Mononuclear and Binuclear Manganese Carbonyl Hydrides: The Preference for Bridging Hydrogens over Bridging Carbonyls

Xian Mei Liu,^a Qian-shu Li,^{*a,b} Yaoming Xie,^c R. Bruce King,^{*a,c} and Henry F. Schaefer III^c

^a Center for Computational Quantum Chemistry, South China Normal University,

Guangzhou 510631, P. R. China

^bInstitute of Chemical Physics, Beijing Institute of Technology, Beijing 100081, P. R.

China

^cDepartment of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602, USA

Supporting Information

Tables S1 to S5: Harmonic vibrational frequencies and infrared intensities for $HMn(CO)_n$ (n = 5, 4, 3).

Tables S6 to S12: Harmonic vibrational frequencies and infrared intensities for $H_2Mn_2(CO)_n$ (n = 9, 8, 7, 6).

Tables S13 to S20: Atomic coordinates of the optimized structures $HMn(CO)_n$ (n = 5, 4, 3).

Tables S21 to S35: Atomic coordinates of the optimized structures $H_2Mn_2(CO)_n$ (n = 9, 8, 7, 6).

Complete Gaussian 03 reference (Reference 40)

_	_ 15-1					
_	B3LYP	BP86				
b ₂	44(0)	33(0)				
e	79(0)	75(0)				
e	79(0)	75(0)				
b_1	98(0)	94(0)				
e	103(0)	99(0)				
e	103(0)	99(0)				
a_1	111(0)	106(0)				
e	353(2)	349(0)				
e	353(2)	349(0)				
a ₂	371(0)	375(0)				
a_1	406(0)	478(0)				
b ₂	417(0)	440(0)				
a_1	459(5)	476(2)				
e	467(26)	483(12)				
e	467(26)	483(12)				
b ₂	507(0)	491(0)				
e	550(1)	537(0)				
e	550(1)	537(0)				
b_1	574(0)	560(0)				
e	634(64)	611(23)				
e	634(64)	611(23)				
a ₁	685(149)	685(132)				
e	771(138)	752(180)				
e	771(138)	752(180)				
a ₁	1846(17)	1839(0)				
a ₁	2077(892)	1998(779)				
e	2085(1557)	2001(1397)				
e	2085(1558)	2001(1397)				
b_2	2101(0)	2022(0)				
a ₁	2173(6)	2093(2)				

 Table S1. Harmonic vibrational frequencies(in cm⁻¹) and Infrared Intensities (in Parentheses in km/mol) for 15-1.

_	14-1		_	14-2			
_	B3LYP	BP86	_	B3LYP	BP86		
a'	69(0)	65(0)	b ₂	30(0)	22(0)		
a''	81(0)	79(0)	e	90(1)	84(1)		
a'	91(0)	87(0)	e	90(1)	84(1)		
a"	100(1)	98(1)	b_1	95(0)	93(0)		
a'	102(0)	99(0)	a_1	111(0)	105(0)		
a'	314(10)	311(7)	e	342(4)	336(1)		
a"	354(5)	349(2)	e	342(4)	336(1)		
a"	358(0)	363(0)	a_2	367(0)	371(0)		
a'	408(2)	428(0)	a_1	415(1)	439(0)		
a'	449(7)	468(3)	b ₂	417(0)	440(0)		
a"	451(39)	467(20)	e	464(56)	481(29)		
a'	480(6)	512(0)	e	464(56)	481(29)		
a'	532(4)	521(3)	b ₂	503(0)	497(0)		
a"	554(11)	541(8)	b_1	578(0)	564(0)		
a'	570(28)	574(17)	e	633(77)	621(52)		
a'	621(80)	624(63)	e	633(77)	621(52)		
a"	625(36)	607(9)	a_1	669(58)	670(46)		
a'	703(57)	713(61)	e	808(15)	801(45)		
a"	756(47)	722(73)	e	808(15)	801(45)		
a'	1835(47)	1828(15)	a_1	1924(63)	1968(21)		
a'	2054(942)	1966(787)	e	2053(1957)	1964(1690)		
a'	2068(751)	1978(1448)	e	2053(1957)	1964(1690)		
a"	2069(1674)	1983(661)	b_2	2079(0)	1998(0)		
a'	2147(28)	2060(22)	a_1	2152(3)	2066(2)		

