Supporting Information

Anion Complexation of Pentafluorophenyl-Substituted Tripodal Urea Receptor in solution and the Solid State: Selectivity toward Phosphate.

I. Ravikumar, P. S. Lakshminarayanan, M. Arunachalam, E. Suresh and Pradyut Ghosh*

E-mail: <u>icpg@iacs.res.in</u>

Figure 1S: ¹H-NMR spectra of L^2 in DMSO-d₆ at 25°C

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Figure 2S: ¹³C-NMR spectra of L¹ in DMSO-d₆ at 25°C

Figure 3S HRMS spectrum of L¹

Figure 5S: ¹³C-NMR spectra of complex 1 in DMSO-d₆ at 25°C

Figure 6S HRMS spectrum of complex 1

Figure 7S: ¹H-NMR spectra of complex **2** in DMSO-d₆ at 25°C

Figure 8S: ¹³C--NMR spectra of complex **2** in DMSO-d₆ at 25°C

• •		PFV-SUL-CRVR-13C (SR)					
ppm 144 B12 144 B12 144 B12 139 B15 139 B17 138 B01 138 B01 136 B21 135 B21	115, 976		56.070 54.843 41.618 41.618 41.228 41.228	40.793 40.514 39.957 39.677 39.402 39.402	- 23,268 - 23,534 - 19,657 - 13,191 - 13,589		Lurrent Usta Parameters uAMP PPV_SUL-CRVH-13C E-PH0 1 SPOCH0 1 SPOCH0 1 SPOCH0 1 Tame 9.40 INSTRUM Spect SQUEUT 0050 F005H0 5 9055 SG 4 SAL 12955 SF 4 SAL 12955 1142 SDMED 1.09755 H2 SDMED 1.0975
							au 0.402262 Set au 27 800 usec bit 27 800 usec c 600 usec tit 5 0600000 sec 31 5 0600000 sec warpest 0.0550000 sec nucci 13C nucci 13C str 1.250 usec var 1.250 usec croppets 75.4752953 Mit croppets valtr16 nucc 14116 scpp2 100 00 usec scpp2 130 00 usec
							SF02 360,1312005 MHz F2 Processing parameters 16384 SF 75,4577476 MHz WD EM MHz MD 638 0 _B 100 Hz SB 0 0 SC 23 0 MD MAR plot parameters 23 47 cm CY 23 47 cm 23 47 cm TP 155 Ado pps 1 20 -7 215 pp 10 pc
00m 140	1 I I I I I 120	100 80	60	40	20	0	PPMCM 7.24444 ppm/c HZEM 546.72150 Hziter

Figure 9S HRMS spectrum of complex 2

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Figure 10S: ¹⁹F-NMR spectra of $n-Bu_4N^+F^-$ in DMSO-d₆ at 25°C.

Figure 11S: ¹⁹F-NMR spectra of L^1 in DMSO-d₆ at 25°C.

Figure 12S: ¹⁹F-NMR spectra of n-Bu₄N⁺F⁻ with L¹ in DMSO-d₆ at 25°C

Figure 13S: Change in Chemical shifts for L^1 with $(n-Bu_4N^+)HSO_4^-$ in DMSOd₆ at 25°C.

Figure 14S: Job's plot for L^1 with $(n-Bu_4N^+)_2SO_4^{2-}$ in DMSO-d₆ at 25°C.

Figure 16S: The scatterplot of N-H...O angle vs. H...O distance of the hydrogen bonds in $H_2PO_4^-$ complex.

Figure 17S: ORTEP diagram of Complex **1** with 50% probability factor for the thermal ellipsoids.

Figure 18S: The scatter plot of N-H...F angle vs. H...F distance of the hydrogen bonds in complex **1**.

Figure 21S: Job's plot for L^1 with *n*-Bu₄N⁺Br⁻ in DMSO-d₆ at 25°C.

Figure 22S. Packing diagram of Complex 1 along b-axis.

Figure 23S: ORTEP diagram of Complex **2** with 50% probability factor for the thermal ellipsoids.

