Supporting Information (S) for Paper:

Alkali and transition metal (Ag, Cu) salts of bridged 5-nitrotetrazole derivatives for energetic applications

Thomas M. Klapötke, Carles Miró Sabaté and Matthias Rasp

Table S1. Calculated (corrected) and experimental frequencies with the corresponding intensities (IR) and activities (Raman) and tentative assignment for the $NTTz^{-}$ anion.

	$v_{calc} (cm^{-1})^{a}$	$v_{\text{meas}} (\text{cm}^{-1})^{b}$	IR intensity ^c	Raman activity ^d	Mode Assignment ^e
		(IR / Raman)	(Calc / Obs)	(Calc / Obs)	
1	62	- / 90(3)	3.2 / -	0.6 / w	$\tau(NO_2) + \tau(NT-ring)$
2	320	- / 310(5)	1.9 / -	2.3 / w	$\tau(CH_2)$
3	351	- / 346(5)	0.9 / -	1.4 / w	$\tau(CH_2)$
4	530	548(6) / 548(8)	2.2 / w	4.2 / m	$\omega(NO_2)$
5	646	656(2) / n.o.	17.2 / m	2.3 / n.o.	$\gamma(NO_2) + \gamma(NT-ring) + \gamma(Tz-ring)$
6	669	684(1) / 686(4)	6.9 / w	4.4 / m	$\gamma(NO_2) + \gamma(NT-ring) + \gamma(Tz-ring)$
7	696	705(2) / n.o.	2.0 / w	0.3 / n.o.	γ (NT-ring) + γ (Tz-ring)
8	722	n.o. / n.o.	37.0 / n.o.	2.4 / n.o.	γ(N6–N7–N8)
9	727	752(1) / n.o.	30.1 / m	0.6 / n.o.	γ(N6–N7–N8)
10	765	759(1) / 759(6)	1.6 / w	2.5 / m	$\gamma(NO_2) + \gamma(NT-ring)$
11	795	785(1) / 774(1)	8.1 / w	0.6 / w	$\omega(CH_2)$
12	825	846(3) / 844(1)	92.5 / s	1.8 / w	$\delta(\mathrm{NO}_2)$
13	1020	1031(3) / n.o.	3.9 / w	4.3 / n.o.	δ (C3–N9–N8) _{Tz-ring}
14	1042	1048(8) / 1032(3)	5.6 / w	47.9 / s	$\delta(N6-C3-N9)_{Tz-ring}$
15	1048	1070(2) / 1070(2)	4.6 / w	14.1 / m	$\delta(N4-N5-C1)_{NT-ring}$
16	1086	1101(3) / 1099(2)	2.1 / w	41.2 / m	$v_{as}(N-N)_{NT-ring} + \omega(CH_2)$
17	1133	1125(9) / 1105(1)	8.6 / w	5.7 / m	$v(N6-N7)_{Tz-ring} + v(N8-N9)_{Tz-ring}$
18	1163	1145(1) / 1145(3)	9.6 / w	3.6 / m	$v(N7-N8)_{Tz-ring} + \gamma_{sym}(CH_2)$
19	1220	1219(1) / 1195(3)	10.7 / w	49.1 / s	$\omega(CH_2) + \nu(N4-N5)$
20	1268	n.o. / n.o.	37.3 / n.o.	8.2 / n.o.	$\gamma_{as}(CH_2)$
21	1279	1278(1) / 1280(1)	28.6 / m	8.5 / m	$\gamma(CH_2)$
22	1313	1297(1) / 1298(1)	3.1 / w	26.9 / w	v(C1-N2) + v(N2-N3)
23	1316	1325(5) / 1320(3)	106.0 / s	7.0 / m	$v(C1-N5) + v_{sym}(NO_2)$
24	1374	1342(6) / 1341(7)	39.7 / m	33.9 / m	δ(CH ₂)
25	1400	1419(2) / 1421(2)	24.9 / s	2.1 / w	$v(C3-N)_{Tz-ring}$
26	1415	1437(3) / 1445(2)	1.2 / m	26.7 / s	$v(C2-C3)_{Tz-ring}$
27	1451	1488(2) / 1489(2)	22.7 / s	58.5 / m	$v(C-N)_{NT-ring} + v(N-N)_{NT-ring}$
28	1590	1558(3) / 1560(4)	220.1 / s	7.1 / m	$v_{as}(NO_2)$
29	2961	n.o. / 2974(5)	20.0 / n.o.	132.0 / m	$v_{sym}(CH_2)$
30	3026	3022(8) / 3024(5)	2.6 / m	60.9 / m	$v_{as}(CH_2)$