 Table S2. Harmonic vibrational frequencies(in cm⁻¹) and Infrared Intensities (in Parentheses in km/mol) for 14-1 and 14-2.

	14-	·3T
	B3LYP	BP86
a_1	46(0)	51(0)
b_2	54(2)	13i(3)
a_2	68(0)	71(0)
b_1	91(0)	88(0)
a_1	96(0)	91(0)
b_1	209(4)	280(1)
b_1	302(1)	385(0)
a_1	334(9)	382(4)
a_2	335(0)	344(0)
b_2	346(0)	355(1)
a_1	370(0)	402(1)
b_2	386(37)	333(17)
b_1	408(10)	453(1)
a_1	438(3)	463(2)
a ₂	498(0)	503(0)
b_2	537(61)	562(44)
a_1	591(73)	586(61)
b_1	592(59)	608(69)
b_2	670(1)	603(0)
a_1	1801(112)	1835(39)
b_2	2051(1930)	1968(1544)
a_1	2071(515)	1974(495)
b_1	2088(1032)	1985(872)
a_1	2145(46)	2046(51)

 Table S3. Harmonic vibrational frequencies(in cm⁻¹) and Infrared Intensities (in Parentheses in km/mol) for 14-3T.

	13	-1		13-2		
	B3LYP	BP86		B3LYP	BP86	
a''	82(0)	78(0)	a'	73(1)	70(1)	
a'	91(0)	91(0)	a'	91(0)	91(1)	
a'	105(1)	105(1)	a"	96(1)	96(1)	
a"	305(12)	289(6)	a'	337(18)	344(3)	
a'	318(35)	325(30)	a"	347(8)	352(11)	
a"	379(2)	397(2)	a"	360(0)	366(0)	
a'	438(11)	458(9)	a'	428(1)	455(1)	
a'	476(14)	501(1)	a"	463(76)	482(38)	
a"	497(22)	524(4)	a'	488(9)	525(0)	
a"	526(10)	541(11)	a'	577(16)	579(10)	
a'	584(67)	589(46)	a'	604(49)	612(28)	
a'	626(34)	645(28)	a"	626(27)	622(20)	
a''	706(13)	709(17)	a'	713(17)	760(16)	
a'	732(47)	745(60)	a"	798(1)	777(12)	
a'	1841(139)	1823(57)	a'	1923(104)	1933(645)	
a"	2037(1046)	1943(861)	a'	2023(816)	1973(28)	
a'	2042(1161)	1950(959)	a"	2033(2059)	1937(1684)	
a'	2112(275)	2021(208)	a'	2119(26)	2027(23)	

Table S4. Harmonic vibrational frequencies(in cm^{-1}) and Infrared Intensities (in Parentheses in km/mol) for 13-1 and 13-2.

