Supporting Information

A Gd(III) Complex of a Monophosphinate-bis(phosphonate) DOTA Analogue with a High ¹H NMR Relaxivity; Lanthanide(III) Complexes for Imaging and Radiotherapy of Calcified Tissues.

Tomáš Vitha,^a Vojtěch Kubíček,^{*a} Jan Kotek,^a Petr Hermann,^a Luce Vander Elst,^b Robert N. Muller,^b Ivan Lukeš^a and Joop A. Peters^{*c}

^a Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 40 Prague, Czech Republic. Fax: +420-221951253; Tel: +420-221951264; E-mail: <u>vvvojta@volny.cz</u>

^b Department of Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons Hainaut, B-7000, Mons, Belgium.

^c Biocatalysis and Organic Chemistry, Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands. Fax: +31152781415; Tel: +31152785892; E-mail: j.a.peters@tudelft.nl

Contents

Figures S1. ³¹P{¹H} spectra monitoring the complexation of the DO3AP^{BP} with Eu(III) ions. **Figures S2–S15.** ³¹P{¹H} and ¹H NMR spectra of lanthanide(III) DO3AP^{BP} complexes (La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y).

Figure S16. ${}^{31}P{}^{1}H$ spectra of Eu- and Yb-DO3AP^{BP} complexes at different temperatures.

Figure S17. ³¹P{¹H} titration curves of SA and TSA diastereoisomers in the Yb-DO3AP^{BP} complex and corresponding distribution diagrams.

Figure S18. pH dependence of the relaxivity for the Gd-DO3AP^{BP} complex.

Figure S19. The temperature dependence of reduced ¹⁷O NMR chemical shifts, transverse, longitudinal relaxation rates, and ¹H NMRD profiles of the Gd-DO3AP^{BP} complex at pH = 6.

Figure S20. The $\tau_{\rm R}$ values of the La-DO3AP^{BP} complex as a function of concentration.

Figure S21. Luminescence emission spectra of the Eu-DO3AP^{BP} complex in the presence of phosphate with and without Zn(II) ions as a function of time.

Figure S22. ¹H NMRD profiles of the Gd-DO3AP^{BP}, Gd-BPAMD and Gd-BPAPD complexes adsorbed on HA under analogous conditions (pH = 7.5, 25 °C). Diamagnetic contribution to r_1 was subtracted.

Table S1. Experimental parameters found in the crystal structure of $DO3AP^{BP} \cdot 2.25H_2O$.

Table S2. Hydrogen bond geometries found in the crystal structure of $DO3AP^{BP} \cdot 2.25H_2O$.

Table S3. The relaxivity r_1 and parameters governing it for the Gd-DO3AP^{BP} complex at pH 6 and 7.5 as obtained from simultaneous fitting of ¹⁷O NMR and ¹H NMRD data.

Table S4. Luminescence lifetimes of the Eu-DO3AP^{BP} complex in the presence of phosphate with and without Zn(II) ions as a function of time.

Figure S1. ³¹P{¹H} spectra monitoring the complexation of the DO3AP^{BP} with Eu(III) ions $(a - 15 \text{ min after mixing the ligand and EuCl₃ (0.9 eq.), the initial pH = 9 decreased to 5; <math>b - 50 \text{ min after mixing, pH} = 5$; c - 2 h after re-adjusting pH to 8). The ³¹P{¹H} resonances of the free ligand are labelled with 'L'. The ³¹P{¹H} resonances of the final Eu-DO3AP^{BP} complex are labelled with an asterisk. The question mark labels a very broad peak supposedly of an 'out-of-cage' complex, where the Eu(III) ion is coordinated by phosphinate and carboxylate moieties.

Figure S2. ³¹P{¹H} spectrum of the La-DO3AP^{BP} complex (pH = 7.3, 25 °C, 400 MHz). The ³¹P{¹H} resonances of the free ligand in excess are labelled with 'L' (the phosphonate peak at $\delta \sim 22$ ppm is a doublet due to coupling with the phosphinate P atom). Phosphinate resonances are labelled in black, phosphonate resonances are labelled in red. A small triplet close to $\delta = 45$ ppm is due to a non-coordinating impurity.

