Electronic Supplementary Information (ESI)

Polymorphs, enantiomorphs, chirality and helicity in $[Rh{N,O}(\eta^4-cod)]$ complexes with $\{N,O\}$ = salicylaldiminato Schiff base or aminocarboxylato ligands

Christoph Janiak ^{a,*}, Anne-Christine Chamayou ^a, A. K. M. Royhan Uddin ^b, Mohammed Uddin ^c, Karl S. Hagen ^c and Mohammed Enamullah ^{b,*}

^a Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany. E-mail: <u>janiak@uni-freiburg.de</u>; Fax: 49 761 2036147; Tel: 49 761 2036127 ^b Department of Chemistry, Jahangirnagar University, Dhaka-1342, Bangladesh. Email:<u>enamullahju@yahoo.com</u>; Fax: 8802-7791068; Tel: 8802-7791399 ^c Department of Chemistry, Emory University, Atlanta, GA 30322, USA.

Crystal pictures of 3R/3S and 3rac

Fig. S1 (a) Needle-shaped crystals of **3R** and **3S** (tetragonal $P4_3$ and $P4_1$, respectively); (b) block-shaped crystals of **3rac** (monoclinic $P2_1/c$).

Figure S2 UV-Vis. absorption spectra of (a) $[RhCl(\eta^4-cod)]_2$ (3.65·10⁻⁴ mol·l⁻¹), (b) $[Rh(O_2CMe)(\eta^4-cod)]_2$ (2.98·10⁻⁴ mol·l⁻¹), (c) $[\{Rh(\eta^4-cod)\}_2(salen)]$ (1) (1.27·10⁻⁴ mol·l⁻¹) and (d) $[\{Rh(\eta^4-cod)\}_2(salophen)]$ (2) (1.22·10⁻⁴ mol·l⁻¹) in C₆H₆ at 25 °C.

Figure S1 shows the absorption spectra of **1** and **2** together with those for $[RhCl(\eta^4 - cod)]_2$ and $[Rh(O_2CMe)(\eta^4 - cod)]_2$ for comparison studies. The spectral data are listed in Table S1 and their assignments are made based on the reported literature (see references in paper). The spectra of the Rh(η^4 -cod)-Schiff base complexes are identical with each other and different from those of $[RhCl(\eta^4 - cod)]_2$ and $[Rh(O_2CMe)(\eta^4 - cod)]_2$ (Fig. S1).

The absorption spectrum of $[RhCl(\eta^4-cod)]_2$ shows three common characteristic bands: (i) a very strong band at higher energy (<320 nm), associated to the intra-ligand $\pi \rightarrow \pi^*$ transition of (η^4-cod) moiety, (ii) a strong broad band at 330-380nm with absorption maximum at $\lambda_{max} = 352$ nm ($\varepsilon_{max} = 3870 \ l \cdot mol^{-1} \cdot cm^{-1}$), associated to the charge transfer (CT) transition based on the formation of the coordinative Rh-(η^4 -cod)⁺ bond and (iii) a broad shoulder at 380-500 nm ($\lambda_{max} \sim 396$ nm), associated to the CT transition based on the formation of the more ionic [RhCl] bond. Similarly, spectrum of [Rh(O₂CMe)(η^4 -cod)]₂ shows three separate bands, a very strong band at <320 nm for intra-ligand $\pi \rightarrow \pi^*$ transition, a strong band at 330-380 nm with $\lambda_{max} = 356$ nm ($\varepsilon_{max} = 2066 \ l \cdot mol^{-1} \cdot cm^{-1}$), attributed to the CT due to [Rh(η^4 -cod)]⁺ and a relatively broad and stronger band at 380-500 nm ($\lambda_{max} = 421$ nm, $\varepsilon_{max} = 3854 \ l \cdot mol^{-1} \cdot cm^{-1}$) for CT transition between Rh(I) and acetate in the formation of [Rh(O₂CCH₃)].