	13-	-3T		13	-4
	B3LYP	BP86		B3LYP	BP86
b ₂	43(0)	10(0)	b_2	80(0)	79(0)
b_1	81(3)	59(7)	a_1	82(0)	75(0)
a_1	92(0)	88(0)	b_1	93(1)	90(1)
b_1	228(26)	184(21)	b_1	255(9)	252(3)
a_2	320(0)	315(0)	a_2	321(0)	315(0)
b_2	326(11)	316(5)	b_2	349(8)	345(3)
b_1	366(19)	317(7)	a_1	412(0)	430(0)
a_1	375(5)	397(2)	a_1	461(9)	480(2)
a_1	431(3)	451(2)	b_2	462(56)	474(32)
b_2	457(53)	454(2)	b_1	551(15)	566(8)
b_2	487(55)	474(56)	b_2	575(48)	563(26)
b_1	561(7)	558(3)	a_1	599(75)	586(49)
a_1	599(90)	592(75)	b_1	662(2)	686(5)
b_2	742(36)	708(52)	b_2	752(39)	713(56)
a_1	1802(51)	1804(13)	a_1	1798(60)	1797(8)
b_2	2026(2267)	1945(1854)	a_1	2047(1028)	1960(891)
a_1	2071(686)	1989(632)	b_2	2052(1840)	1957(1625)
a ₁	2141(176)	2050(102)	a_1	2131(18)	2039(5)

Table S5. Harmonic vibrational frequencies(in cm^{-1}) and Infrared Intensities (in Parentheses in km/mol) for 13-3T and 13-4.

- 29-1		9-1	29-2		
_	B3LYP	BP86	_	B3LYP	BP86
a''	36(0)	36(0)	a	16(0)	14(0)
a''	53(0)	50(0)	а	22(0)	29(0)
a'	54(0)	51(0)	а	37(0)	40(0)
a'	60(0)	53(0)	а	52(1)	54(0)
a"	63(0)	60(0)	а	64(0)	62(0)
a''	69(0)	60(0)	а	72(0)	73(0)
a'	80(0)	73(0)	а	73(0)	76(0)
a'	86(0)	81(0)	а	77(1)	81(0)
a"	87(0)	83(0)	а	82(0)	84(0)
a'	96(0)	93(0)	а	85(0)	86(1)
a'	98(0)	94(0)	а	87(0)	90(2)
a''	98(0)	95(0)	a	96(0)	94(0)
a'	104(1)	100(1)	а	101(0)	101(0)
a''	105(1)	102(1)	а	103(0)	104(0)
a'	108(0)	104(0)	а	107(1)	107(1)
a''	108(0)	104(0)	a	110(1)	115(1)
a'	116(2)	113(2)	а	112(1)	116(7)
a'	150(0)	153(0)	a	131(0)	142(1)
a''	343(1)	346(1)	а	299(1)	297(2)
a'	368(12)	363(19)	a	357(3)	348(3)
a''	371(0)	373(0)	а	360(1)	367(0)
a''	397(0)	396(0)	а	369(12)	392(12)
a"	413(0)	410(0)	а	387(1)	408(6)
a'	399(24)	416(6)	а	396(0)	417(1)
a'	406(1)	424(6)	а	410(4)	421(0)
a'	419(1)	427(0)	а	413(1)	427(2)
a"	417(0)	431(0)	а	421(1)	437(1)
a"	452(13)	459(4)	а	440(20)	462(10)
a'	459(9)	460(12)	а	443(25)	469(16)
a"	468(19)	461(2)	а	452(2)	478(1)
a"	472(0)	480(10)	а	469(4)	482(1)
a'	470(18)	481(9)	а	478(22)	486(4)
a'	476(2)	487(3)	а	486(5)	492(9)
a"	487(5)	492(7)	а	510(0)	498(2)
a'	480(4)	493(1)	a	534(0)	509(3)
a'	491(0)	506(1)	a	548(3)	538(3)
a'	555(1)	542(0)	a	550(3)	543(1)
a'	560(0)	545(0)	a	557(0)	546(4)
a"	558(0)	547(0)	a	562(6)	548(1)

Table S6. Harmonic vibrational frequencies(in $\rm cm^{-1})$ and Infrared Intensities (in Parentheses in km/mol) for 29-1 and 29-2 .