^{*a*} Calculated frequencies scaled by 0.9613. ^{*b*} Averaged values of measured (IR and Raman) frequencies with standard deviations in curved brackets (n.o. = not observed). ^{*c*} Calculated intensities and observed intensities (IR). ^{*d*} Calculated and observed activities (Raman). ^{*e*} Tentative assignment of the vibrational modes (v = stretching, $\delta =$ in-plane bending, $\gamma =$ out-of-plane bending, $\omega =$ in plane rocking, $\tau =$ torsion, as = asymmetric and sym = symmetric).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Parameter	8 (A)	8 (B)	9 (A)	9 (B)
N101	1.224(1)	1.218(1)	1.221(3)	1.226(3)
N1-O2	1.221(1)	1.221(1)	1.221(3)	1.220(2)
N1C1	1.447(1)	1.450(1)	1.444(3)	1.440(3)
N2C1	1.319(1)	1.319(1)	1.308(3)	1.319(3)
N2-N3	1.320(1)	1.317(1)	1.322(2)	1.321(2)
N3-N4	1.326(1)	1.327(1)	1.321(2)	1.325(2)
N4–N5	1.320(1)	1.320(1)	1.326(3)	1.324(3)
N5-C1	1.334(1)	1.329(1)	1.331(3)	1.325(3)
N3-C2	1.473(1)	1.476(1)	1.475(3)	1.468(3)
C2–C3	1.490(1)	1.484(1)	1.485(3)	1.498(3)
C3-N6	1.328(1)	1.326(1)	1.322(3)	1.322(3)
N6-N7	1.353(1)	1.345(1)	1.347(3)	1.356(3)
N8–N7	1.304(1)	1.311(1)	1.317(3)	1.326(3)
N9–N8	1.348(1)	1.346(1)	1.345(3)	1.349(3)
N9-C3	1.326(1)	1.330(1)	1.319(3)	1.307(3)
O1-N1-O2	125.7(1)	125.9(1)	125.9(2)	125.6(2)
01-N1-C1	117.2(1)	118.0(1)	117.4(2)	117.3(2)
O2-N1-C1	117.0(1)	115.9(1)	116.6(2)	117.1(2)
N2C1N1	121.2(1)	122.2(1)	123.2(2)	121.6(2)
C1-N2-N3	99.7(1)	99.7(1)	100.0(2)	99.9(2)
N2-N3-N4	114.3(1)	114.3(1)	114.3(2)	114.4(2)
N5-N4-N3	106.4(1)	106.1(1)	105.9(2)	105.8(2)
N4-N5-C1	104.1(1)	104.2(1)	104.3(2)	104.7(2)
N5-C1-N1	123.1(1)	122.2(1)	121.4(2)	123.2(2)
N2-N3-C2	122.8(1)	121.9(1)	122.3(2)	122.8(2)
N4-N3-C2	122.7(1)	123.6(1)	123.3(2)	122.6(2)
N3-C2-C3	111.1(1)	110.8(1)	110.8(2)	111.5(2)
N2C1N5	115.5(1)	115.4(1)	115.4(2)	115.1(2)
N6-C3-C2	124.5(1)	123.4(1)	123.2(2)	123.8(2)
C3-N6-N7	104.3(1)	104.2(1)	104.0(2)	104.1(2)
N6-N7-N8	109.5(1)	109.7(1)	109.2(2)	109.3(2)
N7-N8-N9	109.2(1)	109.0(1)	109.3(2)	109.4(2)
C3-N9-N8	104.7(1)	104.7(1)	104.2(2)	104.3(2)
N6-C3-N9	112.1(1)	112.1(1)	113.2(2)	112.7(2)
N9-C3-C2	123.3(1)	124.3(1)	123.6(2)	123.5(2)

 Table S2. Selected bond lengths [Å] and angles [°] for 8 and 9.

