Supporting information

From $[(\eta^5-C_5Me_5)_2Mo_2S_2(\mu-S)_2]$ to $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4(CuMeCN)_2]^{2+}$ to $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu_2]$ -Based Polymeric and Dimeric Clusters: Syntheses, Structures and Enhanced Third-Order Nolinear Optical Performances

Zhi-Gang Ren,^{*a,b*} Jun-Yi Yang,^{*c*} Ying-Lin Song,^{*c*} Ni-Ya Li,^{*a*} Hong-Xi Li,^{*a*} Yang Chen,^{*a*} Yong Zhang,^{*a*} and Jian-Ping Lang*^{*a,b*}

15 Sciences, Shanghai 200032, P. R. China.

^c School of Physical Science and Technology, Suzhou University, Suzhou 215006, Jiangsu, P. R. China.

^{*a*} Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Suzhou University, Suzhou 215123, P. R. China. Fax: +86 512 65880089; Tel: +86 512 65882865; E-mail: <u>jplang@suda.edu.cn</u>

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of

Table of Contents

10

Figure S3. The positive-ion ESI mass spectrum of **4** in MeCN (a), the observed (b) and the simulated (c) isotopic patterns for the $\{[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu_2(bipy)](PF_6)+3MeCN\}^+$ cation.....S10-S11

Figure S4. The positive-ion ESI mass spectrum of **5** in MeCN (a), the observed (b) and the simulated (c) isotopic ¹⁵ patterns for the $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu(bpee)]^+$ cation.....S12-S13

Figure S5. The positive-ion ESI mass spectrum of **6** in MeCN (a), the observed (b) and the simulated (c) isotopic patterns for the $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu(bpea)]^+$ cation.....S14-S15

²⁰ **Figure S6.** The positive-ion ESI mass spectrum of **7** in MeCN (a), the observed (b) and the simulated (c) isotopic patterns for the $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu(dppe)]^+$ cation......S16-S17

Figure S7. The positive-ion ESI mass spectrum of **8** in MeCN (a), the observed (b) and the simulated (c) isotopic patterns for the $\{[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu_2(dppb)]_2(ClO_4)_2\}^{2+}$ dication.....S18-S19

Figure S8. *Z*-scan data of a 2.34×10^{-4} M MeCN of **3** at 532 nm. (a) The data were evaluated under the open aperture configuration. (b) The data were assessed by dividing the normalized *Z*-scan data obtained under the closed aperture by the normalized *Z*-scan data in (a). The black squares are the experimental data, and the solid curve is the theoretical fit. S20

35

25

30

Figure S10. *Z*-scan data of 2.97×10^{-4} M MeCN of **5** at 532 nm. (a) The data were evaluated under the open aperture configuration. (b) The data were assessed by dividing the normalized *Z*-scan data obtained under the closed

Figure S1. The positive-ion ESI mass spectrum of **2** in MeCN (a), the observed (b) and the simulated (c) isotopic patterns for the $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu]^+$ cation; the observed (d) and the simulated (e) isotopic patterns for the $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu(MeCN)]^+$ cation.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Figure S2. The positive-ion ESI mass spectrum of **3** in MeCN (a), the observed (b) and the simulated (c) isotopic patterns for the $\{[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu_2(MeCN)_2](ClO_4)\}^+$ cation; and the observed (d) and the simulated (e) isotopic patterns for the $\{[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu_2](ClO_4)\}^+$ cation.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Figure S3. The positive-ion ESI mass spectrum of **4** in MeCN (a), the observed (b) and the simulated (c) isotopic patterns for the $\{[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu_2(bipy)](PF_6)+3MeCN\}^+$ cation.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Figure S4. The positive-ion ESI mass spectrum of **5** in MeCN (a), the observed (b) and the simulated (c) isotopic patterns for the $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu(bpee)]^+$ cation.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Figure S5. The positive-ion ESI mass spectrum of **6** in MeCN (a), the observed (b) and the simulated (c) isotopic patterns for the $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu(bpea)]^+$ cation.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Figure S6. The positive-ion ESI mass spectrum of **7** in MeCN (a), the observed (b) and the simulated (c) isotopic patterns for the $[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu(dppe)]^+$ cation.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Figure S7. The positive-ion ESI mass spectrum of **8** in MeCN (a), the observed (b) and the simulated (c) isotopic patterns for the $\{[(\eta^5-C_5Me_5)_2Mo_2(\mu_3-S)_4Cu_2(dppb)]_2(ClO_4)_2\}^{2+}$ dication.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Figure S8. *Z*-scan data of a 2.34×10^{-4} M MeCN solution of **3** at 532 nm. (a) The data were evaluated under the open ⁵ aperture configuration. (b) The data were assessed by dividing the normalized *Z*-scan data obtained under the closed aperture by the normalized *Z*-scan data in (a). The black squares are the experimental data, and the solid curve is the theoretical fit.

Figure S9. Z-scan data of 2.71×10^4 M MeCN of **4** at 532 nm. (a) The data were evaluated under the open aperture configuration. (b) The data were assessed by dividing the normalized Z-scan data obtained under the closed aperture by the normalized Z-scan data in (a). The black dots are the experimental data, and the solid curve is the theoretical fit.

Figure S10. *Z*-scan data of 2.97×10^{-4} M MeCN of **5** at 532 nm. (a) The data were evaluated under the open aperture configuration. (b) The data were assessed by dividing the normalized *Z*-scan data obtained under the closed aperture by the normalized *Z*-scan data in (a). The black dots are the experimental data, and the solid curve is the ⁵ theoretical fit.

Figure S11. *Z*-scan data of 1.68×10^{-4} M MeCN of **6** at 532 nm. (a) The data were evaluated under the open ¹⁰ aperture configuration. (b) The data were assessed by dividing the normalized *Z*-scan data obtained under the closed aperture by the normalized *Z*-scan data in (a). The black dots are the experimental data, and the solid curve is the theoretical fit.

Figure S12. *Z*-scan data of 1.22×10^{-4} M MeCN of **7** at 532 nm. (a) The data were evaluated under the open aperture configuration. (b) The data were assessed by dividing the normalized *Z*-scan data obtained under the closed ⁵ aperture by the normalized *Z*-scan data in (a). The black dots are the experimental data, and the solid curve is the theoretical fit.

¹⁰ **Figure S13.** *Z*-scan data of 1.22×10^{-4} M MeCN of **8** at 532 nm. (a) The data were evaluated under the open aperture configuration. (b) The data were assessed by dividing the normalized *Z*-scan data obtained under the closed aperture by the normalized *Z*-scan data in (a). The black dots are the experimental data, and the solid curve is the theoretical fit.