a'	572(5)	564(6)	a	592(0)	572(8)
a''	580(1)	573(1)	а	603(30)	579(3)
a''	610(7)	599(3)	а	629(41	607(16)
a'	659(332)	662(124)	а	646(52)	653(163)
a'	664(423)	664(176)	а	658(217)	660(103)
a''	666(67)	664(64)	а	672(156)	674(109)
a'	668(129)	670(427)	а	680(130)	678(224)
a''	682(136)	680(125)	a	738(46)	712(109)
a'	694(3)	696(8)	а	758(127)	749(155)
a'	1031(33)	1091(31)	а	773(80)	997(93)
a'	1658(50)	1709(54)	а	1784(533)	1491(67)
a''	2044(3)	1962(13)	а	1824(74)	1823(1)
a'	2048(153)	1970(211)	а	2039(767)	1963(600)
a'	2056(656)	1978(834)	а	2041(914)	1970(490)
a'	2065(59)	1987(46)	а	2052(678)	1980(454)
a'	2073(1617)	1993(1306)	а	2092(865)	2003(485)
a''	2073(368)	1994(1826)	a	2114(1365)	2013(1367)
a''	2081(2167)	2002(374)	а	2116(1530)	2020(1560)
a'	2090(2130)	2027(1271)	а	2124(225)	2036(13)
a'	2162(43)	2081(38)	а	2132(69)	2042(650)
a'	3210(159)	2847(114)	a	2192(42)	2100(84)

Table S7. Harmonic vibrational frequencies(in cm^{-1}) and Infrared Intensities (in Parentheses in km/mol) for 28-1.

_	28-1				
_	B3LYP	BP86			
a _u	19(0)	18(0)			
b_{1u}	37(0)	32(0)			
b_{2g}	49(0)	44(0)			
b_{3u}	69(0)	66(0)			
b_{1g}	78(0)	74(0)			
ag	79(0)	79(0)			
b_{2u}	88(1)	81(1)			
a _u	90(0)	88(0)			
b _{3g}	91(0)	88(0)			
b_{1u}	93(0)	88(0)			
b_{3u}	109(0)	107(0)			
b_{1g}	117(0)	113(0)			
b_{2g}	122(0)	117(0)			
ag	127(0)	118(0)			
b_{2u}	128(0)	120(0)			
ag	196(0)	193(0)			
b _{3g}	358(0)	359(0)			
b_{2u}	379(0)	353(1)			

Electronic Suppl	ementary I	nformation	for Dalton	Transactions
This journal i	s © The R	oyal Society	y of Chemis	stry 2009

b _{3u}	390(0)	418(3)	
ag	399(0)	424(0)	
a _u	405(0)	407(0)	
b _{1g}	411(0)	418(0)	
b_{1u}	429(4)	426(3)	
b _{2g}	449(0)	448(0)	
b_{2u}	453(82)	471(41)	
b _{3u}	454(4)	481(4)	
ag	463(0)	488(0)	
b _{1g}	471(0)	491(0)	
b _{2g}	472(0)	491(0)	
b _{1u}	473(30)	496(11)	
b _{3u}	547(2)	541(0)	
ag	565(0)	558(0)	
a _u	580(0)	570(0)	
b _{3g}	581(0)	569(0)	
b _{1u}	631(128)	633(104)	
b_{2u}	632(50)	613(1)	
b_{1g}	643(0)	643(0)	
b _{2g}	646(0)	652(0)	
b _{3u}	678(337)	684(273)	
b _{3g}	685(0)	586(0)	
ag	695(0)	698(0)	
b_{2u}	731(151)	664(192)	
b_{1u}	1250(4)	1240(6)	
b_{2g}	1270(0)	1274(0)	
b_{3u}	1327(1523)	1326(950)	
ag	1338(0)	1317(0)	
b_{1g}	2058(0)	1967(0)	
b _{2g}	2060(0)	1977(0)	
b_{1u}	2064(1958)	1980(1683)	
b_{3u}	2073(813)	1989(627)	
ag	2084(0)	1999(0)	
b_{2u}	2091(2515)	2000(2226)	
b _{3u}	2133(721)	2054(666)	
ag	2166(0)	2082(0)	

