Supporting Information

to the paper

Ni(II), Co(II), Cu(II), Zn(II) and Na(I) complexes of a hybrid ligand 4'-(4''benzo-15-crown-5)-methyloxy-2,2':6',2''-terpyridine

Nadezhda M. Logacheva,^a Vladimir E. Baulin,^a Aslan Yu. Tsivadze,^a Elena N. Pyatova,^b Irina S. Ivanova^b, Yurii A. Velikodny^c and Vladimir V. Chernyshev ^{a, c}*

^aA. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky prospect 31,

119991 Moscow GSP-1, Russian Federation,

^b N.S. Kurnakov Institute of General and Inorganic Chemistry, Leninsky prospect 31, 119991

Moscow GSP-1, Russian Federation

^cDepartment of Chemistry, Moscow State University, 119991 Moscow, Russian Federation

Correspondence e-mail: vladimir@struct.chem.msu.ru

Table of contents

Part 1.	
IR-spectroscopy	S 1
Tables	S 7
IR-spectra for <i>L</i> and 1-10.	S11
Part 2.	
X-ray crystallography. Figures.	S22

PART 1

IR-spectroscopy

IR spectra were recorded as Nujol mulls on a Bruker Vertex 70 spectrophotometer in the range $4000-400 \text{ cm}^{-1}$ (suspensions in liquid paraffin, KBr plates).

The bands in the IR spectrum of L in the range $1700-400 \text{ cm}^{-1}$ were assigned on the basis of comparison of the vibrational spectra of 4'-chloroterpyridine (CTP), 4'-hydroxymethylbenzo-15-crown-5 (HMB15C5), and benzo-15-crown-5 (B15C5) and the data on pyridine^{1,2}. Selected vibrational frequencies in the IR spectra of L and its complexes are summarized in Table 1.

As compared with the spectra of CTP and HMB15C5, the IR spectrum of L shows two new strong narrow bands at 1352 and 1197 cm⁻¹; they can be assigned to vibrations of a new moiety Ph– $H_2C-O-Py$, which resulted from the attachment of CTP to HMB15C5. This moiety is analogous to the Ph–O–CH₂ moiety of B15C5. However, the v(PyO) and v(CO) frequencies for the former are somewhat higher than the corresponding frequencies in the spectrum of B15C5, which is presumably due to its position between two aromatic rings. There are no ways to concretely identify what bond is responsible for a certain band since the bonds are strongly conjugated due to the aromaticity of the system.

The spectra of crown ethers in the range 1150–1050 cm⁻¹ show $v_{as}(COC)$ and $v_{s}(COC)$ vibration bands. The IR spectrum of L in this range shows two bands: the strong band at 1144 cm⁻¹ and the medium band at 1119 cm⁻¹. According to the correlations in^{3,4}, for benzocrown ethers and their azomethine derivatives, a frequency of ~1120 cm⁻¹ is due to the $v_{as}(COC)$ vibration of an ethylene glycol unit with a conformation close to TGG. The band at 1144 cm⁻¹ arises, most likely, from the $\delta(CH)_{Ph}$ bending vibrations.

However, most information on the conformational structure of B15C5 is extracted from the spectral region 1000–700 cm⁻¹ where the breathing vibration v_{resp} of the macrocycle and composite stretching–bending vibrations $\rho(CH_2) + \nu(CO) + \nu(CC)$ of separate ethylene glycol units are observed⁵. Inasmuch as the IR spectrum of CTP shows only two bands in the range 993–780 cm⁻¹ (882 and 816 cm⁻¹), we can suggest the conformational structure of the macrocycle in free L.

Previously³, the conformations of B15C5 and its complexes were studied by vibrational spectroscopy. It was shown in⁴ that the introduction of different substituents into the benzene ring of B15C5 leads to a change in the conformation of the macrocycle and deviation of torsion angles from their ideal values (180° for T, 120° for S, 60° for G, and 180° for C). Based on X-ray crystallographic⁶⁻⁹ and spectral data^{4,10,11}, a relationship between the frequency and conformation of the ethylene glycol unit was studied for some azomethine derivatives of B15C5 and nitrobenzo-

15C5 and their complexes. Here, we used these results as a basis for speculation about the conformation of the macrocycle in the uncoordinated L.

In particular, according to^{3,4}, the band at 932 cm⁻¹ in the spectrum of L can be assigned to the moiety composed of two TGT and TGG units, the weak band at 953 cm⁻¹ can be due to the TGT unit, and the band at 920 cm⁻¹ can be assigned to the vibration of a unit with a conformation close to TGG. The doublet comprising the medium band at 855 cm⁻¹ and the weaker band at 845 cm⁻¹ can be assigned to the vibration of the TGT unit. The bands at 870 and 829 cm⁻¹ are presumably due to vibrations of a unit with the conformation close to TGS. The band at 766 cm⁻¹ can be assigned to the macrocycle-breathing vibration v_{resp} . Thus, we can assume that the macrocycle conformation in the molecule of free L is described by the formula TCT TGT TGG TGS TGT.

The IR spectrum of the complex [NaNCS•L] (6) differs from the spectrum of free L in conformationally sensitive regions. At the same time, the positions of the v_{Ph} , v_{Py} , and v(PyO) + v(CO) bands, as well as the bending vibrations of CTP angles, remain almost the same, which is evidence that the heterocyclic nitrogen atoms are not involved in coordination.

The breathing vibration frequency (766 cm⁻¹ for L) increases to 865 cm⁻¹ in the spectrum of the sodium complex, which is typical of the maxidentate conformation of the macrocycle in the complex. The coordination of B15C5 through the anisole oxygen atoms is supported by a decrease in the v_{as} (PhO) frequency by 24 cm⁻¹ (1250 and 1226 cm⁻¹ in L and **6**, respectively).

