Biospeciation of various antidiabetic V^{IV}O compounds with serum proteins[†]

Tamás Jakusch,¹ Dominik Hollender,¹ Éva Anna Enyedy,¹ Cristina Sánchez González,² Maria Montes-Bayón,² Alfredo Sanz-Medel,^{*2} João Costa Pessoa,³ Isabel Tomaz³ and Tamás Kiss^{*1}

¹ Department of Inorganic and Analytical Chemistry, University of Szeged, P.O. Box 440, Szeged H-6701, Hungary, Tel.: +36-62-544337, Fax: +36-62-420505), E-mail: tkiss@chem.u-szeged.hu

² Department of Physical and Analytical Chemistry. University of Oviedo. C/Julián Clavería 8, 33006 Oviedo, Spain, Tel.: +34-98-5103474, Fax: +34-98-5103474, E-mail: asm@uniovi.es

³ Centro Química Estrutural, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

[†]Electronic Supplementary Information (ESI) available: CD spectral parameters and CD and EPR spectra.

Table S1 CD spectral parameters of the binary and ternary V^{IV}O-apoTf complexes, $((V^{IV}O)_x apoTf(A)_y)$. x=1-2, y=0-2; A = dhp or mal, pH 7.4, $c(HCO_3^-) = 25.0$ mM, T = 25 °C).

	$\lambda_{min}/\Delta arepsilon_{min}$	$\lambda_{max}/\Delta \varepsilon_{max}$	
	$[nm]/[M^{-1}cm^{-1}]$		
(V ^{IV} O)apoTf	621 / -0.204	754 / 0.053	
	918 / -0.290		
(V ^{IV} O)2apoTf	621 / -0.408	754 / 0.106	
	918 / -0.580		

Α	dhp		mal	
	$\lambda_{min}/\Delta arepsilon_{min}$	$\lambda_{max}/\Delta \varepsilon_{max}$	$\lambda_{min}/\Delta arepsilon_{min}$	$\lambda_{max}/\Delta \varepsilon_{max}$
	[nm]/[M ⁻¹ cm ⁻¹]			
(V ^{IV} O)apoTf(A)	635 / -0.360		645 / -0.496	
(V ^{IV} O) ₂ apoTf(A)	Not measured		636 / -0.994	812 / 0.242
			876 / -0.190	
$(V^{IV}O)_2apoTf(A)_2$	633 / -0.669		639 / -0.993	

A Experimental CD spectra at different apoTf : dhp ratios (c(apoTf) = 0.77 mM, $c(V^{IV}O) = 0.77 \text{ mM}$)

B Experimental CD points and fitted curves at two selected wavelengths (\Box : $\lambda = 634$ nm, \blacksquare : $\lambda = 934$ nm, primary y axis). The "anisotropic fraction" of the EPR spectra (\circ , right y axis), calculated based on the ratio between the double integrated anisotropic part and the whole fitted spectrum, also depicted. The "anisotropic fraction" is the fraction of V^{IV}O bound to apoTf. The experimental conditions are the same as in A.

C Several measured (solid) and calculated (dotted) CD spectra at the same condition

D Calculated speciation (based on stability constants in Table 1, c(apoTf) = 0.77 mM, $c(V^{IV}O) = 0.77 \text{ mM}$) during the titration of ($V^{IV}O$)apoTf with dhp (max. dilution ~20%). The isotropic "fraction" (\blacksquare , same y axis) of the EPR spectra are also depicted.

(A-B-C-D: pH 7.4, $c(HCO_3^{-}) = 25.0 \text{ mM}$, T = 25 °C).

A Experimental CD spectra at different apoTf : dhp ratio (c(apoTf) = 0.51 mM, $c(V^{IV}O) = 0.98 \text{ mM}$)

B Experimental CD points and two fitted curve at two selected wavelengths ($\Box \lambda = 634$ nm, $\blacksquare \lambda = 934$ nm) and the anisotropic "fractions" (\circ , right y axis) of the decomposed EPR spectra.