Table S3. Selected bond distances for the coordination around the K^+ cations in **8**.

K1–O5	2.783(1)	K1-01	3.002(1)	K2–N16 ⁱⁱ	2.999(1)
K1–O4	2.799(1)	K2-06	2.744(1)	K2-N4	3.089(1)
K1–O5 ^{iv}	2.819(1)	K2-N17	2.765(1)	K2–N16	3.130(1)
K1-N2	2.868(1)	K2–O6 ⁱ	2.874(1)	K2–N5 ⁱⁱ	3.172(1)
K1-N14	2.965(1)	K2–N18	2.897(1)		

Symmetry codes for **8**: (i) 2–x, 1–y, –z; (ii) 2–x, 2–y, –z; (iii) 1–x, 2–y, –z; (iv) 3–x, 2–y, –1–z; (v) 3–x, 1–y, – 1–z.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

O5-K1-O4	103.68(3)	N6-K1-O3 ^v	74.45(3)	O6–K2–N5 ⁱⁱ	72.86(3)
$O5-K1-O5^{iv}$	83.99(3)	O5-K1-N10 ^v	85.95(3)	N17–K2–N5 ⁱⁱ	69.68(3)
O4–K1–O5 ^{iv}	85.23(4)	N2-K1-N10 ^v	140.76(3)	$O6^{i}$ -K2-N5 ⁱⁱ	137.00(3)
O5-K1-N2	104.56(3)	N14-K1-N10 ^v	116.38(3)	N18–K2–N5 ⁱⁱ	141.92(3)
O4-K1-N2	138.61(3)	O1-K1-N10 ^v	164.03(3)	N16 ⁱⁱ –K2–N5 ⁱⁱ	75.44(3)
O5 ^{iv} -K1-N2	127.26(3)	N6-K1-N10 ^v	74.41(3)	N4–K2–N5 ⁱⁱ	119.73(3)
O5-K1-N14	150.92(3)	$O3^{v}-K1-N10^{v}$	20.51(3)	N16–K2–N5 ⁱⁱ	59.70(3)
O4-K1-N14	97.07(3)	O4-K1-N10 ^v	19.36(3)	O6-K2-N17 ⁱⁱⁱ	103.81(3)
O5 ^{iv} –K1–N14	77.61(3)	$O5^{iv}$ -K1-N10 ^v	90.97(3)	N17–K2–N17 ⁱⁱⁱ	67.46(3)
N2-K1-N14	70.65(3)	O6-K2-N17	127.66(3)	O6 ⁱ –K2–N17 ⁱⁱⁱ	97.06(3)
O5-K1-O1	84.43(3)	O6–K2–O6 ⁱ	78.34(3)	N18–K2–N17 ⁱⁱⁱ	22.58(3)
O4-K1-O1	158.18(4)	N17–K2–O6 ⁱ	151.33(3)	N16 ⁱⁱ –K2–N17 ⁱⁱⁱ	161.56(3)
O5 ^{iv} –K1–O1	75.39(3)	O6-K2-N18	102.10(3)	N4–K2–N17 ⁱⁱⁱ	92.95(3)
N2-K1-O1	54.56(2)	N17-K2-N18	86.62(3)	N16–K2–N17 ⁱⁱⁱ	91.05(3)
N14-K1-O1	69.33(3)	O6 ⁱ -K2-N18	74.74(3)	N5 ⁱⁱ –K2–N17 ⁱⁱⁱ	120.22(3)
O5-K1-N6	122.45(3)	O6–K2–N16 ⁱⁱ	89.74(3)	O6–K2–N15 ⁱⁱ	81.86(3)
O4-K1-N6	71.40(3)	N17–K2–N16 ⁱⁱ	113.97(3)	N17–K2–N15 ⁱⁱ	134.89(3)
O5 ^{iv} -K1-N6	147.67(3)	O6 ⁱ –K2–N16 ⁱⁱ	73.16(3)	O6 ⁱ –K2–N15 ⁱⁱ	50.59(3)
N2-K1-N6	68.04(3)	N18–K2–N16 ⁱⁱ	142.60(3)	N18–K2–N15 ⁱⁱ	123.53(3)
N14-K1-N6	83.31(3)	O6-K2-N4	149.91(3)	N16 ⁱⁱ –K2–N15 ⁱⁱ	22.88(3)
O1-K1-N6	121.55(3)	N17-K2-N4	81.75(3)	N4–K2–N15 ⁱⁱ	70.63(3)
O5-K1-O3 ^v	70.04(3)	O6 ⁱ -K2-N4	74.89(3)	N16–K2–N15 ⁱⁱ	110.62(3)
O4–K1–O3 ^v	39.53(3)	N18-K2-N4	83.94(3)	N5 ⁱⁱ –K2–N15 ⁱⁱ	93.64(3)
$O5^{iv}$ -K1-O3 ^v	101.62(3)	N16 ⁱⁱ –K2–N4	69.61(3)	N17 ⁱⁱⁱ –K2–N15 ⁱⁱ	145.99(3)
N2-K1-O3 ^v	130.53(3)	O6-K2-N16	131.14(3)		
N14-K1-O3 ^v	135.53(3)	N17-K2-N16	24.73(3)	N4-K2-N16	72.16(3)
O1-K1-O3 ^v	154.47(3)	O6 ⁱ -K2-N16	146.40(3)	N18-K2-N16	107.76(3)