According to X-ray diffraction evidence, the macrocycle of B15C5 in this complex is composed of four TGT units and a closing TCT unit and has symmetry C_s . In agreement with this structure, the IR spectrum of the sodium complex **6** shows in the range 1100–800 cm⁻¹ the bands typical of the TGT system at 1101, 968, 943, and 835 cm⁻¹. The TCT unit has no vibrations in this frequency range.

The coordinated NCS⁻ group in the complex gives rise to the doublet band with maxima at 2056 and 2046 cm⁻¹, which is somewhat lower than the expected value.

The coordination of L to transition metals through the heterocyclic nitrogen atoms of the terpyridine moiety also leads to certain changes in its IR spectrum.

It is worth noting that the vibrational spectra of all synthesized complexes with transition metals (1-5) are analogous, except the regions of conformationally sensitive stretching-bending vibrations of the macrocycle (975–800 cm⁻¹). As distinct from the spectra of transition metal complexes, many bands in the spectrum of the copper complex 3 are split.

A change in the conformationally sensitive region of spectra is quite natural since, as shown by X-ray crystallography, the macrocycle of the B15C5 ligand has different conformations in the complexes:

[NaNCS•L] (6)	T.CT. TGT. TG.T. TG.T T.GT
$[CoL_2](NCS)_2(5)$	a) TCT SGT_ S+ST GGT GGT+
	b) TCT T.ST+ S.S.T G+GG TGS+
$[CoL_2](PF_6)_2 \cdot 3H_2O(2)$	$T.CT T.G_{+}T G_{+}G_{+}T GG T TGT$
$[NiL_2](PF_6)_2 \bullet 2(C_2H_5OH) \bullet H_2O(1)$	TCT T.GT S.G+T G+G.T TGT
$[ZnL_2](PF_6)_2 \cdot 3H_2O(4)$	T.CT. T.GT. T.GG+ T.G+S S+GT
$[CuL_2](PF_6)_2(3)$	a) TCT. SG_+G_+ SS_+G_+ S_+C_+S T.GT b)
	TCT TGS. S.SS. G+GS TGT

The v_{Py} vibration of terpyridine and the v_{Ph} vibration of benzocrown ether are observed in the range 1622–1514 cm⁻¹ (Table 1). Among these bands, the lowest frequency band is presumably due to vibrations of the benzene ring in the crown ether (v_{Ph}); it is slightly shifted to a lowfrequency region (7–10 cm⁻¹) as compared to its position in the spectrum of the free ligand. The other frequencies in the spectra of all complexes, which were assigned to mainly stretching vibrations of heterocycles, are higher as compared with analogous frequencies for the free ligand. Such an increase in v_{Py} caused by coordination is in agreement with the evidence¹² that the coordination of nicotinamide through the nitrogen atom leads to an increase in v_{Py} .

The bands due to the $v_s(PhO)$ and $v_{as}(PhO)$ vibrations of the crown ether moiety of the L molecule retain their positions upon coordination, which confirms the fact that the anisole oxygen atoms are not involved in coordination.

In the IR spectra of the complexes 1-5, the band at 1197 cm⁻¹, assigned to v(Py-O) + v(CO), is shifted by 8–10 cm⁻¹ toward higher frequencies as compared with its position in the spectrum of the free ligand L. Inasmuch as this vibration is observed as a narrow strong band in the spectra of L and its complexes, it can be used as analytical for determination of the coordination of L through the heterocyclic nitrogen atoms.

Some changes caused by complexation are also observed in the $v_{as}(COC)$ and $v_s(COC)$ region. The IR spectrum of the uncoordinated L shows two bands at 1143 and 1119 cm⁻¹ in this region, whereas the spectrum of the zinc complex **4** shows a strong band at 1138 cm⁻¹, two weak bands at 1119 and 1112 cm⁻¹, and a medium band at 1099 cm⁻¹. Based on the structural data and our correlations, the bands at 1119, 1112, and 1099 cm⁻¹ can be assigned to the T.GG₊, TGS, and T. GT unit vibrations, respectively.

In a lower frequency range of 950–800 cm⁻¹, the spectra of all hexafluorophosphate complexes **1-4** show a broad strong band at 845–833 cm⁻¹ caused by stretching vibrations of the PF_6^- anion, which overlaps most of the stretching–bending vibration bands of the macrocycle. Nevertheless, the spectrum of the zinc complex **4** shows a medium band at 933 cm⁻¹ (932 cm⁻¹ in

the spectrum of L), which can be assigned to the TGT TGG moiety. A weak band at 910 cm^{-1} is presumably due to the TGG unit.

The $\delta(PF_6)$ bending vibrations in the spectra of all complexes are observed as a narrow strong band at 558–555 cm⁻¹.

The well-resolved bands at 3637, 3535, and 3435 cm^{-1} in the spectrum of the complex (Table 1) correspond to the stretching vibrations of the outer-sphere water.

The IR spectrum of the nickel complex **1** is analogous to that of the zinc complex **4** in the entire spectral range, including the conformationally sensitive regions. In particular, the spectrum of the nickel complex also shows in the $v_{as}(COC)$ region three bands at 1118, 1111, and 1100 cm⁻¹, which we assigned to the TGG, TGS, and TGT ethylene glycol units, respectively. The other conformationally sensitive region shows the band at 936 cm⁻¹ due to the TGT TGG moiety and the band at 921 cm⁻¹ caused, in our opinion, by the TGG unit.

The spectrum of the cobalt hexafluorophosphate complex 2 is somewhat different from the spectra of the above complexes: it is smoother, which can be evidence of the polymeric structure of this complex. According to X-ray crystallographic data, the macrocycle of the ligand in this complex is conformationally more homogeneous. The IR spectrum of the complex is consistent with the structural data: only the bands due to the TGT and TGG ethylene glycol units are observed, namely, at 1103 and 1095 cm⁻¹ for TGT, 904 cm⁻¹ for TGG, and 937 cm⁻¹ for the TGT TGG moiety.