_	_ 27-1			27-2			27-5	
_	B3LYP	BP86	_	B3LYP	BP86	_	B3LYP	BP86
a"	28(0)	20(0)	a"	54i(0)	71i(0)	a"	23(0)	19(0)
a'	32(1)	30(0)	a''	30(0)	14(0)	a'	43(0)	37(0)
a"	42(0)	39(0)	a'	45(0)	41(0)	a'	49(0)	47(0)
a"	70(0)	66(0)	a''	58(0)	48(0)	a'	70(0)	67(0)
a'	72(0)	69(0)	a'	72(0)	69(0)	a''	75(0)	70(0)
a'	82(0)	82(0)	a'	76(0)	73(1)	a''	87(1)	82(0)
a'	87(0)	88(0)	a'	83(0)	81(0)	a''	90(0)	87(0)
a"	87(0)	85(0)	a''	86(0)	84(0)	a'	90(0)	86(0)
a''	93(0)	92(0)	a''	89(0)	89(0)	a'	98(0)	95(0)
a'	100(1)	102(0)	a'	94(0)	92(0)	a''	108(0)	103(0)
a'	111(0)	113(0)	a''	100(0)	98(0)	a'	120(0)	112(0)
a'	124(1)	148(0)	a'	111(0)	109(0)	a''	121(0)	115(0)
a"	131(0)	131(0)	a'	132(0)	130(0)	a'	124(0)	122(0)
a'	203(4)	211(0)	a'	202(5)	208(4)	a'	205(0)	201(0)
a''	356(0)	355(0)	a''	310(1)	311(0)	a''	333(0)	325(0)
a'	358(0)	352(7)	a''	355(0)	351(0)	a''	371(0)	354(0)
a'	401(3)	417(1)	a''	382(0)	395(0)	a'	384(9)	416(6)
a"	411(0)	418(0)	a'	407(6)	429(4)	a"	392(9)	394(2)
a"	428(2)	424(2)	a''	427(1)	429(0)	a'	397(0)	423(0)
a'	435(1)	447(0)	a'	432(2)	432(1)	a''	407(2)	412(0)
a'	446(11)	461(20)	a'	445(4)	456(0)	a'	437(5)	431(4)
a"	450(0)	458(0)	a'	449(3)	468(1)	a''	443(107)	461(62)
a'	454(18)	467(2)	a'	461(1)	489(4)	a'	459(3)	476(3)
a'	469(16)	497(9)	a''	467(33)	478(14)	a''	466(0)	484(0)
a"	472(25)	487(2)	a'	473(26)	496(2)	a'	467(11)	485(2)
a''	501(20)	518(19)	a'	502(21)	525(14)	a'	474(2)	494(3)
a'	503(17)	511(8)	a''	503(13)	531(6)	a'	481(11)	509(1)
a'	537(2)	528(10)	a'	547(3)	534(16)	a'	556(0)	548(0)
a"	566(0)	547(0)	a''	563(0)	549(0)	a"	580(0)	568(0)
a"	604(49)	571(0)	a''	613(49)	594(14)	a'	605(39)	614(30)
a'	616(76)	612(52)	a'	619(64)	619(64)	a"	617(21)	586(3)
a'	632(6)	639(13)	a''	620(3)	619(1)	a'	629(64)	633(50)
a"	637(0)	629(63)	a'	639(44)	642(25)	a''	638(18)	606(4)
a'	656(239)	650(196)	a'	667(237)	664(201)	a'	644(57)	648(29)
a"	678(38)	651(17)	a''	675(7)	633(16)	a"	685(19)	641(13)
a'	686(1)	692(4)	a'	688(3)	696(2)	a'	685(138)	688(105)
a'	754(77)	718(72)	a''	732(92)	702(113)	a"	742(83)	668(116)
a"	1252(6)	1177(8)	a'	1301(60)	1264(6)	a'	1216(18)	1110(86)
a'	1306(470)	1221(158)	a'	1358(305)	1299(92)	a'	1231(478)	1201(155)

