 ± 0.4	74.0 ± 0.9	0.31 ± 0.08	22.9 ± 6.2
ΔH^{\ddagger} , kJ mol ⁻¹	72 ± 1	75 ± 1	73 ± 3			78 ± 2
ΔS^{\ddagger} , J K ⁻¹ mol ⁻¹	$+19 \pm 3$	$+23 \pm 4$	$+16 \pm 10$			$+31 \pm 6$
Pressure, MPa		^b k, s ⁻¹				
10	11.0 ± 0.4	6.3 ± 0.3	4.9 ± 0.2	1.78 ± 0.04		
50	10.2 ± 0.3	5.3 ± 0.3	4.4 ± 0.1	1.67 ± 0.03		
80	9.4 ± 0.4	4.6 ± .2	4.0 ± 0.3	1.55 ± 0.05		
120	8.4 ± 0.3	4.0 ± 0.3	3.7 ± 0.2	1.44 ± 0.04		
ΔV^{\ddagger} , cm ³ mol ⁻¹	$+6.1 \pm 0.4$	$+10.4 \pm 0.5$	$+6.4 \pm 0.2$	$+4.9 \pm 0.3$		

Table S4. Kinetic data for the reaction of *trans*-[(R)Co(Hdmg)₂H₂O] with pyridine and thiourea where $R = CH_2CI$, CH_2Br , and CH_2I as function of temperature and pressure.^a

^a $[Co^{III}]= 1 \times 10^{-3} M$, pH = 8, I = 0.1 M. ^b T = 25 ^oC, [TU] = 0.8 M, [Py] = 0.64M

Figure S1. Plots of k_{obs} versus [imidazole] (A), [1,2,4-triazole] (B), and [pyrazole] (C) for the reaction with 1 x 10⁻⁴ M *trans*-[(CH₃) Co((DO)(DOH)pn)MeOH]⁺ at 25.0 °C.

Figure S2. Plots of k_{obs} versus [Thiourea] for the reaction with 1 x 10⁻³ M *trans*-[(CH₂Cl)Co(Hdmg)₂H₂O] as a function of temperature. Experimental conditions: pH = 8, I = 0.1 M, and temperature 20 (A), 25 (B), 30 (C), 35 (D) and 40 (E) °C.

Figure S3. Plots of k_{obs} versus [Thiourea] for the reaction with 1 x 10⁻³ M *trans*-[(CH₂Br)Co(Hdmg)₂H₂O] as a function of temperature. Experimental conditions: pH = 8, I = 0.1 M, and temperature: 20 (A), 25 (B), 30 (C), 35 (D) and 40 (E) °C.

Figure S4. Plots of k_{obs} versus [Thiourea] for the reaction with 1 x 10⁻³ M *trans*-[(CH₂I)Co(Hdmg)₂H₂O] as a function of temperature. Experimental conditions: pH = 8, I = 0.1 M, and temperature: 20 (A), 25 (B), 30 (C), 35 (D) and 40 (E) °C.

Figure S5. Plots of k_{obs} versus [Pyridine] for the reaction with 1 x 10⁻³ M *trans*-[(CH₂Br)Co(Hdmg)₂H₂O] as a function of temperature. Experimental conditions: pH = 8, I = 0.1 M, and temperature: 20 (A), 25 (B), 30 (C), 35 (D) and 40 (E) °C.

Figure S6. Plots of k_{obs} versus [Pyridine] for the reaction with 1 x 10⁻³ M *trans*-[(CH₂I)Co(Hdmg)₂H₂O] as a function of temperature. Experimental conditions: pH = 8, I = 0.1 M, and temperature: 20 (A), 25 (B), 30 (C), 35 (D) and 40 (E) °C.