As mentioned above, more significant differences are observed in the IR spectrum of the copper hexafluorophosphate complex **3**. The general pattern persists, although many bands are split. This fact can be evidence either that the macrocycles in the complex have different conformations, or that each of the macrocycles is conformationally inhomogeneous, or that the corresponding crystal structures are different. According to X-ray crystallography evidence, all three factors are involved. A similar situation was observed for the inner complex copper salt CuL_2' with an azomethine derivative of B15C5 (L' is 4'-[2-(tosylamino)benzylideneamino]-2,3-benzo-15-crown- 5^{10} . X-ray crystallography showed that the two macrocycles incorporated in the compound have different conformations as distinct from the zinc salt of the same composition.

In the $v_{as}(COC)$ region, the spectrum of the copper hexafluorophosphate complex **3** shows three bands: the strong band at 1128 cm⁻¹ presumably due the SGG unit, the medium band at 1112 cm⁻¹ corresponding to the TGS unit, and the weak band at 1095 cm⁻¹ caused by the presence of the TGT unit. In the range 950–800 cm⁻¹, the spectrum shows a new medium band as compared with the spectrum of the free ligand L and the other hexafluorophosphate complexes **1**, **2** and **4**. It can be tentatively assigned to the unit with a conformation other than those mentioned above, namely, to the S.S₊G₊ or S.SS. unit. In contrast to the other complexes, the copper complex 3 does not contain water molecules, which is also responsible for a different crystal structure and, hence, for the difference of its spectrum from the spectra of the other complexes.

Structural study of $[CoL_2](NCS)_2$ (5) revealed a significant difference between the structure of this complex and those of analogous hexafluorophosphate complexes. The spectrum of this compound is smoother, which can be caused by the presence of a considerable amount of an amorphous component. Therefore, despite considerable conformational inhomogeneity of each of the macrocycles, the spectrum shows only the bands typical of ethylene glycol units with TGG and TST conformations at 858 and 847 cm⁻¹ for TST and 935 cm⁻¹ for TST TGG.

The outer-sphere NCS⁻ group gives rise to the narrow strong band at 2047 cm⁻¹.

In the IR spectra of all synthesized complexes, the bands corresponding to the NCC, CCC, and CNC bending vibrations of the terpyridine moiety are somewhat shifted toward higher frequencies as compared to their position in the spectrum of the free ligand L (Table 1), which also confirms the coordination of the complex-forming metal atom through the heterocyclic nitrogen atoms.

We found that, in $[CuL_2 \cdot NaNCS \cdot Na(NCS)_2]NCS \cdot CH_3CN$ (11), the copper cation is coordinated to the terpyridine moiety of the ligand L through three nitrogen atoms and each sodium cation is coordinated to the oxygen atoms of the crown ether ring. Inasmuch as the vibrational spectra of all trinuclear complexes are analogous, we can draw the conclusion that the transition and alkali metals in these compounds have the same coordination modes. The coordination of the ether oxygen atoms of the macrocycles by the sodium cations leads to changes mainly in the conformationally sensitive regions of vibrational spectra. Selected conformation-sensitive frequencies in the spectra of the trinuclear complexes are listed in Table 2.

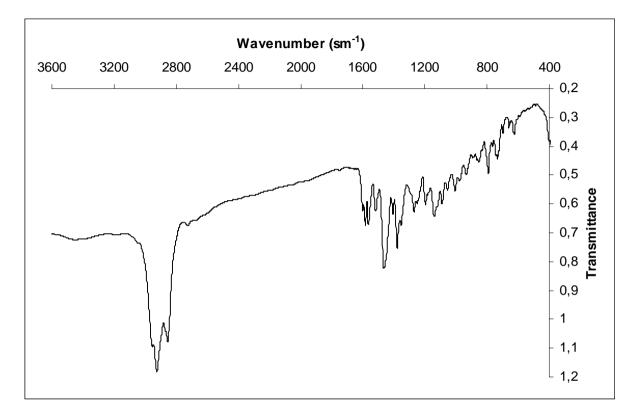
The coordination of the anisole oxygen atoms by the sodium cations in all trinuclear complexes is reflected by a decrease in v_{as} (PhO) by 17–26 cm⁻¹. Comparison of the conformation-sensitive regions in the IR spectra of the trinuclear complexes **7-11** and [NaNCS•L] (**6**) allows us to believe that the conformation of B15C5 in these complexes is close to its conformation in **6**. X-ray crystallography shows that the macrocycle in **6** is composed of four TGT units and a closing TCT unit and has symmetry C_s. The spectra of the trinuclear complexes also show the bands typical of the TGT system at 1100 and 937–941 cm⁻¹.

The breathing vibration band of the macrocycle is observed at 860–870 cm⁻¹ and is likely overlapped by the strong band at 845 cm⁻¹ due to the PF_6^- anion.

According to X-ray crystallographic data on **11**, the four thiocyanato groups incorporated in the complex have different functions: three of them are coordinated to the sodium cations, and one group is an outer-sphere one. In agreement with this, the v(CN) band at 2068 cm⁻¹ is due to the

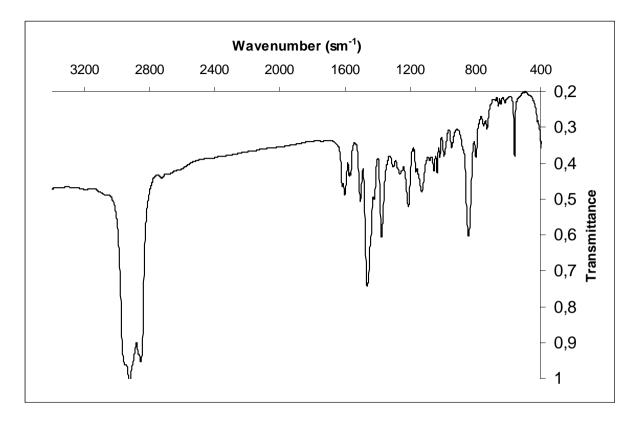
coordinated thiocyanato groups and the $\nu(CN)$ band at 2041 cm⁻¹ arises from the outer-sphere NCS⁻ anion.