A very strong band at higher energy (<360 nm), associated to the intra-ligand $\pi \rightarrow \pi^*$ transitions of the imino group of the Schiff base in addition to the (η^4 -cod) moiety, is observed in Rh(η^4 -cod)-Schiff base complexes (see Table S1). Further, a strong broad band, observed at 400-500 nm ($\lambda_{max}/\epsilon_{max} = 403 \text{ nm}/8655 \text{ l}\cdot\text{mol}^{-1}\cdot\text{cm}^{-1}$ for 1, 413 nm/8077 l $\cdot\text{mol}^{-1}\cdot\text{cm}^{-1}$ for 2, 411 nm/13150 l $\cdot\text{mol}^{-1}\cdot\text{cm}^{-1}$ for 4 and 416 nm/3828 l $\cdot\text{mol}^{-1}\cdot\text{cm}^{-1}$ for 5), is assigned to the ct transition between Rh(I) and diminato in the formation of [Rh(diminato)] (diminato = anion of Schiff base). However, the CT transition in the [Rh(η^4 -cod)]⁺ moiety

likely shifts to higher energy and overlaps with the nearby very strong intra-ligand $\pi \rightarrow \pi^*$ transitions, and are not detectable separately in Rh(η^4 -cod)-Schiff base complexes.

The absorption spectra demonstrate that the CT transition due to $[Rh(\eta^4-cod)]^+$ moieties appears at almost the same positions in $[RhCl(\eta^4-cod)]_2$ and $[Rh(O_2CMe)(\eta^4-cod)]_2$, while the transition due to [Rh(Cl/acetate)] moieties is found at different positions. These results are in good agreement with the idea of replacement of Cl⁻ by acetate in $[Rh(O_2CMe)(\eta^4-cod)]_2$. However, the acetato ligand $(CH_3CO_2^-)$ is further replaced by diminato in 1, 2, 4 and 5, accompanied by a change in the corresponding CT bands of the absorption spectra (see Table S1 and Fig. S1).

Complexes (concentrations)	$\pi \rightarrow \pi^*$	$[Rh(\eta^4-cod)]$	[Rh(Cl/acetato/diminato)]
	transition	СТ	СТ
$[(\eta^4 - cod)RhCl]_2$	< 320 nm	330-380 nm	380-500 nm
$(3.65 \cdot 10^{-4} \text{mol} \cdot l^{-1})^{b}$		$\lambda_{\text{max}} = 352 \text{ nm}, \epsilon_{\text{max}} = 3870$	$\lambda_{max} \sim 396 \text{ nm (sh)}$
$[Rh(\eta^4-cod)(O_2CCH_3)]_2$	< 320 nm	330-380 nm	380-500 nm
$(2.98 \cdot 10^{-4} \text{mol} \cdot l^{-1})^{\text{b}}$		$\lambda_{\text{max}} = 356 \text{ nm}, \epsilon_{\text{max}} = 2066$	$\lambda_{\text{max}} = 421 \text{ nm}, \epsilon_{\text{max}} = 3854$
$[{Rh(\eta^4-cod)}_2(salen)] (1)$	< 360 nm	< 360 nm	400-500 nm
$(1.27 \cdot 10^{-4} \text{mol} \cdot l^{-1})^{b}$			$\lambda_{\text{max}} = 403 \text{ nm}, \epsilon_{\text{max}} = 8655$
$[{Rh(\eta^4-cod)}_2(salophen)] (2)$	< 360 nm	< 360 nm	400-500 nm
$(1.22 \cdot 10^{-4} \text{mol} \cdot l^{-1})^{b}$			$\lambda_{\text{max}} = 413 \text{ nm}, \epsilon_{\text{max}} = 8077$
$[Rh(\eta^{4}-cod)\{(R)-N-(4-$	< 360 nm	< 360 nm	400-500 nm
methoxphenyl)ethyl-2-oxo-1-			$\lambda_{\text{max}} = 411 \text{ nm}, \epsilon_{\text{max}} = 13150$
naphthaldiminato- $\kappa^2 N, O$] (4)			
$(5.97 \text{x} 10^{-5} \text{ mol} \cdot \text{l}^{-1})^{\text{ c}}$			
$[Rh(\eta^4-cod)\{N-(o-toluene)-2-oxo-1-$	< 360 nm	< 360 nm	400-500 nm
naphthaldiminato- $\kappa^2 N, O$] (5)			$\lambda_{\text{max}} = 416 \text{ nm}, \epsilon_{\text{max}} = 3828$
$(2.12 \cdot 10^{-4} \text{ mol} \cdot l^{-1})^{c}$			