C Several measured (bold) and calculated (thin) CD spectra at the same conditions

D1-D2 Calculated speciation curves as a function of the ratio of c(dhp)/c(apoTf), (based on the stability constants given in Table 1, c(apoTf) = 0.77 mM, $c(V^{IV}O) = 0.77$ mM) during the titration of $(V^{IV}O)apoTf$ with dhp (max. dilution ~20%). The isotropic "fraction" (**■**, depicted in the same y axis) of the EPR spectra are also given . (A-B-C-D: pH 7.4, $c(HCO_3^-) = 25.0$ mM, T = 25 °C).

A Experimental CD spectra at different apoTf/maltol ratios (c(apoTf) = 0.89 mM, $c(V^{IV}O) = 0.89 \text{ mM}$)

B Experimental CD points and fitted curves at two selected wavelengths ($\Box \lambda = 646$ nm, $\blacksquare \lambda = 934$ nm) The intensity of the EPR signals (\circ , AU, right y axis) at H = 3329 Gauss (maximum of the $\perp_{7/2}$ transition of the ternary species) is also depicted. The experimental conditions are the same as in A.

C Several measured (solid lines) and calculated (dotted lines) CD spectra at the same conditions.

D Calculated speciation curves as a function of c(mal)/c(apoTf) ratio (based on the stability constants in Table 1, c(apoTf) = 0.89 mM, $c(V^{IV}O) = 0.89 \text{ mM}$ during the titration of $(V^{IV}O)_2 apoTf$ with mal (max. dilution of ~20%). The isotropic "fraction" (\blacksquare , depicted in the same y axis) of the EPR spectra representing the measured fraction of $V^{IV}O$ not bound to apoTf is also given.

(A-B-C-D: pH 7.4, $c(HCO_3^{-}) = 25.0 \text{ mM}$, T = 25 °C).

A Experimental CD spectra at different mal/apoTf ratios (c(apoTf) = 0.92 mM, $c(V^{IV}O) = 1.84 \text{ mM}$)

B Experimental CD points and fitted curves at two selected wavelengths ($\Box \lambda = 646$ nm, $\blacksquare \lambda = 934$ nm) The EPR signal (\circ , AU, right y axis) at H = 3329 Gauss (maximum of the $\perp_{7/2}$ transition of the ternary species) are also depicted. The experimental conditions are the same as in A.

C Several measured (solid lines) and calculated (dotted lines) CD spectra at the same conditions.

D Calculated speciation (based on stability constants in Table 1, c(apoTf) = 0.92 mM, $c(V^{IV}O] = 1.84 \text{ mM}$) during the titration of $(V^{IV}O)_2apoTf$ with mal (max. dilution ~20%). The isotropic "fraction" (\blacksquare , same y axis) of the EPR spectra, which practically represent the measured fraction of $V^{IV}O$ not bound to Tf is also depicted. (A-B-C-D: pH 7.4, $c(HCO_3^-) = 25.0 \text{ mM}$, T = 25 °C).

C Calculated spectra of the individual species

The calculated individual molar CD spectra of the binary and ternary complexes formed:

A

 $(V^{IV}O)apoTf\,(\diamondsuit)$ and $(V^{IV}O)_2apoTf\,(\blacksquare)$

B

 $(V^{IV}O)apoTf(dhp)$ (\Box) and

 $(V^{IV}O)_2apoTf(dhp)_2(\blacksquare)$

C

 $(V^{IV}O)$ apoTf(mal) (\triangle), $(V^{IV}O)_2$ apoTf(mal) (\blacksquare), and $(V^{IV}O)_2$ apoTf(mal)₂ (\bullet)

Figure S6 Simulation and "deconvolution" of some selected EPR spectra measured at different apoTf : dhp ratios (c(apoTf) = 0.77 mM, c(V^{IV}O) = 0.77 mM, pH 7.4, c(HCO₃⁻) = 25.0 mM, T = 25 °C), (**■**) isotropic, (**□**) ainisotropic, perpendicular and (**▲**) ainisotropic, parallel part of the spectra (The magnetic field range was reduced in the Figs. for a better clarity, the peaks $||_{+7/2}$, $||_{-5/2}$ and $||_{-7/2}$ do not appear)

B Measured (thin) and simulated (bold) EPR spectra (Because of the good agreement of the measured and the simulated spectra they can be hardly distinguished.)