Figure S7. Plots of ln*k* versus pressure for the reaction of *trans*-[(CH₃)Co((DO)(DOH)pn)S]⁺ with pyrazole (A), imidazole (B) and 1,2,4-triazole (C) for S = H₂O; imidazole (D), pyrazole (E) and 1,2,4-triazole (F) for S = MeOH. Experimental conditions: $[Co^{III}] = (0.9-1.5) \times 10^{-4}$ M, [imidazole] = [1,2,4-triazole] = [pyrazole] = 0.05 M, Temp. = 25.0 °C, pH 9 and I = 0.1 M NaClO₄ in the case of S = H₂O.

Figure S8. Plots of ln*k* versus pressure for the reaction of *trans*-[(CH₃)Co((DO)(DOH)pn)S]⁺ with 1-methylimidazole for S = H₂O (A) and for S = MeOH (B). Experimental conditions: $[Co^{III}] = (0.9-1.5) \times 10^{-4} M$, [1-methylimidazole] = 0.05 M, Temp. = 25.0 °C, pH 9 and I = 0.1 M NaClO₄ in the case of S = H₂O.

Figure S9. Plots of ln*k* versus pressure for the reaction of *trans*-[(CH₂Cl)Co(Hdmg)₂H₂O] with thiourea (A) and pyridine (B). Experimental conditions: $[Co^{III}] = 1 \times 10^{-3} \text{ M}$, [Py] = 0.64 and [TU] = 0.8 M, Temp. = 25.0 °C, pH 8 and I = 0.1 M.

Figure S10. Plots of ln*k* versus pressure for the reaction of *trans*-[(R)Co(Hdmg)₂H₂O] with pyridine where R = CH₂Br (A) and CH₂I (B). Experimental conditions: $[Co^{III}] = 1 \times 10^{-3} \text{ M}$, [Py] = 0.64 M, Temp. = 25.0 °C, pH 8 and I = 0.1 M.

Figure S11. Plots of ln*k* versus pressure for the reaction of *trans*-[(R)Co(Hdmg)₂H₂O] with thiourea where R = CH₂Br (A) and CH₂I (B). Experimental conditions: $[Co^{III}] = 1 \times 10^{-3} \text{ M}$, [TU] = 0.8 M, Temp. = 25.0 °C, pH 8 and I = 0.1 M.

Figure S12. Plot of ln*k* versus pressure for the reaction of *trans*-[(CH₃)₂Co((DO)(DOH)pn)] with acid. Experimental conditions: $[Co^{III}] = 3 \times 10^{-5} \text{ M}, [H^+] = 1.25 \times 10^{-2} \text{ M}, \text{ Temp.} = 25.0 \text{ °C}, I = 0.2 \text{ M} \text{ NaClO}_4 \text{ in H}_2\text{O} \text{ and MeOH} (1:1) \text{ as solvent.}$

(C)

Figure S13. DFT calculated (B3LYP/LANL2DZp) structures of trans-[(CH₂Br)Co(Hdmg)₂OH₂] (A), trans-[(CH₂I)Co(Hdmg)₂OH₂](B), trans-[(CH₂Cl)Co(Hdmg)₂Py] (C), trans-[(CH₂Br)Co(Hdmg)₂Py] (D) and trans-[(CH₂I)Co(Hdmg)₂Py] (E).

Synopsis

Mechanistic behaviour of alkylcobaloximes and imino-oxime complexes related to vitamin B₁₂

Basam M. Alzoubi, Fanny Vidali, Ralph Puchta, Carlos Dücker-Benfer, Alessandro Felluga, Lucio Randaccio, Giovanni Tauzher and Rudi van Eldik*

Ligand substitution reactions of complexes of the type *trans*- $[(R)Co(Chel)S]^{+/0}$ were studied as a function of temperature and pressure. The activation parameters support the operation of a dissociative interchange (I_d) mechanism. The reaction of *trans*- $[(CH_3)_2Co((DO)(DOH)pn)]$ with acid was studied in H₂O/methanol (1:1) as solvent. The mechanism involves protonation of the methyl group followed by release of methane.