Table S1 UV/Vis spectral data of complexes 1, 2, 4, 5 at 25 °C.^a

^a Molar absorptivity (ε_{max}) values are in l·mol⁻¹·cm⁻¹; ^b in C₆H₆; ^c in CH₂Cl₂; sh = shoulder.

Infrared spectroscopy

The most common characteristics IR-bands of the complexes are reported in the experimental section and their assignments are made based on the reported literature (see references in paper). The vC=N bands are observed at 1600-1620 cm⁻¹, while the vC=C occurs at 1578-1526 cm⁻¹ in Rh-Schiff base complexes. The aromatic vC-H bands are observed in the range of 3075-3000 cm⁻¹. Two new bands (which are absent in the free ligands) are observed around 675-680 cm⁻¹ and 459-465 cm⁻¹, which are assigned to the vRh-N and vRh-O, respectively.

Two very strong carbonyl bands are observed at 1561 cm⁻¹ (vCO_{2 asy}) and 1420 cm⁻¹ (vCO_{2 sy}) in the starting material [Rh(μ -O₂CMe)(η^4 -cod)]₂ and correspond to the bridging $\kappa O:O'$ -coordination (η^2 -coordination) of the carboxylate to the Rh(I) atom in the dimeric structure. These bands obviously disappeared in the prepared complexes. Further, the vO-H

stretching band of the free Schiff bases (usually observed at $3250-3254 \text{ cm}^{-1}$) disappears in the Rh-Schiff base complexes, which indicates dissociation of the protic hydrogen and formation of a more ionic bond between Rh(I) and the hydroxyl oxygen atom.

The Rh-amino acid complex (**3**) shows two very strong carbonyl bands at 1625 cm⁻¹ (vCO_{2 asy}) and 1366 cm⁻¹ (vCO_{2 sy}), correspond to the κN ,*O*-coordination (η^{1} -CO₂ coordination) of the amino-carboxylate to the Rh(I) atom. This complex also exhibits the vN-H stretching bands at 3142 cm⁻¹ (vNH_{asy}) and 3097 cm⁻¹ (vNH_{sy}). Indeed, the absence of any vO-H stretching band (usually observed at 3450-3550 cm⁻¹ for hydrogen bonded O-H group of free amino acid) indicates the dissociation of the proton and formation of ionic bond between Rh(I) and the hydroxyl oxygen atom in **3**.

Complexes	νΟ-Н	vH-Ar	vC=N	vC=C	vC-O	vRh-N	vRh-O
$[Rh(O_2CMe)(\eta^4\text{-cod})]_2$		-	-		1561vs, 1420vs	-	
H ₂ salen	3254w	3052w, 3010w, 2930w, 2901w, 2868w	1636vs 1611vs	1578vs, 1498s	-	-	-
$[{Rh(\eta^4\text{-cod})}_2(\text{salen})] (1)$	-	3075w, 3049w, 3011m, 2930s, 2876m, 2829w	1607vs	1575sh 1530s	-	677w	462w
H ₂ salophen	3250w	3054s, 3010m, 2932s, 2880m, 2828w	1613vs 1586s	1561vs, 1482s	-	-	-
$[{Rh(\eta^4- cod)}_2(salophen)] (2)$		3075w, 3045w, 3019m, 2930s, 2874m, 2828w	1609vs	1578vs, 1526s	-	675w	460w
$[Rh((R)-N-(4-methoxphenyl)ethyl-2-oxo-1-naphthaldiminato)(\eta^4-cod)] (4)$		3066, 3042m	1620vs	1578vs	-	675w	465w
$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$		3047, 3010w	1615, 1606vs	1574, 1534vs		679w	459w