Figure S3. ³¹P{¹H} spectrum of the Ce-DO3AP^{BP} complex (pH = 7.3, 25 °C, 400 MHz). The ³¹P{¹H} resonances of the free ligand in excess are labelled with 'L' (the phosphonate peak at $\delta \sim 22$ ppm is a doublet due to coupling with the phosphinate P atom). Phosphinate resonances are labelled in black, phosphonate resonances are labelled in red. A small triplet close to $\delta = 45$ ppm is due to a non-coordinating impurity.

Figure S4. ³¹P{¹H} (above) and ¹H NMR (below) spectra of the Pr-DO3AP^{BP} complex (pH = 7.5, 25 °C, 400 MHz). ³¹P{¹H} spectrum – phosphinate resonances are labelled in black, phosphonate resonances are labelled in red, resonances of the free ligand in excess are labelled with 'L' (the phosphonate peak at $\delta \sim 22$ ppm is a doublet due to coupling with the phosphinate phosphorus atom); a small triplet close to $\delta = 45$ ppm is due to a non-coordinating impurity.

Figure S5. ³¹P{¹H} (above) and ¹H NMR (below) spectra of the Nd-DO3AP^{BP} complex (pH = 7.4, 25 °C, 400 MHz). ³¹P{¹H} spectrum – phosphinate resonances are labelled in black, phosphonate resonances are labelled in red, resonances of the free ligand in excess are labelled with 'L' (the phosphonate peak at $\delta \sim 22$ ppm is a doublet due to coupling with the phosphonate phosphorus atom).

Figure S6. ³¹P{¹H} spectrum of the Sm-DO3AP^{BP} complex (pH = 7.2, 25 °C, 400 MHz). The ${}^{31}P{}^{1}H$ resonances of the free ligand in excess are labelled with 'L' (the phosphonate peak at $\delta \sim 22$ ppm is a doublet due to coupling with the phosphinate phosphorus atom). Phosphinate resonances are labelled in black, phosphonate resonances are labelled in red. A small triplet close to $\delta = 45$ ppm is due a non-coordinating impurity.

Figure S7. ³¹P{¹H} (above) and ¹H NMR (below) spectra of the Eu-DO3AP^{BP} complex (pH = 7.2, 25 °C, 400 MHz). ³¹P{¹H} spectrum – phosphinate resonances are labelled in black, phosphonate resonances are labelled in red, resonances of the free ligand in excess are labelled with 'L'; a small triplet close to $\delta = 45$ ppm is due to a non-coordinating impurity.

Figure S8. ${}^{31}P{}^{1}H$ spectrum of the Tb-DO3AP^{BP} complex (pH = 7.2, 25 °C, 400 MHz). The ${}^{31}P{}^{1}H$ resonances of the free ligand in excess are labelled with 'L'. Phosphinate resonances are labelled in black, phosphonate resonances are labelled in red.

Figure S9. ³¹P {¹H} spectrum of the Dy-DO3AP^{BP} complex (pH = 7.2, 25 °C, 400 MHz). The ³¹P {¹H} resonances of the free ligand in excess are labelled with 'L'. Phosphinate resonances are labelled in black, phosphonate resonances are labelled in red. A small peak close to δ = 45 ppm is due to a non-coordinating impurity.

Figure S10. ³¹P{¹H} (above) and ¹H NMR (below) spectra of the Ho-DO3AP^{BP} complex (pH = 7.3, 25 °C, 400 MHz). ³¹P{¹H} spectrum – phosphinate resonances are labelled in black, phosphonate resonances are labelled in red, resonances of the free ligand in excess are labelled with 'L'; a small triplet close to $\delta = 45$ ppm is due to a non-coordinating impurity.

Figure S11. ³¹P{¹H} spectrum of the Y-DO3AP^{BP} complex (pH = 7.0, 25 °C, 400 MHz). In this case no excess of free ligand was used. Phosphinate resonances are labelled in black, phosphonate resonances are labelled in red.

Figure S12. ³¹P{¹H} spectrum of the Er-DO3AP^{BP} complex (pH = 7.4, 25 °C, 400 MHz). The ${}^{31}P{}^{1}H$ resonances of the free ligand in excess are labelled with 'L'. Phosphinate resonances are in black, phosphonate resonances are in red. A small triplet close to $\delta = 45$ ppm is due to a non-coordinating impurity.

Figure S13. ³¹P{¹H} spectrum of the Tm-DO3AP^{BP} complex (pH = 7.3, 25 °C, 400 MHz). The ${}^{31}P{}^{1}H$ resonances of the free ligand in excess are labelled with 'L'. Phosphinate resonances are labelled in black, phosphonate resonances are labelled in red.