Assign-	L	$[ZnL_2](PF_6)_2$	$[NiL_2](PF_6)_2$	$[CoL_2](PF_6)_2$	$[CuL_2](PF_6)_2$	[NaNCS•L]	[CoL ₂](NCS) ₂
ment		•3H ₂ O (4)	•2(C ₂ H ₅ OH)	•3H ₂ O (2)	(3)	(6)	(5)
			•H ₂ O (1)				
ν(H ₂ O)		3637	3637	3624			
		3535	3544				
		3435	3446	3468		3413	3380
v_{Ph}, v_{Py}	1600	1614	1616	1614	1622		1612
	1583	1601	1602	1604 sh	1600	1598	1599
	1564	1574	1572	1570	1575	1580	1568
		1560	1560		1561	1560	
				1558	1557		1556
	1524	1517	1517	1517	1514	1515	1514
δ(CH) _{Py} ,					1480		
δ(CH) _{Ph}	1467	1477	1474		1475		
δ(CH ₂)	1464	1463	1462	1463	1464	1463	1464
	1456	1457	1455	1455			
	1444		1443	1444 sh	1447		1445
	1432	1439	1439				
			1420		1428		1420
	1405					1404	
	1377		1377	1375	1377	1376	1377
v(PyO)+	1352	1354	1355	1365	1360	1353	1358
v(CO)							
δ(CH) _{Py} ,		1304		1294 sh	1305		
δ(CH) _{Ph}		1290					
δ(CH ₂)							
$v_{s}(PhO),$	1271	1272	1271	1268	1275	1266	1266
δ(NCH)							
					1260	1289	
$\tau(CH_2),$	1250	1251	1248	1249	1200	1289	
$v_{as}(PhO)$	1230	1231	1248	1277	1248	1242	
$\mathbf{u}(\mathbf{D}_{\mathbf{u}}(\mathbf{D}))$	1197	1243	1242	1216	1230	1220	1213
$\nu(PyO)+$	119/	1213	1213	1210	1210	1174	1213
v(CO)							

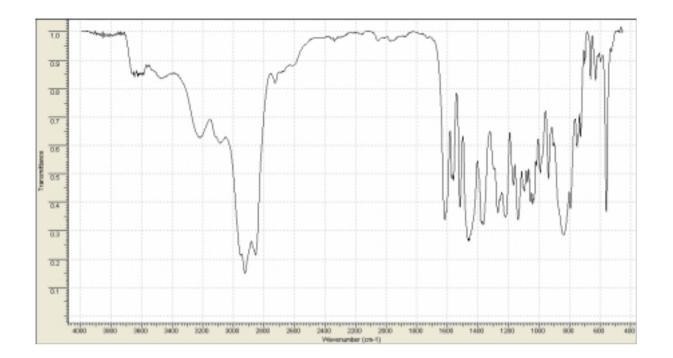

Table 1. Assignment of vibrational frequencies (cm⁻¹) in the IR spectra of L and its complexes

δ(CH) _{Ph}	1177	1179	1182		1176		
()		1163	1164	1166	1165	1169	
					1159		
δ(CH ₂)+	1144	1138	1138	1135	1129	1124	1135
ν(CO)							
$v_{as}(COC),$					1129		
u5())	1119	1119	1118				
		1112	1111				
			1100	1106		1101	
$\nu(ClO_4)$		1099		1095	1095		
ν(CO)+	1087				1085		1080
v(CC)		1079	1077	1075	1073		
	1055	1053	1052	1055	1052		
				1041	1037		
	1030	1026	1030	1032	1026	1032	1029
δ(CH) _{Ph} ,	1003		1015	1014	1012	1018	1017
ν(CH) _{Py} ,	982	990	991	991	993	989	984
	975	973	971	978	972		976
$\nu_{s}(COC)+$	953				953	968	
ν(CC)+	932	933	936	937	942	943	935
ρ(CH ₂)	920	910			911	913	
				904	901		
	890				890		889
ρ(CH ₂)+	870	875	876		874		
ν(CO),	855				868	865	
$\nu(PF_6)$	845	846	840	838	839		847
	828	833				835	
		814	811				
	000						
v_{resp} ,	808 791	794	795	793	792	792	795
$\delta(CH)_{Ph}^{np}$,	791	794 765	795 766	175	792 764	192	175
$\delta(CH)_{Py}^{np}$	/00	105	/00		/ 04		

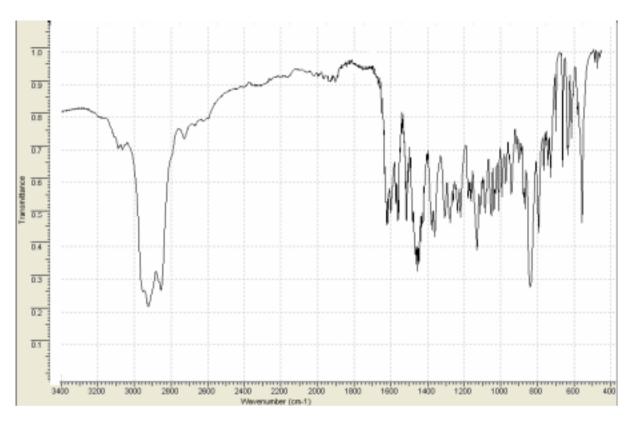
					752		750
	741	747	748	749	744	745	
				740 sh			
		727	727	728	727	729	727
δ(CCO)+	697	701	701	698	699	696	698
δ(COC)+	660	661	660	661	661	660	661
δ(NCC),	648		642				
δ(CCC),	630	638	632	629	633		
δ(CNC),	622					624	628
-(),	607	611	612		613	603	
	589		594		577	594	
δ(PF ₆)		555	558	558	566		
δ(NCS)						2056	2047
						2040	