Table S2 FT-IR spectral data of $[Rh{N,O}(\eta^4-cod)]$ complexes (KBr, cm⁻¹).^{a,b}

Complexes	vN-H asy	ν N-H _{sy}	vH-Ar	νС-Н	vCO ₂ ⁻ asy	δN–H	vCH ₂	νCO_2^{-} sy
[Rh(<i>N</i> -phenylglyci- nato)(η^4 -cod)] (3rac)	3142m	3097m	3053s	2943s	1616vs	1600s	1491s	1366s

^a KBr plates.

^b vs: very strong, s: strong, m: medium, w: weak, sh shoulder.

NMR spectroscopy

Table S3	^I H NMR	data (δ/ppm)	for the olefinic	protons in	$Rh\{N,O\}(\eta^4)$	-cod) complexes in
CDCl ₃ .						

Complex	tran	s to N	trans	to O	References
$\left[\left(\mathrm{Pb}(n^4 \text{ cod})\right), (\text{salen})\right]$	'left'	$\frac{\text{'right'}^{a}}{(4.28^{d})}$	'left'	'right' ^a	This work
	4.40 ((4.20)	5.50 (.	5.78)	THIS WORK
$[Rh(sal=N-p-tol)(\eta^4-cod)]$	4	.60	3.2	20	1
$[Rh(o-O_2NC_6H_4NH)(\eta^4-cod)]$	4	.46	3.8	87	2
$[(Rh(\eta^4\text{-cod}))_2(dcbi)](NHEt_3)$	4	.37	4.	05	
$[Rh(o-aminophenolato)(\eta^4-cod)]^d$	4	.16	3.1	88	4
$[Rh \{(R)-N-(p-methoxphenyl)ethyl-2-oxo-1-naphthaldiminato\}(\eta^4-cod)] 4$	4	.61	3.9	91	This work
$[Rh(SB1)(\eta^4\text{-cod})]^e$	4	.54	3.	72	5
$[Rh{N,O}(\eta^4\text{-cod})]^{b}$	4	.78	3.:	33	6
$[Rh(sal=N\text{-}o\text{-}tol)(\eta^4\text{-}cod)]$	4	.62	3.34	2.66	1
$[(Rh(\eta^4\text{-cod}))_2(salophen)]$ 2	4.54	4.37	3.53	2.45	This work
[Rh{ N -(o -tolyl)-2-oxo-1- naphthaldiminato}(η^4 -cod)] 5	4.59	4.53	3.32	2.62	This work
$[Rh(\mu-hp/-mhp)(\eta^4-cod)]_2^{c}$	5.38/5.33	5.11/5.04	4.12/4.28	3.29/2.91	7
$[(Rh(\eta^4\text{-cod}))_2(\mu\text{-}NH\{p\text{-tolyl}\})(\mu\text{-}OMe)]^b$	3.93	3.80	3.69	3.24	2
$[Rh(SB2)(\eta^4\text{-}cod)]\ ^{\rm f}$	4.50	4.42	4.29	3.73	5
[Rh(N-phenylglycinato)(η ⁴ -cod)] 3			3.58 (2	3.60 ^d)	This work, 8
$[Rh(L-methylglycinato)(\eta^4-cod)]^d$			3.	92	8
$[Rh(o-aminobenzoato)(\eta^4-cod)]^d$			3.9	93	4

^a 'left' and 'right' is an arbitrary assignment for olefin protons to either side of a plane bisecting the C=C bond. ^b in benzene-d₆; ^c in toluene-d₈; ^d in dmso-d₆. ^e SB1 = (*R*)-*N*-1- (phenyl)ethylsalicylaldiminato. ^f SB2 = (*R*)-*N*-1-(2-methoxphenyl)ethylsalicylaldiminato.