Table S8. Harmonic vibrational frequencies(in cm^{-1}) and Infrared Intensities (in Parentheses in km/mol) for 27-1, 27-2 and 27-5.

a''	1487(0)	1497(2)	a'	1454(2)	1464(3)	a'	1316(504)	1327(220)
a'	1513(31)	1520(4)	a'	1491(66)	1483(6)	a'	1391(378)	1499(242)
a'	2044(309)	1958(203)	a"	2044(296)	1954(333)	a"	2036(339)	1934(508)
a''	2051(773)	1962(663)	a'	2053(737)	1961(693)	a'	2043(780)	1954(576)
a'	2064(1366)	1972(1189)	a'	2072(1104)	1989(894)	a'	2059(1080)	1976(884)
a''	2075(1115)	1992(964)	a"	2078(1969)	1995(1617)	a'	2076(329)	1990(1898)
a'	2096(1186)	2012(791)	a'	2084(510)	2005(357)	a"	2082(2439)	1993(274)
a'	2108(847)	2022(922)	a'	2104(1142)	2018(1044)	a'	2117(566)	2025(552)
a'	2157(133)	2071(201)	a'	2154(68)	2068(135)	а	2157(52)	2072(95)

	27-	-3T		27-4T		
	B3LYP	BP86		B3LYP	BP86	
a"	19(0)	18(0)	a_2	16(0)	9(0)	
a'	42(0)	38(0)	b_1	25(0)	28(0)	
a"	47(0)	36(0)	b_1	43(0)	39(0)	
a'	51(0)	56(0)	b_2	60(2)	54(1)	
a"	69(1)	69(0)	a_1	71(0)	69(0)	
a'	70(0)	71(0)	b_2	78(0)	74(0)	
a'	76(0)	74(0)	a_2	91(0)	88(0)	
a'	77(0)	75(0)	b_1	93(1)	88(0)	
a''	86(0)	84(0)	a_1	101(0)	98(0)	
a''	93(1)	88(1)	b_2	103(0)	96(0)	
a'	101(0)	99(0)	b_1	118(1)	116(1)	
a''	106(0)	102(0)	b_2	126(0)	118(0)	
a'	122(0)	120(0)	a_1	129(0)	121(0)	
a'	197(4)	198(5)	a_1	187(9)	188(5)	
a''	297(2)	310(0)	b_1	329(1)	338(1)	
a"	335(0)	325(1)	a_2	337(0)	335(0)	
a''	344(2)	354(0)	b ₂	367(0)	347(0)	
a'	344(13)	401(7)	a_1	389(4)	417(2)	
a'	370(4)	406(4)	a_2	392(0)	389(0)	
a''	374(12)	388(0)	b_2	399(11)	404(3)	
a''	399(10)	437(17)	a_1	402(3)	426(1)	
a'	406(3)	426(4)	a_1	409(15)	444(8)	
a'	409(6)	428(1)	b ₂	442(86)	456(41)	
a'	446(0)	447(1)	b_1	444(3)	438(2)	
a'	455(4)	476(0)	a_1	464(3)	483(1)	
a''	459(32)	470(14)	b ₂	469(18)	489(7)	
a'	474(22)	490(4)	b_1	477(16)	492(6)	
a'	486(14)	520(22)	b_2	532(12)	535(20)	
a'	534(25)	539(5)	a_1	548(3)	539(2)	
a'	553(1)	555(24)	b_1	583(14)	587(14)	
a"	568(1)	553(0)	a_2	585(0)	567(0)	
a"	570(6)	577(3)	a_1	628(75)	630(65)	
a"	616(14)	584(7)	b_2	632(20)	612(0)	
a'	639(69)	639(56)	b_1	643(85)	645(63)	
a"	644(18)	607(0)	a_2	683(0)	593(0)	
a'	674(191)	671(149)	a_1	687(174)	687(130)	
a''	720(98)	674(111)	b_2	725(106)	662(120)	
a'	1247(95)	1244(27)	b_1	1038(4)	1093(1)	
a'	1328(475)	1294(273)	a_1	1150(433)	1158(281)	

