Molecular structure of the lithium salt of the ligand L_{Me2Ph}H

The solid state structure of the lithium salt $[Li_2(L_{Me2Ph})_2(L_{Me2Ph}H)_2]$ was determined by X-ray diffraction analysis. It is displayed in Figure 1 including selected bond lengths and bond angles. Crystal data and refinement details are given in Table 3.

Figure 1. Molecular structure of [Li₂(L_{Me2Ph})₂(L_{Me2Ph}H)₂]. Hydrogen atoms have been omitted clarity. Selected bond lengths [Å] and angles [°]: Li1–O1 1.907(3); Li1–O1' 1.950(3); Li1–N1 2.026(3); Li1–O2 1.979(3); N1-Li1-O1 95.5(1); N1-Li1-O1' 131.9(2); N1-Li1-O2 105.1(1); O1-Li1-O1' 89.9(1); O1-Li1-O2 129.7(2); O1'-Li1-O2 107.6(1).

The crystal structure revealed a centrosymmetric dimeric lithium compound in which each lithium atom is coordinated by a bidentate deprotonated β -ketiminate ligand and by the nitrogen atom of a protonated ligand. A dimer is formed via the bridging anionic oxygen atoms forming a Li2O2 ring located on a center of symmetry. The geometry at Li can best be described as distorted tetrahedral (largest angle N1-Li1-O1' = $131.9(2)^{\circ}$; second largest angle O1-Li1-O2 = $129.7(2)^{\circ}$). Crystal structures of lithium β -ketiminates previously reported showed them to be tetranuclear aggregatesⁱ. However, in the presence of an additional donor arrangements similar dimeric have been found such as in $[{i PrNCMeCHCMeOLi \cdot OP(NMe_2)_3}_2]^i$ internal and with an donor in $[\{Et_2NCH_2CH_2NC(CF_3)CHC(CF_3)OLi\}_2]^{ii}.$

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

	$[\{Li(L_{Me2Ph})(L_{Me2Ph}H)\}_2]$
Empirical formula	$C_{52}H_{66}Li_2N_4O_4$
Mw	824.97
Temperature [K]	100(2)
Size [mm]	0.18 x 0.08 x 0.06
Crystal system	Monoclinic
Space group	$P2_1/n$
a [Å]	7.915(3)
b [Å]	15.694(3)
c [Å]	19.468(4)
β [°]	94.22(2)
$V[A^3]$	2411.7(11)
Z	2
$\rho_{\text{calc}} [\text{gcm}^{-3}]$	1.136
Absorption coefficient [mm ⁻¹]	0.550
F(000)	888
θ range	3.62< 0 <59.00
Reflections collected/unique	10466/3446
Completeness to θ [%]	99.3
Data/restraints/parameters	3446/724/354
Goodness of fit on F^2	1.035
Final R indices $[I > 2\sigma(I)]^a$	R1=0.0404, wR2=0.1011
R indices (all data) ^a	R1=0.0564, wR2=0.1086
Largest diff. Peak/hole [e ⁻ /Å ³]	0.232/-0.156

Suitable crystal of [{Li(L_{Me2Ph})(L_{Me2Ph} H)}₂] was mounted on a nylon loop and placed immediately in a stream of a cold nitrogen. BRUKER-AXS SMART6000 CCD diffractometer with a mirror-monochromated Cu K α radiation (1.54178 Å) was used for the data collection at 100 K. The geometry of this diffractometer allows collecting the data only to the θ 59 °, which led to one level B (the value of sin(θ_{max}) / wavelength is less than 0.575, calculated sin sin(θ_{max}) / wavelength = 0.556) and two level C (ratio of reflections to parameters is < 10 for a centrosymmetric structure and poor reflections to parameters 9.7345) alerts. The SHELXLⁱⁱⁱ restraints SAME, SIMU, DELU were used to refine the disordered 2,6dimethylphenyl moiety.

Crystallographic (excluding factors) for data structure the structures of [{Li(LMe2Ph)(LMe2PhH)}2], have been deposited with the Cambridge Crystallographic Data Center as no. CCDC-708730 . Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: deposit@ccdc.cam.ac.uk]. (internat.) +44-1223/336-033;E-mail:

The dependence of k_{obs} was investigated at different PMe₃ concentrations at 20°C.

Figure 2: Dependence of k_{obs} and [PMe₃] at 20°C.

Figure 3: Reaction monitored over more than ten half – lives.

Figure 4: Eyring Plot for the kinetic experiment

- ⁱⁱ D. Neculai, A. M. Neculai, H. W. Roesky, J. Magull, G. Bunkoczi, J. Fluorine Chem., 2002, 118, 131-134.
- ⁱⁱⁱ G. M. Sheldrick, Program for the Refinement of Crystal Structures. University of Göttingen, Germany, 1997.

ⁱ M. Brehon, E. K. Cope, F. S. Mair, P. Nolan, J. E. O'Brien, R. G. Pritchard, D. J. Wilcock, *J. Chem. Soc., Dalton Trans.*, 1997