C Anisotropic part of the selected simulated spectra

Figure S7 Simulation and "deconvolution" of some selected EPR spectra measured at different apoTf : dhp ratio (c(apoTf) = 0.51 mM, c(V^{IV}O) = 0.98 mM, pH 7.4, c(HCO₃⁻) = 25.0 mM, T = 25 °C), (**•**) isotropic, (**□**) ainisotropic perpendicular and (**▲**) ainisotropic parallel (The magnetic field range of the figures was reduced in order for better clarity, the peaks $\parallel_{+7/2}$, $\parallel_{-5/2}$ and $\parallel_{-7/2}$ do not appear)

B Measured (thin) and simulated (bold) EPR spectra (Because of the good agreement of the measured and the simulated spectra they can be hardly distinguished.)

C Anisotropic part of the selected simulated spectra

Amplifications of the EPR spectra measured at different V^{IV}O : apoTf : maltol ratio

(A, C, E : c(apoTf) = 0.89 mM, c(V^{IV}O) = 0.89 mM; B, D, F: c(apoTf) = 0.92 mM, c(V^{IV}O) = 1.84 mM; pH = 7.4, c(HCO₃⁻) = 25.0 mM, T = 25 °C)

A-B The 2900-3320 Gauss range, mainly the $\|_{7/2}$, $\|_{5/2}$, $\perp_{7/2}$ and the $\|_{3/2}$ transition. At higher maltol content the isotropic 7/2 and 5/2 transitions can be observed.

C-D The 3280-3400 Gauss range (the $\parallel_{3/2}$ and the $\perp_{5/2}$ transition)

E-F The 3725-3825 Gauss range (the $\perp_{-7/2}$ transition)

A CD spectra measured in the apoTf : $V^{IV}O$: dhp 1 : 1 : 1 system at different hydrogencarbonate concentration. (c(apoTf) = 0.93 mM, c($V^{IV}O$) = 0.93 mM, c(dhp) = 0.95 mM, pH 7.4, T = 25 °C) **B** CD spectra measured in the apoTf : $V^{IV}O$: dhp 1 : 2 : 2 system at different hydrogencarbonate concentration. (c(apoTf) = 0.48 mM, c($V^{IV}O$) = 0.95 mM, c(dhp) = 0.94 mM, pH 7.4, T = 25 °C),

Figure S10 Simulation and "deconvolution" of EPR spectra measured in the V^{IV}O : apoTf : dhp 1 : 1 : 1 system at different carbonate concentration. (c(apoTf) = 0.93 mM, c(V^{IV}O) = 0.93 mM, c(dhp) = 0.95 mM, pH 7.4, T = 25 °C), (**■**) isotropic, (**□**) ainisotropic perpendicular and (**▲**) ainisotropic parallel (The magnetic field range of the figures was reduced in order for better clarity, the peaks $\parallel_{+7/2}$, $\parallel_{-5/2}$ and $\parallel_{-7/2}$ do not appear)

B Measured (thin) and simulated (bold) EPR spectra (Because of the good agreement of the measured and the simulated spectra they can be hardly distinguished.)

C Anisotropic part of the simulated spectra

Figure S11 Simulation and "deconvolution" of EPR spectra measured in the V^{IV}O : apoTf : dhp 2: 1 : 2 system at different carbonate concentration. (c(apoTf) = 0.48 mM, c(V^{IV}O) = 0.95 mM, c(dhp) = 0.94 mM, pH 7.4, T = 25 °C), (**■**) isotropic, (**□**) ainisotropic perpendicular and (**▲**) ainisotropic parallel (The magnetic field range of the figures was reduced in order for better clarity, the peaks $\|_{+7/2}$, $\|_{-5/2}$ and $\|_{-7/2}$ do not appear)

B Measured (thin) and simulated (bold) EPR spectra

C Anisotropic part of the simulated spectra

Figure S12 CD spectra of the V^{IV}O : apoTf : HSA 1 : 1 : 1 in the presence (**B**) and absence (**A**) of maltol; compared with the HSA free systems. The solid line spectra belong to HSA free the dotted line ones belong to the HSA containing samples. (c(apoTf) = 0.99 mM, $c(V^{IV}O) = 1.02 \text{ mM}$, c(HSA) = 1.00 mM, pH 7.4, $c(HCO_3^-) = 25.0 \text{ mM}$, T = 25 °C) Order of addition: apoTf, V^{IV}O, HSA and maltol.