Table S4. Selected bond angles for the coordination around the K^+ cations in **8**.

Symmetry codes for 8: (i) 2-x, 1-y, -z; (ii) 2-x, 2-y, -z; (iii) 1-x, 2-y, -z; (iv) 3-x, 2-y, -1-z; (v) 3-x, 1-y, -1-z.

Table S5. Hydroge	en bonding geom	etry in 8 and 9 .
-------------------	-----------------	---------------------------------

D–H•••A	D–H (Å)	H•••A (Å)	D•••A (Å)	$D-H \bullet \bullet A (^{\circ})$
		8		
06–H6•••N6 ⁱ	0.83(2)	1.93(2)	2.743(1)	166(2)
O6–H5•••N9 ⁱⁱ	0.85(2)	2.04(2)	2.878(1)	168(2)
O5–H7•••N6 ⁱⁱⁱ	0.80(2)	2.22(2)	3.010(1)	172(2)
O5–H8•••N7 ^{iv}	0.77(2)	2.19(2)	2.949(1)	169(2)
C2–H1•••O1 ^v	0.99(1)	2.40(1)	3.205(1)	138(1)
C5–H5•••N16 ^{vi}	0.96(2)	2.73(2)	3.221(1)	112(1)
		9		
O5–H7•••N15 ⁱ	0.76(3)	2.24(3)	3.006(3)	178(3)
O5–H8•••N16 ⁱⁱ	0.80(4)	2.15(4)	2.946(3)	166(4)
O6–H5•••N18 ⁱⁱⁱ	0.83(4)	2.03(4)	2.835(3)	161(3)
06–H6•••N6 ⁱⁱⁱ	0.81(3)	1.99(3)	2.777(4)	164(3)
C5–H4•••O3 ^{iv}	0.95(2)	2.40(2)	3.197(3)	141(2)

Symmetry codes for **8**: (i) x, -1+y, z; (ii) 2-x, 1-y, -z; (iii) 2-x, 2-y, -1-z; (iv) -1+x, 2+y, 1+z; (v) -2+x, 1+y, 1+z; (vi) 1-x, 3-y, -z. **9**: (i) -1-x, 2-y, 1-z; (ii) -1+x, y, z; (iii) -x, 2-y, -z; (iv) x, y+1, z.

