Electronic Supplementary Information

DFT Calculations:

Typical ORCA Input File for 2a:

# ORCA calculation on py3TACCu3Cl3 cosmo infinity	C -2.274131 6.649560 6.780293
! RKS BP86 RI TZVP TZV/J TightSCF Opt	C -4.143337 7.155062 5.480847
#	Н -0.401420 6.429050 7.859865
	Н -0.491809 5.570352 6.296501
%method SpecialGridAtoms =29	Н 1.154827 6.323597 4.996539
SpecialGridIntAcc=7	Н 1.865456 6.930218 6.553165
end	Н 0.582697 8.640962 7.822196
	Н -1.039188 9.139982 7.197577
%basis NewGTO 29 "Wachters" end	Н 2.378733 10.332255 5.071344
NewAuxGTO 29 "TZV/J" end	Н 2.603910 9.375624 6.593382
end	Н 1.269937 11.880367 6.266912
	Н 1.009984 11.103454 7.856585
%rel method ZORA	Н 3.182233 6.776379 4.236752
ModelDens rhoZORA	Н 3.996158 7.977420 5.275903
velit 137.0359895	C -3.082605 6.304637 7.874298
end	C -5.017819 6.807499 6.518308
	Н -4.513701 7.536598 4.516401
%cosmo epsilon 99999.9	Н -2.617569 5.979840 8.817122
refrac 1.33	C -4.479332 6.375362 7.742063
end	Н -6.104785 6.882661 6.365107
	Н -5.134436 6.105068 8.583726
* xyz 0 1	C -3.286207 12.988845 6.774923
Cu 0.820251 8.739687 2.995973	Н -3.350807 12.050467 4.796719
Cu -1.479320 7.943703 4.316961	C -2.508766 13.147524 7.934833
Cu -0.852807 10.411467 4.339730	Н -4.287399 13.435520 6.691113
Cl -0.427983 6.841377 2.514266	C -1.242908 12.541198 7.983818
Cl -2.899670 9.585902 3.402835	Н -2.885199 13.724091 8.793038
Cl 0.412914 11.017381 2.510951	Н -0.606572 12.627840 8.877363
N 0.592076 9.911909 6.101606	C 4.432856 9.687158 0.790021
N -1.539479 11.665328 5.750232	Н 2.306111 9.475702 0.346328
N -0.102020 7.614718 6.075980	C 5.418122 9.496194 1.772475
N -2.796412 7.074153 5.599891	Н 4.678562 10.119527 -0.190847
N 1.891621 8.286720 4.896646	C 5.041033 8.932949 3.002836
N 2.744408 8.773724 2.263611	Н 6.463204 9.786465 1.587357
C -0.785994 11.816292 6.872080	Н 5.779764 8.768107 3.801852
C -2.769206 12.235325 5.713843	*
C 1.947040 9.524480 5.693862	
C -0.019122 8.837032 6.893002	%eprnmr ori IGLO
C 0.596035 11.195230 6.825872	LocMet FB
C 3.699699 8.571739 3.206817	Nuclei = all C $\{$ shift $\}$
C 3.111895 9.321963 1.081442	Nuclei = all H $\{shift\}$
C 3.240830 7.862255 4.465280	end
C 1.246202 7.206467 5.658054	
C -0.765515 6.516878 6.811047	

Fig. S1 Contour plot of the HOMO (-3.69eV, HOMO-1 at -3.76eV) and the LUMO of 3* (-1.25eV).

Fig. S2 Contour plot of the HOMO of sym 2a (-3.56eV)

Fig. S3 Contour plot of the HOMO-1 of 2a (-3.69eV)

Compound	Method ^a	Cu-Cu	Cu-X	Cu-N(TAC)	Cu-N(py)/S
2a - asym		2.63	2.38	2.22	2.05
	VDW	2.62	2.36	2.21	2.03
$2a - sym^b$	VDW	2.57	2.41	2.18	2.04
3a - asym		2.59	2.49	2.21	2.05
	VDW	2.56	2.49	2.20	2.05
2* - asym		2.65	2.37	2.17	2.39
	VDW	2.62	2.35	2.15	2.36
2 * - Cl-sym ^d		2.67	2.36	2.16	2.40
3* - asym		2.64	2.49	2.17	2.41
	VDW	2.61	2.48	2.16	2.36
3* - sym ^c	VDW	2.59	2.49	2.15	2.35
3 * - Br-sym ^e		2.66	2.47	2.16	2.42
4* - asym		2.57	2.52	2.20	2.45
	VDW	2.57	2.54	2.15	2 38

Table S1: Average calculated bond lengths in Å to copper

^aMethod shown in the typical Input file unless stated as follows: VDW: with Grimme's van der Waals correction; XRAY: all non-hydrogen atoms fixed at the position of the X-ray structure ^b1.76 KJ/mol above 2a - asym

^c4.87 KJ/mol above **4*** – asym

^d0.72 KJ/mol above **2*** – asym

^e0.03 KJ/mol above **3*** – asym

xyz files for all optimised structures mentioned above containing the coordinates are given as separate ESI files.