¹ N. Platzer, N. Goasdoue and R. Bonnaire, J. Organomet. Chem., 1978, 160, 455.

² C. Tejel, M. A. Ciriano, M. Bordonaba, J. A. Lopez, F. J. Lahoz and L. A. Oro, Inorg. Chem., 2002, 41, 2348.

³ J. C. Bayon, G. Net, P. G. Rasmussen and J. B. Kolowich, J. Chem. Soc., Dalton Trans., 1987, 3003-3007.

⁴ M. Enamullah, A.K.M. Royhan Uddin and M. Uddin, J. Bangladesh Chem. Soc., 2008, in press.

⁵ M. Enamullah, A. K. M. Royhan Uddin, A. C. Chamayou and C. Janiak, Z. Naturforsch., 2007, 62b, 807-817.

⁶ R. Aumann, I. Goettker-Schnetmann, R. Froehlich and P. Saarenketo, C. Holst, Chem. Eur. J., 2001, 7, 711..

⁷ G. S. Rodman and K. R. Mann, Inorg. Chem., 1988, 27, 3338.

⁸ M. Enamullah, A. Sharmin, M. Hasegawa, T. Hoshi, A.-C. Chamayou and C. Janiak, *Eur. J. Inorg. Chem.*, 2006, 2146.

Complex	Methylene carbons (singlets)	Olefin carbons (doublets) $(U^{103}\text{Rb}^{-13}\text{C})$ in parentheses)					
	(Shighets)	trans to N	trans to O				
		'left' 'right' ^a	'left' 'right' ^a				
$[(Rh(\eta^4-cod))_2(salen)]$ 1	31.7, 28.8	85.5 (11.9)	71.2 (14.2)	Tw			
$[(Rh(\eta^4\text{-cod}))_2(salen)]$	31.8, 28.8	85.5 (12.5)	71.2 (15.0)	1			
$[Rh(o\text{-}O_2NC_6H_4NH)(\eta^4\text{-}cod)]$	31.1, 29.4	84.4 (11.0)	71.8 (11.0)	2			
$[(Rh(\eta^4\text{-cod}))_2(dcbi)](NHEt_3)$	31.2, 30.0	82.7 (13.0)	71.7 (14.0)	3			
$[Rh(o-aminophenolato)(\eta^4-cod)]^d$	30.4br, 29.5br	79.6br	68.9br	4			
$[(Rh(\eta^4\text{-cod}))_2(salophen)]$ 2	32.6, 30.3, 29.5, 27.9	85.8 (11.7) 84.3 (11.8)	74.3 (14.6) 69.7 (14.4)	Tw			
$[(Rh(\eta^4\text{-cod}))_2(salophen)]$	32.5, 30.3, 29.5, 27.9	85.8 (12.5) 84.3 (12.5)	74.3 (12.5) 69.7 (15.0)	1			
$[Rh{(R)-N-(4-methoxphenyl)ethyl-2-oxo-1-naphthaldiminato}(\eta^4-cod)] 4$	31.8, 31.1, 28.9, 28.3	84.7 (11.8) 84.1 (11.7)	73.3 (14.2) 71.1 (14.3)	Tw			
$[Rh\{N-(o-tolyl)-2-oxo-1-naphth-aldiminato\}(\eta^4-cod)]{\bf 5}$	30.7, 30.3, 28.2, 27.9	83.7 (12.2) 83.2 (11.8)	73.4 (14.1) 72.3 (14.1)	Tw			
$[Rh(SB1)(\eta^4\text{-cod})]^e$	32.5, 32.0, 29.6, 29.2	85.7 (12.1) 85.3 (12.3)	73.5 (14.2) 71.4 (14.6)	5			
$[Rh\{N,O\}(\eta^4\text{-cod})]^{b}$	32.1, 31.9, 29.6, 29.5	81.6 81.3	75.4 75.1	6			
$[Rh(\mu\text{-}hp/\text{-}mhp)(\eta^4\text{-}cod)]_2^{\ c}$	35.0, 33.0, 30.1, 29.0 /33.4, 32.1, 30.5, 29.2	89.1 77.2 /87.7 /76.6	74.4 70.9 /72.8 /72.2	7			
$ [(Rh(\eta^4\text{-cod}))_2(\mu\text{-NH}\{p\text{-tolyl}\})(\mu\text{-OMe})]^b $	32.7, 32.2, 29.4, 29.0	80.1 (12.0) 78.6 (13.0)	73.9 (14.0) 70.2 (15.0)	2			
[Rh(<i>N</i> -phenylglycinato)(η^4 -cod)] 3	30.1 29.7 ^d	78.2br 77.9br ^d		Tw 8			
$[Rh(L-methylglycinato)(\eta^4-cod)]^d$	30.1	79.6br	72.1br	8			
$[Rh(o-aminobenzoato)(\eta^4-cod)]^d$	29.6	77.1br		4			