D–H•••A	05–H7•••N6 ⁱⁱⁱ	O5–H8•••N7 ^{iv}	06–H5•••N9 ⁱⁱ	06–H6•••N6 ⁱ
O5–H7•••N6 ⁱⁱⁱ	D1,1(2)			
О5–Н8•••N7 ^{iv}	R4,4(10)	D1,1(2)		
O6–H5•••N9 ⁱⁱ	D2,2(5)	D2,2(5)	D1,1(2)	
06–H6•••N6 ⁱ	D2,2(5)	D2,2(5)	D2,2(5)	D1,1(2)

Table S6. Graph-set matrix for selected hydrogen bonds in **8**. First level motifs on-diagonal and second level graph-sets off-diagonal.

Symmetry codes for 8: (i) x, -1+y, z; (ii) 2-x, 1-y, -z; (iii) 2-x, 2-y, -1-z; (iv) -1+x, 2+y, 1+z.

Table S7. Graph-set matrix for selected hydrogen bonds in **9**. First level motifs on-diagonal and second level graph-sets off-diagonal.

D–H•••A	O5–H7•••N15 ⁱ	O5–H8•••N16 ⁱⁱ	O6–H5•••N18 ⁱⁱⁱ	06–H6•••N6 ⁱⁱⁱ
O5–H7•••N15 ⁱ	D1,1(2)			
O5–H8•••N16 ⁱⁱ	R4,4(10)	D1,1(2)		
O6–H5•••N18 ⁱⁱⁱ	D2,2(5)	D2,2(5)	D1,1(2)	
06–H6•••N6 ⁱⁱⁱ	D2,2(5)	D2,2(5)	D2,2(5)	D1,1(2)

Symmetry codes for 9: (i) -1-x, 2-y, 1-z; (ii) -1+x, y, z; (iii) -x, 2-y, -z.

Table S8. Select	ed bond distance	es for the coordina	tion around the Rb	⁺ cations in 9 .
------------------	------------------	---------------------	--------------------	------------------------------------

2.912(2)	Rb1–O2	3.528(2)	Rb2–N7	3.110(2)
2.941(2)	Rb1–N1 ^{iv}	3.569(2)	Rb2–N13	3.185(2)
2.977(2)	Rb1–O1 ^{vi}	3.627(2)	Rb2–N14 ⁱ	3.299(2)
2.998(2)	Rb2–N8 ⁱ	2.899(2)	Rb2–N7 ⁱ	3.327(2)
3.119(2)	Rb2–O6	2.930(2)	Rb2–N8 ⁱⁱ	3.416(2)
3.161(2)	Rb2–N9 ⁱⁱ	2.994(2)	Rb2–N6 ⁱⁱⁱ	3.580(2)
3.349(2)	Rb2–O6 ⁱⁱⁱ	3.002(2)	Rb2–N6	3.592(2)
3.505(2)				
	2.912(2) 2.941(2) 2.977(2) 2.998(2) 3.119(2) 3.161(2) 3.349(2) 3.505(2)	2.912(2)Rb1–O22.941(2)Rb1–N1 ^{iv} 2.977(2)Rb1–O1 ^{vi} 2.998(2)Rb2–N8 ⁱ 3.119(2)Rb2–O63.161(2)Rb2–N9 ⁱⁱ 3.349(2)Rb2–O6 ⁱⁱⁱ 3.505(2)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes for **9**: (i) -1-x, 2-y, -z; (ii) x, 1+y, z; (iii) -x, 2-y, -z; (iv) -x, 1-y, 1-z; (v) -1-x, 1-y, 1-z; (vi) -1+x, 1+y, z; (vii) 1+x, -1+y, z.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