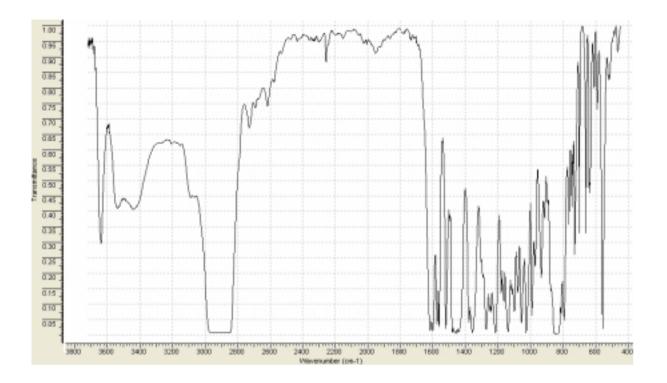

Table 2. Conformationally sensitive vibrational frequencies (cm^{-1}) in the IR spectra of the complexes

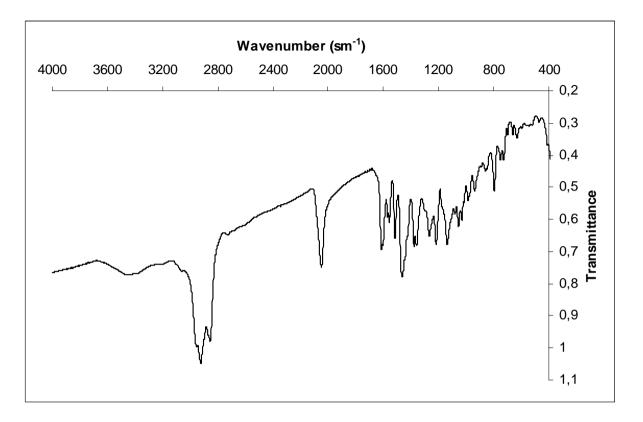
Assign-	Conforma-	L	[NiL ₂]	[CoL ₂]	[CuL ₂]	[ZnL ₂]	[CoL ₂]	[NaNCS	[ZnL ₂	[CuL ₂	[NiL ₂	[CoL ₂
ment	tion		(PF ₆) ₂	$(PF_6)_2$	(PF ₆) ₂	(PF ₆) ₂	(NCS) ₂	•L]] (6)	•2NaNCS]	•2NaNCS]	•2NaNCS]	•2NaNCS]
			•2(C ₂ H ₅ OH)	•3H ₂ O	(3)	•3H ₂ O	(5)		$(PF_6)_2(10)$	(PF ₆) ₂ (9)	$(PF_6)_2(7)$	$(PF_6)_2$ (8)
			•H ₂ O (1)	(2)		(4)						
$v_{as}(COC)$	SSG,SSS				1128							
	TGG	1120	1118			1119						
	TGS		1111		1112	1112						
	TGT		1100	1103	1095	1099		1100	1105	1108		1100
				1095					1092	1092	1098	
ν(CO)+	TGT	953			953	960		943	937	941	942	941
ν(CC)+	TGT SGG				942							
ρ(CH ₂)	TGT TGG	932	936	937		933						
• • •	TST TGG						935					
	TGG	920	912	904		910						
	SGG				911							
	TGS				901							
	SSG,SSS				868							
	TGS	870										
		829						865				
	TGT	855						845				
		845										
	TST						858					
							847					