Table S4 ¹³ C NMR	spectral data (δ /ppm)	and $J(^{103}\text{Rh}-^{13})$	C)/Hz in the	cod region in
$Rh\{N,O\}(n^4-cod)c$	omplexes in CDCl ₃ .			

^a 'left' and 'right' is an arbitrary assignment for the olefin carbons to either side of a plane bisecting the C=C bond. ^b in benzene-d₆. ^c in toluene-d₈. ^d in dmso-d₆. ^e SB1 = (R)-N-1- (phenyl)ethylsalicylaldiminato. ^f SB2 = (R)-N-1-(2-methoxphenyl)ethylsalicylaldiminato. br = broad signal. Tw = This work.

Rh-cod bond distances

Scheme S1 Bond distances (Å) for Rh– C_{cod} , C= C_{cod} , Rh–N and Rh–O in 1 and 2 to document the slightly asymmetrical binding of the cyclooctadiene (cod) ligands due to the different *trans* nitrogen or oxygen donor atoms.

Scheme S2 Graphical presentation of the parameters used in Table S5 for the description of (a) π - π stacking and (b) CH- π interactions.

Supramolecular π - π and CH- π interactions

Table S5 Distances	(d/Å) and angles (°	') fo	or the π -contacts in the c	rystal structures	of 1, 1	2 , 4 and 5 . ^{<i>a</i>}
--------------------	------	-----------------	-------	---------------------------------	-------------------	---------	--

π - π interactions compound, ring(I)ring(J)	d[Cg(I)…Cg(J)] ^b	α ^c	β ^d γ ^e	d[Cg(I)…P(J	$d[Cg(J)\cdots P(I)]^{g}$	d[a] ^{<i>h</i>}
1, Rh1-metallacycle…Rh1-meta Rh1-O1C4C3C2N1…Rh1-O1	111111111111111111111111111111111111	0	32 5 32 5	3 37	3 37	2 1 5
Rh2-metallacycle…Rh2-meta Rh2-O2C20C19C18…Rh2O2	llacycle ² ··· C20C19C18 ² ···	0	52.5 52.5	5.51	5.57	2.13
Symmetry transformations: 2	3.85 = 1-x, -y, -z; 2	0 = 2-x, 1-	24.8 24.8 -y, 1–z.	3.50	3.50	1.62
CH-π interactions						
ligand-C-H…ring	$d[H \cdots Cg]^{i}$	d[]	H…⊥] ^j	$\gamma^k \angle [CH]$	$\operatorname{H-Cg}^{l} = \operatorname{d}[\operatorname{C-Cg}]^{m}$	1
1 , C1–H1A…ringC3 ² –C8 ² C15–H15B…(Rh2O2C20C19) C27–H27A…ringC3 ² , -C8 ² , Symmetry transformations: 2	$2.62 \\ C18)^2, 2.79 \\ 2.94 \\ = 1-x, -y, 2' = 2-x$	2.6 2.6 2.8 x, -y, -z;	50 52 38 2'' = 2-x, -	6.8 159 19.7 131 12.4 141 y, 1–z.	3.56 (see F 3.51 (see F 3.76 (see F	ʻig. S2) ʻig. S3) 'ig. S4)
2a , C32–H32B···(Rh1O1C13C8C Symmetry transformations: 1	$(27N1)^1 2.86$ = 1+x, y, z.	2.6	51	24.3 167	3.83 (see F	ig. S5)
2b (Refcode SCLIRB10), C3–H3A···(Rh101C9C14C13 C8–H8B···ringC9 ³ –C14 ³ Symmetry transformations: 3	$(5N1)^3 2.74$ 2.73 = -0.5+x, 1-y, 0.5-	2.7 2.7 –z.	70 73	9.4 151 0.6 165	3.62 (see F 3.67 (see F	ʻig. S6) ʻig. S6)
4, C9–H9C…(RhO1C1C6C7N) ⁴ C17–H17A…(RhO1C1C6C7I Symmetry transformations: 4	$(4)^{4} = 2.70$ N) ^{4'} 2.64 = 1-x, -0.5+y, 0.5-	2.5 2.6 -z; 4' = 2	57 52 2-x, 0.5+y, (17.7 146 6.9 175).5–z.	3.54 (see F 3.58 (see F	ʻig. S7) `ig. S7)
5, C22–H22···(RhOC1C6C7N) ²	2.84	2.8	30	9.22 132	3.53	