O2–Rb1–O1 ^{vi}	144.56(5)	N11–Rb1–N1 ^{iv}	145.01(5)	N14 ⁱ –Rb2–N7 ⁱ	58.82(5)
N1 ^{iv} –Rb1–O1 ^{vi}	90.47(6)	N5–Rb1–N1 ^{iv}	118.55(6)	N8 ⁱ –Rb2–N8 ⁱⁱ	72.11(6)
O5–Rb1–O2 ^{iv}	98.20(7)	O3–Rb1–N1 ^{iv}	162.97(5)	O6–Rb2–N8 ⁱⁱ	110.32(6)
O5–Rb1–O5 ^v	84.33(6)	N15–Rb1–N1 ^{iv}	79.29(5)	N9 ⁱⁱ –Rb2–N8 ⁱⁱ	23.04(5)
O2 ^{iv} –Rb1–O5 ^v	81.35(7)	O1 ^{iv} –Rb1–N1 ^{iv}	19.85(5)	O6 ⁱⁱⁱ –Rb2–N8 ⁱⁱ	93.27(5)
O5-Rb1-N11	109.20(6)	O2–Rb1–N1 ^{iv}	72.89(6)	N7–Rb2–N8 ⁱⁱ	157.53(5)
O2 ^{iv} –Rb1–N11	142.05(6)	O5–Rb1–O1 ^{vi}	66.55(5)	N13–Rb2–N8 ⁱⁱ	89.65(5)
O5 ^v –Rb1–N11	126.04(6)	O2 ^{iv} –Rb1–O1 ^{vi}	104.35(6)	N14 ⁱ –Rb2–N8 ⁱⁱ	125.50(5)
O5–Rb1–N5	151.15(6)	O5 ^v –Rb1–O1 ^{vi}	150.78(5)	N7 ⁱ –Rb2–N8 ⁱⁱ	93.19(5)
O2 ^{iv} –Rb1–N5	99.96(6)	N11–Rb1–O1 ^{vi}	65.66(5)	N8 ⁱ –Rb2–N6 ⁱⁱⁱ	118.11(6)
O5 ^v –Rb1–N5	76.50(6)	N5–Rb1–O1 ^{vi}	128.95(5)	O6–Rb2–N6 ⁱⁱⁱ	49.26(5)
N11-Rb1-N5	67.52(5)	O3–Rb1–O1 ^{vi}	98.96(4)	N9 ⁱⁱ –Rb2–N6 ⁱⁱⁱ	60.93(5)
O5-Rb1-O3	89.44(6)	N15–Rb1–O1 ^{vi}	61.01(5)	O6 ⁱⁱⁱ –Rb2–N6 ⁱⁱⁱ	77.56(5)
O2 ^{iv} –Rb1–O3	156.63(6)	O1 ^{iv} –Rb1–O1 ^{vi}	73.01(5)	N7–Rb2–N6 ⁱⁱⁱ	123.45(5)
O5 ^v –Rb1–O3	77.44(6)	N8 ⁱ –Rb2–O6	125.38(6)	N13–Rb2–N6 ⁱⁱⁱ	133.47(5)
N11-Rb1-O3	51.79(5)	N8 ⁱ –Rb2–N9 ⁱⁱ	91.32(6)	N14 ⁱ –Rb2–N6 ⁱⁱⁱ	107.07(5)
N5-Rb1-O3	65.65(5)	O6–Rb2–N9 ⁱⁱ	109.74(6)	N7 ⁱ –Rb2–N6 ⁱⁱⁱ	139.48(5)
O5-Rb1-N15	123.37(5)	$N8^{i}$ -Rb2-O6 ⁱⁱⁱ	146.89(6)	$N8^{ii}$ -Rb2-N6 ⁱⁱⁱ	63.00(5)
O2 ^{1V} –Rb1–N15	76.19(6)	O6-Rb2-O6 ¹¹¹	87.34(6)	N8 ¹ –Rb2–N6	134.63(6)
O5 ^v –Rb1–N15	146.23(5)	$N9^{11}_{}$ -Rb2-O6 ¹¹¹	70.30(6)	O6-Rb2-N6	78.23(5)
N11–Rb1–N15	66.97(5)	N8 ¹ –Rb2–N7	114.54(6)	$N9^{n}_{m}$ -Rb2-N6	118.56(5)