Figure S14. ³¹P{¹H} (above) and ¹H NMR (below) spectra of the Yb-DO3AP^{BP} complex (pH = 7.3, 25 °C, 400 MHz). ³¹P{¹H} spectrum – phosphinate resonances are labelled in black, phosphonate resonances are labelled in red, resonances of the free ligand in excess are labelled with 'L'; a small peak close to $\delta = 45$ ppm is due to a non-coordinating impurity.

Figure S15. ³¹P{¹H} spectrum of the Lu-DO3AP^{BP} complex (pH = 7.0, 25 °C, 400 MHz). The ${}^{31}P{}^{1}H$ resonances of the free ligand in excess are labelled with 'L'. Phosphinate resonances are labelled in black, phosphonate resonances are labelled in red.

Yb-DO3AP^{BP}

Figure S16. ³¹P{¹H} spectra of the Eu-DO3AP^{BP} (above) and Yb-DO3AP^{BP} (below) complexes at different temperatures (pH = 7). The ³¹P{¹H} resonances of the free ligand in excess are labelled with 'L'.

Figure S17. ³¹P{¹H} titration curves of phosphinate (\blacktriangle) and two non-equivalent ³¹P atoms of bis(phosphonate) moiety (\blacksquare , \Box) of the SA (A) and TSA (B) diastereoisomers in the Yb-DO3AP^{BP} complex, and corresponding distribution diagrams (below), A⁵⁻ denotes the fully deprotonated Yb-DO3AP^{BP} complex.

Figure S18. pH dependence of the relaxivity for the Gd-DO3AP^{BP} complex (2 mM, 20 MHz, 25 °C).

Figure S19. The temperature dependence of longitudinal (A, \blacksquare) and transverse relaxation times (A, \bullet) and reduced ¹⁷O NMR chemical shifts (B) of water for the Gd-DO3AP^{BP} complex (87 mM, pH = 6, 400 MHz). ¹H NMRD profiles of the Gd-DO3AP^{BP} complex in aqueous solution at 25 °C (C, \blacksquare) and 37 °C (C, \bullet) (2.5 mM, pH = 6). The curves represent simultaneous least-squares fits of the ¹⁷O data and the ¹H NMRD profiles.

Figure S20. The $\tau_{\rm R}$ values of the deuterated La-DO3AP^{BP} complex as a function of concentration (20–250 mM, pH = 7.5, 25 °C). The equation of a linear fit: y = 0.299x + 161.7; correlation coefficient R² = 0.993.

Figure S21. Luminescence emission spectra of the Eu-DO3AP^{BP} complex (62 mM, pH = 7) in the presence of phosphate (67 mM) (labelled with1); and in the presence of phosphate (67 mM) and 3 eq. of Zn(II) ions (labelled with 2) as a function of time ($a - 0 \min$, $b - 5 \min$, $c - 90 \min$, d - 3 days).

Figure S22. ¹H NMRD profiles of the Gd-DO3AP^{BP} (\blacksquare), Gd-BPAMD (\bullet) and Gd-BPAPD (\blacktriangle) complexes adsorbed on HA under analogous conditions (pH = 7.5, 25 °C). Diamagnetic contribution to r_1 was subtracted.

Formula	$C_{17}H_{39.50}N_4O_{16.25}P_3$
$M_{ m r}$	652.94
Size (mm)	0.25×0.25×0.50
Crystal shape	Prism
Colour	Colourless
Crystal system	Monoclinic
Space group	$P2_1/n$ (No. 14)
a (Å)	8.78940(10)
b (Å)	24.6443(3)
c (Å)	12.78370(10)
β (°)	95.0428(6)
$U(\dot{A}^3)$	2758.34(5)
Z	4
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.572
$\mu (\mathrm{mm}^{-1})$	0.298
F(000)	1378
Range of θ (°)	1.80-27.44
Range of indexes (<i>hkl</i>)	-11 < h < 11
-	-31 < k < 31
	-16 < <i>l</i> < 16
Collected refl.	47012
Unique refl.	6277
Observed refl. $[I > 2\sigma(I)]$	5560
R _{int}	0.0290
Restrictions, parameters	0, 370
G-o-f	1.047
<i>R</i> ; <i>wR</i> (all data)	0.0310; 0.0813
$R'; wR' [I > 2\sigma(I)]$	0.0365; 0.0853
Residual min/max of	-0.424; 0.495
electronic density (e Å ⁻³)	

Table S1. Experimental parameters found in the crystal structure of $DO3AP^{BP} \cdot 2.25H_2O$.