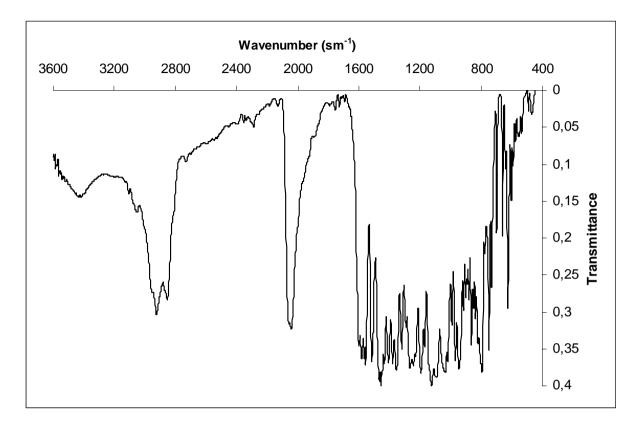


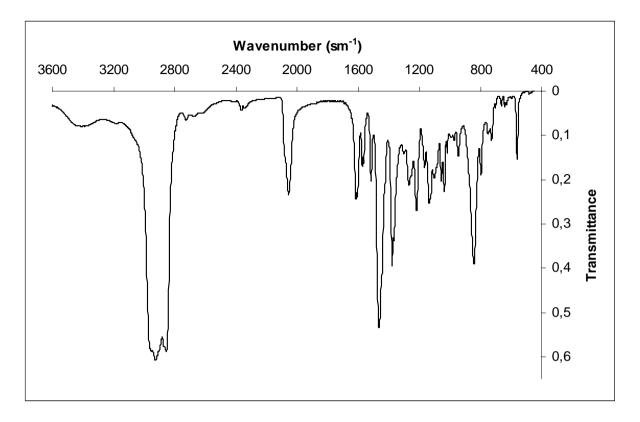
IR-spectra for *L* **and 1-10**

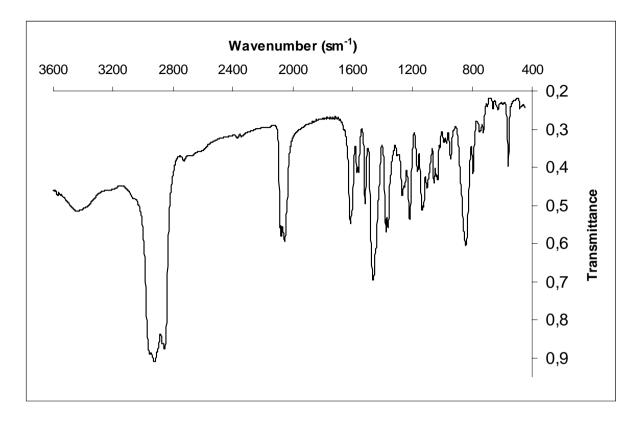

IR spectrum of L

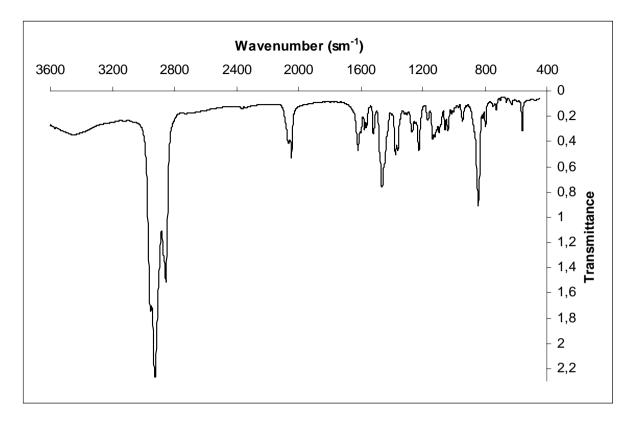

IR spectrum of **1**

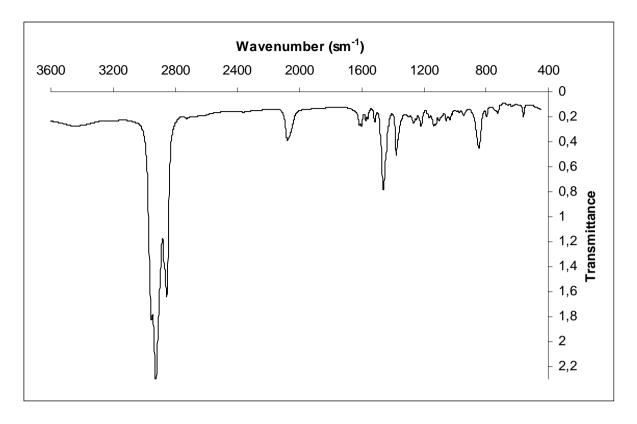

IR spectrum of **2**


IR spectrum of **3**


IR spectrum of 4


IR spectrum of **5**


IR spectrum of **6**


IR spectrum of **7**

IR spectrum of 8

IR spectrum of **9**

IR spectrum of **10**

PART 2

X-ray Crystallography. Figures.

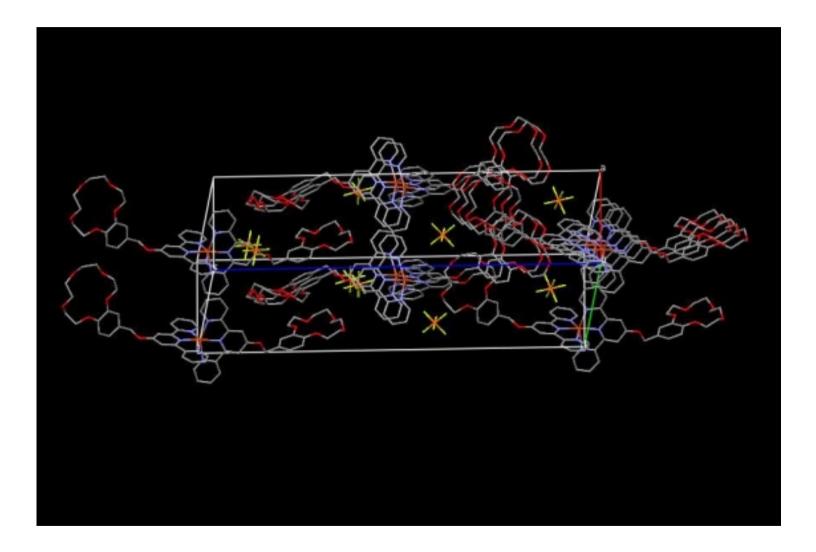


Fig. S2.1 A portion of the crystal packing of **3** showing the unit cell box. H-atoms omitted for clarity.

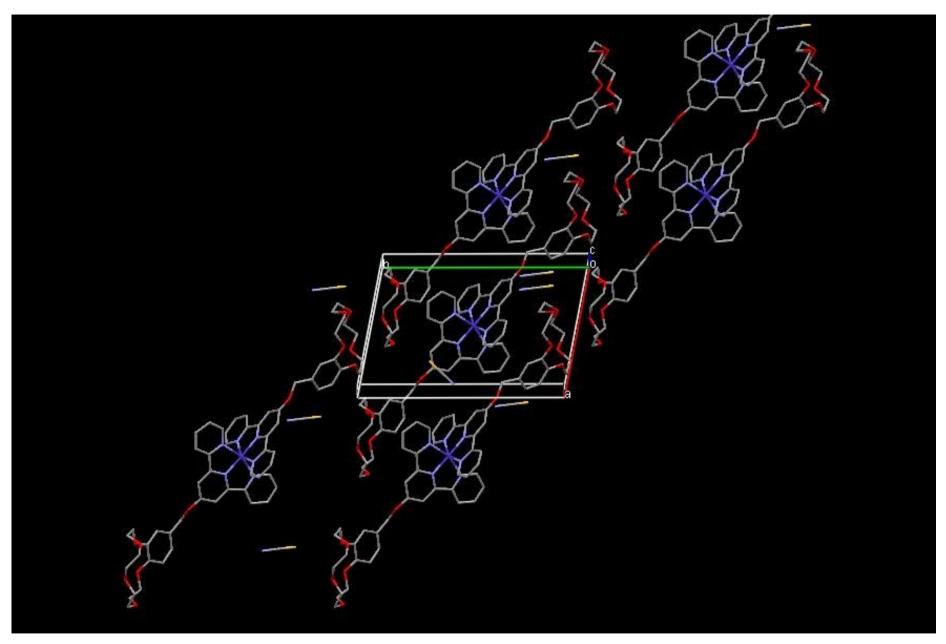


Fig. S2.2. A portion of the crystal packing of **5** showing the unit cell box. H-atoms omitted for clarity.