N5-Rb1-N15	82.87(5)	O6–Rb2–N7	83.92(6)	O6 ^m –Rb2–N6	48.80(5)
O3-Rb1-N15	117.68(5)	$N9^{II}$ -Rb2-N7	136.59(6)	N7-Rb2-N6	21.68(5)
$O5-Rb1-O1^{1V}$	66.05(6)	$O6^{III}$ -Rb2-N7	69.44(6)	N13-Rb2-N6	71.19(5)
$O2^{iv}$ -Rb1-O1 ^{iv}	38.19(6)	N8 ¹ –Rb2–N13	83.33(6)	N14 ¹ –Rb2–N6	92.82(5)
$O5^{v}$ -Rb1-O1 ^{v}	98.13(6)	O6-Rb2-N13	148.38(5)	N7 ¹ –Rb2–N6	111.67(5)
$N11-Rb1-O1^{1V}$	135.52(5)	N9 ¹¹ –Rb2–N13	79.12(5)	N8 ⁿ –Rb2–N6	141.56(5)
$N5-Rb1-O1^{V}$	137.42(5)	O6 ¹¹¹ –Rb2–N13	66.63(5)	N6 ^m –Rb2–N6	106.51(4)
$O3-Rb1-O1^{V}$	155.47(5)	N7-Rb2-N13	70.64(5)	$N8^{1}$ -Rb2-O4 ¹	66.67(6)
$N15-Rb1-O1^{iv}$	79.36(5)	$N8^{1}-Rb2-N14^{1}$	67.56(5)	$O6-Rb2-O4^{1}$	59.56(5)
O5-Rb1-O2	137.32(6)	$O6-Rb2-N14^{1}$	69.08(6)	$N9^{11}$ -Rb2-O4 ¹	104.27(5)
$O2^{iv}$ -Rb1-O2	54.57(7)	$N9^{11}$ -Rb2-N14 ¹	148.12(5)	$O6^{111}$ -Rb2-O4 ¹	143.26(5)
O5 ^v –Rb1–O2	61.51(6)	$O6^{111}$ -Rb2-N14 ¹	139.26(5)	$N7-Rb2-O4^{1}$	117.62(5)
N11-Rb1-O2	111.48(5)	$N7-Rb2-N14^{1}$	75.23(5)	$N13-Rb2-O4^{1}$	149.76(5)
N5-Rb1-O2	47.15(5)	N13–Rb2–N14 ¹	119.42(5)	$N14^{1}$ -Rb2-O4 ¹	46.23(5)
O3–Rb1–O2	105.71(5)	$N8^{1}-Rb2-N7^{1}$	23.13(5)	$N7^{1}$ -Rb2-O4 ¹	77.13(5)
N15-Rb1-O2	84.85(5)	$O6-Rb2-N7^{1}$	127.02(6)	$N8^{11}$ -Rb2-O4 ¹	84.84(5)
$O1^{iv}$ -Rb1-O2	92.70(5)	$N9^{11}$ -Rb2-N7 ¹	109.29(5)	$N6^{111}$ -Rb2-O4 ¹	68.92(4)
$O5-Rb1-N1^{iv}$	81.30(6)	O6 ⁱⁿ –Rb2–N7 ⁱ	139.55(5)	N6–Rb2–O4 ¹	127.94(4)

Table S9. Selected bond angles for the coordination around the Rb^+ cations in **9**.

Symmetry codes for **9**: (i) -1-x, 2-y, -z; (ii) x, 1+y, z; (iii) -x, 2-y, -z; (iv) -x, 1-y, 1-z; (v) -1-x, 1-y, 1-z; (vi) -1+x, 1+y, z; (vii) 1+x, -1+y, z.