Table S2. Hydrogen bond geometries found in the crystal structure of $DO3AP^{BP} \cdot 2.25H_2O$.

D–H	<i>d</i> (D–H) / Å	<i>d</i> (H…A) / Å	<d-h-a th="" °<=""><th><i>d</i>(D…A) / Å</th><th>А</th></d-h-a>	<i>d</i> (D…A) / Å	А
N1-H11	0.910	2.276	131.5	2.958	0512
N1-H11	0.910	2.511	107.7	2.920	N4
N1-H11	0.910	2.600	108.6	3.016	N10
N7-H71	0.910	2.277	132.5	2.969	O312
N7-H71	0.910	2.618	108.1	3.028	N4
N7-H71	0.910	2.426	108.6	2.850	N10
O21-H21P	0.857	1.678	175.7	2.533	012
O31-H31P	0.933	1.558	171.0	2.484	O22 [-x+2, -y+1, -z+1]
O32-H32P	0.937	1.566	169.2	2.492	O23 [-x+2, -y+1, -z+1]
O311-H311	0.919	1.671	170.2	2.582	O11 [x+1/2, -y+1/2, z+1/2]
O411-H411	0.883	1.687	162.5	2.543	O33 [x+1/2, -y+1/2, z+1/2]
O511-H511	0.830	1.796	163.3	2.601	O1W
O1W-H11W	0.761	2.184	143.1	2.830	O11 [x+1, y, z]
O1W-H12W	0.835	2.057	158.1	2.849	022
O1W-H12W	0.835	2.502	120.6	3.014	032
O2W-H21W	0.838	2.098	166.7	2.920	O11 [x+1/2, -y+1/2, z+1/2]
O2W-H22W	0.887	2.076	176.5	2.961	O33 [x-1/2, -y+1/2, z+1/2]

Table S3. The ¹H relaxivity r_1 (20 MHz) and parameters governing it in the Gd-DO3AP^{BP} complex at pH 6, 7.5 and 10 as obtained from the simultaneous fitting of ¹⁷O NMR and ¹H NMRD data. Experimental points of the ¹H relaxivity are given in brackets.

pH = 6	pH = 7.5
6.8 (7.1)	6.9 (7.4)
5.5 (5.4)	5.7 (5.6)
4.45 ± 0.47	5.06 ± 0.75
224 ± 24	198 ± 29
51.1 ± 3.2	51.1 ± 4.0
19.4 ± 0.9	21.6 ± 1.2
122.7 ± 5.0	134.0 ± 7.7
1.41 ±0.08	1.19 ± 0.09
8.8 ± 1.4	7.1 ± 1.3
4.08 ± 0.93	5.99 ± 1.54
-3.04 ± 0.26	-3.24 ± 0.36
0.038 ± 0.012	0.024 ± 0.015
1.42 ± 0.08	1.81 ± 0.10
	pH = 6 6.8 (7.1) 5.5 (5.4) 4.45 ± 0.47 224 ± 24 51.1 ± 3.2 19.4 ± 0.9 122.7 ± 5.0 1.41 ± 0.08 8.8 ± 1.4 4.08 ± 0.93 -3.04 ± 0.26 0.038 ± 0.012 1.42 ± 0.08

Fixed parameters:

 $D^{298}_{GdH} = 2.39 \times 10^{-9} \text{ m}^2 \text{ s}^{-1}$ $E_{DGH} = 18.2 \text{ kJ mol}^{-1}$ $r_{GdH} = 3.1 \text{ Å}$ $r_{GdO} = 2.5 \text{ Å}$ $r_{GdHss} = 3.5 \text{ Å}$ $r_{GdHss} =$

Table S4. The luminescence lifetimes measured for the Eu-DO3AP^{BP} complex in the presence of phosphate (67 mM, pH = 7) and 3 eq. of $ZnCl_2$, and for the reference sample without Zn(II) ions.

time [dava]	lifetime $\tau_{\rm H2O}$ [µs]		
time [days]	Eu-DO3AP ^{BP} + 3 eq. ZnCl ₂	Eu-DO3AP ^{BP} (reference sample)	
0	704	720	
3	745	752	