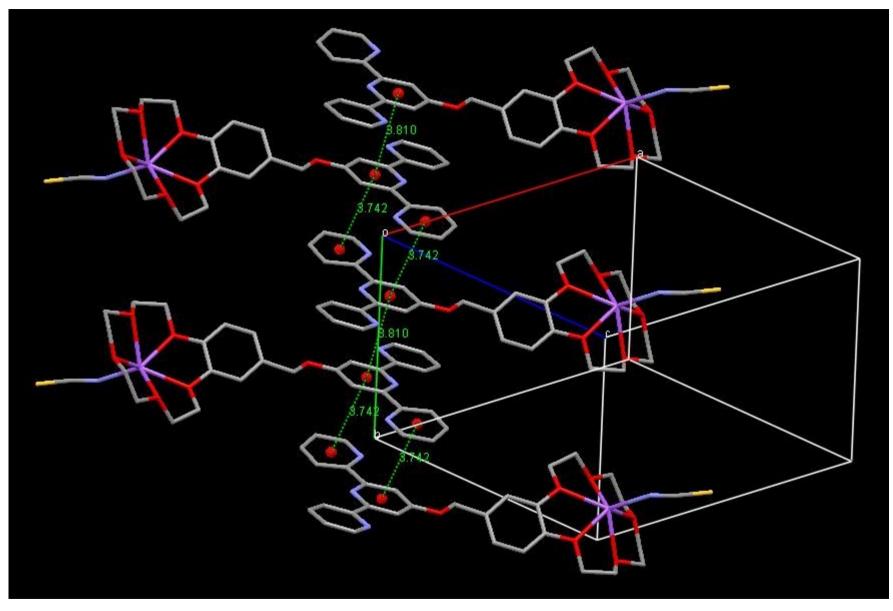


Fig. S2.3. A portion of the crystal packing of **6** showing the π - π interactions (dashed lines) in the stacks. H-atoms omitted for clarity.

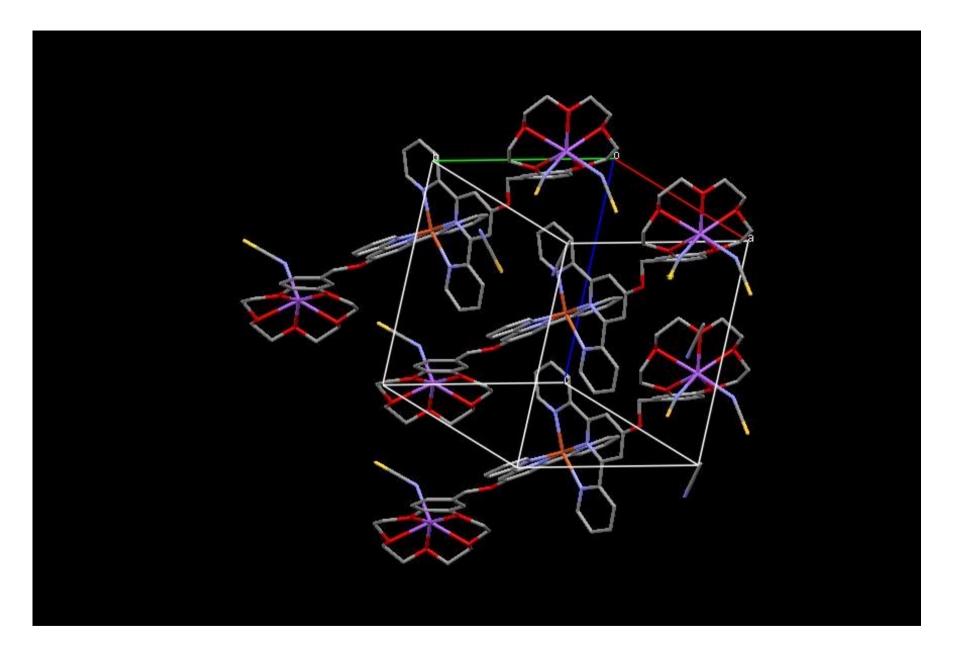


Fig. S2.4. A portion of the crystal packing of **11** showing the unit cell box. H-atoms omitted for clarity.

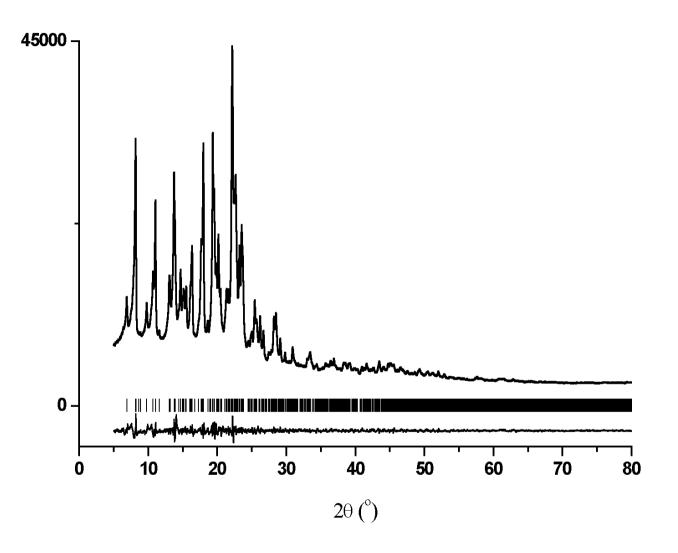


Fig. S2.5 (a) Rietveld plot for **1**.