Symmetry transformations: 2 = x, 1-y, -0.5+z.

^{*a*} For a graphical depiction of distances and angles in the assessment of the π -contacts, see Scheme S2. Pyridyl rings of the terpy or bipy ligands are named by their nitrogen atoms. – ^{*b*} Centroid-centroid distance. – ^{*c*} Dihedral angle between the ring planes. – ^{*d*} Angle between the centroid vector Cg(I)···Cg(J) and the normal to the plane I ("slip angle"). – ^{*e*} Angle between the centroid vector Cg(I)···Cg(J) and the normal to the plane I ("slip angle"). – ^{*e*} Angle between the centroid vector Cg(I)···Cg(J) and the normal to the plane J. – ^{*f*} Perpendicular distance of Cg(I) on ring plane J. – ^{*f*} Slippage; distance between Cg(I) and perpendicular projection of Cg(J) on Ring I; parallel displacement between ring centroids from a perfect face-to-face alignment. – ^{*i*} H–centroid distance. – ^{*f*} Perpendicular distance of H on ring plane. – ^{*k*} Angle between the C-H vector and the normal to the π -plane. – ^{*i*} C-H···centroid distance.

Compounds not listed in Table S5 contain no or only π -stacking interactions which can be viewed as medium to weak in that they exhibit rather long centroid-centroid distances (Cg···Cg> 4.0 Å) together with large slip angles (β , γ > 30°) and vertical displacements (d > 2.0 Å). In comparison, strong π -stackings show rather short centroid-centroid contacts (< 3.8 Å), small slip angles (β , γ < 25°) and vertical displacements (d < 1.5 Å) which translate into a sizable overlap of the aromatic planes.

Fig. S3 Complementary contacts C1–H1A…ringC3²–C8² (red dashed lines) in compound **1**.

Fig. S4 Complementary contacts C15–H15B···(Rh2O2C20C19C18)²' (red dashed lines) in compound **1**.

Fig. S5 Complementary contacts C27–H27A…ringC3²"–C8²" (red dashed lines) in compound **1**.

Fig. S6 Contact C32–H32B···(Rh1O1C13C8C7N1)¹ (red dashed line) in compound 2a.

Fig. S7 Contacts C3–H3A···(Rh1O1C9C14C15N1)¹ and C8–H8B···ringC9³–C14³ (red dashed lines) in compound **2b**.

Fig. S8 Contacts C9–H9C···(RhO1C1C6C7N)⁴ and C17–H17A···(RhO1C1C6C7N)^{4'} (red dashed lines) in compound **4**.

Fig. S9 Contact C22–H22…(RhOC1C6C7N)² (red dashed line) in compound 5.