Electronic Supplementary Material for Dalton Transactions This Journal is ${\rm @}$ The Royal Society of Chemistry 2009

Table S2: Calculated average NMR shifts for **2a**, **3a**, **2*** and **3*** in ppm relative to TMS at the same computational method. ¹H:

11.										
Compound	Method	H _{eq}	H _{ax}	NCH ₂	3-ру	4-py	5-py	6-py	CH ₂ S	Me
2a - asym		3.84	3.34	3.89	7.44	8.21	7.61	8.64	_	
	VDW	3.70	3.20	3.77	7.40	8.13	7.53	8.67		
2a - sym	VDW	3.67	3.20	3.77	7.57	8.30	7.77	8.87		
ext	exp	3.6	3.3	3.9	7.4	7.8	7.3	8.5		
3a -asym		3.94	3.37	3.97	7.47	8.24	7.64	8.81		
	VDW	3.87	3.20	3.85	7.37	8.17	7.53	8.77		
	XRAY	4.07	3.20	3.84	7.30	8.03	7.40	8.53		
	B3LYP	4.20	3.43	4.03	7.54	8.37	7.50	8.97		
	exp	3.7-	3.2	3.9	7.3	7.7	7.2	8.7		
	1	4.3								
2* - asym		4.04	3.04	2.87					2.89	2.06
	VDW	4.03	2.93	2.87					2.82	2.13
2 * - Cl-svm		3.87	3.14	2.94					2.82	2.04
	exp	4.1	2.7	2.6					2.6	
3* - asym		4.11	3.07	2.89					2.89	2.08
	VDW	4.30	2.93	2.88					2.87	2.17
3* - svm	VDW	4 30	2.93	2.87					2.97	2 21
3* - Br-svm	1211	3 94	3 14	2.94					2.82	2.05
e Brogin	exp	42	2.8	2.6					2.6	2.00
12										
¹⁵ C:	16.1.1		NOU			4		6	OTL 0	1.4
Compound	Method	C _{ring}	NCH ₂	2-py	3-py	4-py	5-py	6-py	CH_2S	Me
2a - asym	LIDIU	79.9	61.6	156.1	126.7	136.3	128.0	149.0		
-	VDW	78.3	61.5	155.8	127.1	136.0	127.9	149.3		
2a - sym	VDW	79.2	61.5	155.9	126.9	137.0	128.1	149.4		
	exp	74	58	156	125	139	125	150		
3a -asym		79.7	61.6	156.1	126.3	137.0	127.7	149.4		
	VDW	77.7	61.1	155.5	126.7	136.6	127.5	149.6		
	XRAY	80.6	63.1	153.5	124.1	133.7	124.0	147.6		
	B3LYP	80.7	63.6	161.6	128.2	141.8	127.5	155.4		
	exp	75	58	155	124	138	124	150		
2* - asym		81.1	53.2						40.9	21.4
	VDW	81.3	51.7						40.9	22.0
2* - Cl-sym		82.6	53.6						40.7	21.1
	exp	74	53						30	
3* - asym		81.2	53.5						40.4	21.3
	VDW	80.5	51.8						40.9	23.0
3* - sym	VDW	79.7	53.1						41.2	25.5
3 * - Br-sym		82.4	53.7						40.3	20.8
		74	52	Γ					20	

^aMethod shown in the typical Input file unless stated as follows: VDW: with Grimme's van der Waals correction; XRAY: all non-hydrogen atoms fixed at the position of the X-ray structure; B3LYP: single point B3LYP calculation at the H optimised X ray structure positions; exp: typical experimental value.

Plots for Molecular Structures from X-ray Crystallography not included in the main text

Fig. S4 Thermal ellipsoid (50%) plot of the *asym* conformer in 2a. Hydrogen atoms omitted for clarity.

Fig. S5 Thermal ellipsoid (50%) plot of the *asym* conformer found for 3a (3a-B) Hydrogen atoms omitted for clarity.

Fig. S6 Ball and stick plot of 3h. Hydrogen atoms omitted for clarity.