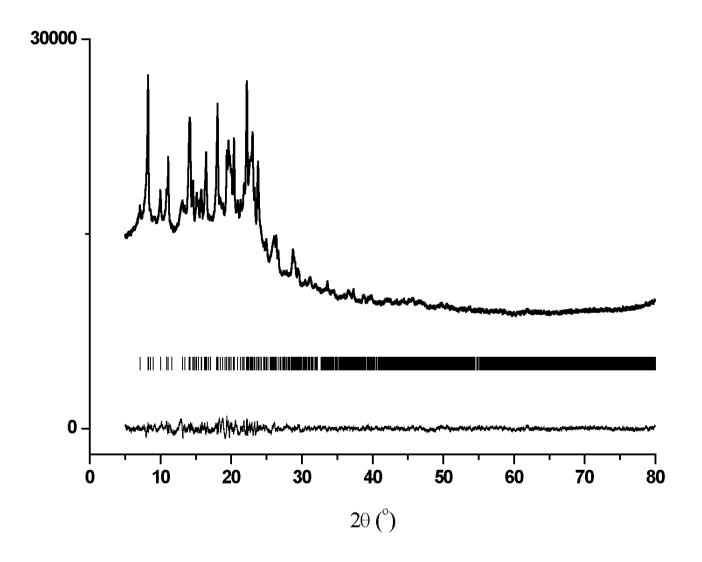


Fig. S2.5 (b) Rietveld plot for **2**.

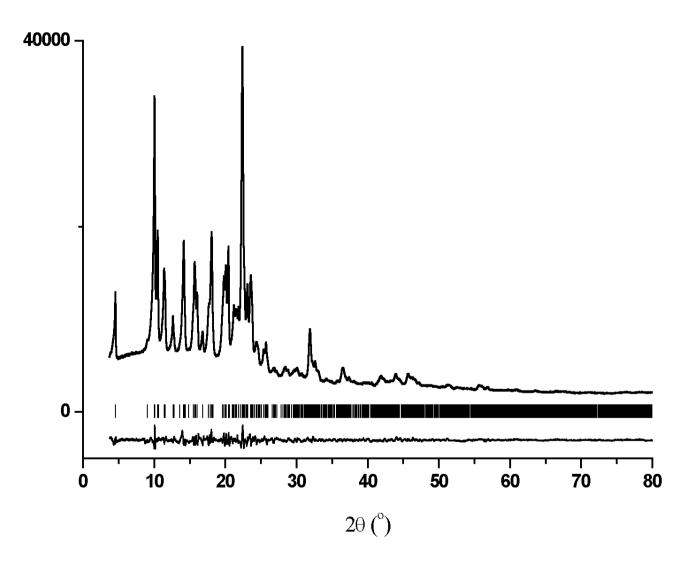


Fig. S2.5 (c) Rietveld plot for **3**.

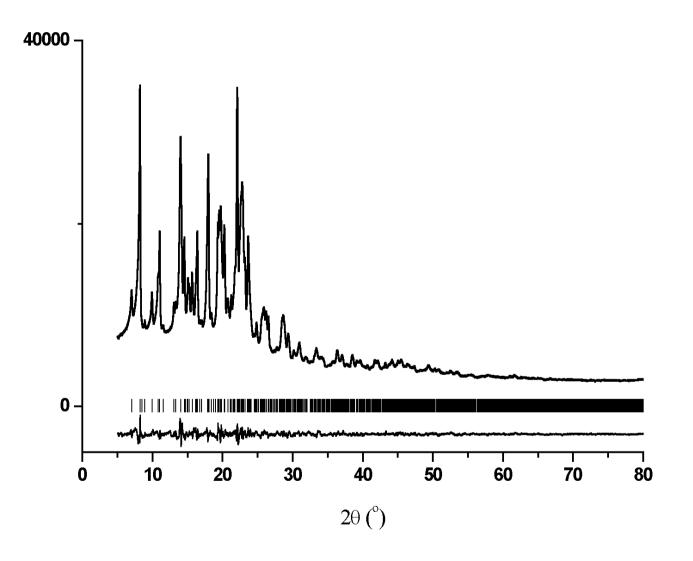


Fig. S2.5 (d) Rietveld plot for 4.

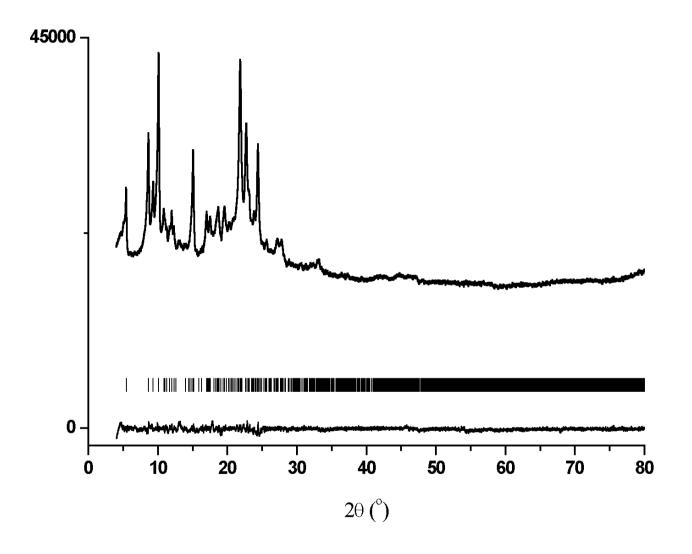


Fig. S2.5 (e) Rietveld plot for 5