Table S9. Harmonic vibrational frequencies(in cm^{-1}) and Infrared Intensities (in Parentheses in km/mol) for 27-3T and 27-4T.

a'	1381(8)	1379(8)	b_1	1380(8)	1359(1)
a'	1435(286)	1415(60)	a_1	1418(1028)	1399(587)
a'	2038(775)	1953(545)	b_2	2029(266)	1941(289)
a"	2062(225)	1964(167)	b_1	2053(1052)	1974(900)
a'	2063(1046)	1981(883)	a_1	2066(703)	1982(794)
a'	2077(498)	1991(1960)	b_2	2074(2740)	1985(2228)
a"	2087(2204)	1998(420)	a_1	2080(158)	1991(0)
a'	2115(915)	2012(928)	a_1	2120(1042)	2033(900)
a'	2154(18)	2067(116)	a_1	2157(1)	2070(32)

Table S10. Harmonic vibrational frequencies(in cm⁻¹) and Infrared Intensities (in Parentheses in km/mol) for 26-1 and 26-2 .

_	2	6-1			26-2
_	B3LYP	BP86		B3LYP	BP86
a'	11(3)	34(0)	b _u	3(2)	27i(3)
a"	36(0)	34(2)	a_u	35(0)	35(0)
a"	50(0)	44(0)	a_u	50(0)	46(0)
a'	79(0)	77(0)	ag	79(0)	77(0)
a"	79(0)	78(0)	bg	80(0)	78(0)
a'	81(0)	81(0)	ag	81(0)	79(0)
a'	86(0)	87(1)	b_u	86(0)	83(0)
a"	92(1)	90(1)	a_u	92(1)	91(1)
a'	107(0)	105(0)	\mathbf{b}_{u}	107(0)	106(0)
a'	122(0)	119(0)	ag	122(0)	121(0)
a"	125(0)	124(0)	bg	125(0)	122(0)
a'	204(0)	218(1)	ag	204(0)	208(0)
a'	345(22)	379(14)	b _u	344(21)	337(11)
a"	354(0)	356(0)	$\mathbf{b}_{\mathbf{g}}$	352(0)	359(0)
a"	419(0)	424(1)	a _u	419(0)	428(0)
a"	432(0)	427(0)	a_u	432(0)	431(1)
a'	437(19)	457(9)	$\mathbf{b}_{\mathbf{u}}$	437(19)	457(12)
a''	443(0)	455(0)	$\mathbf{b}_{\mathbf{g}}$	443(0)	454(0)
a'	443(0)	459(2)	ag	443(0)	457(0)
a'	451(0)	475(1)	ag	451(0)	474(0)
a"	475(62)	495(21)	a_u	475(62)	500(32)
a'	494(30)	510(6)a"	$\mathbf{b}_{\mathbf{u}}$	494(30)	531(4)
a"	503(0)	531(3)a'	$\mathbf{b}_{\mathbf{g}}$	503(0)	509(0)
a'	518(0)	535(5)a'	ag	518(0)	540(0)
a'	582(21)	576(0)a"	b _u	582(21)	569(10)
a"	607(28)	582(21)a'	a_u	607(28)	607(26)
a'	620(0)	626(39)a"	a_{g}	620(0)	601(0)
a"	621(0)	627(28)a'	bg	621(0)	631(0)
a"	634(0)	634(2)a"	bg	632(0)	633(0)
a'	641(121)	647(15)a"	b_u	641(118	637(39)

Electronic Supplementary Information	for Dalton Transactions
This journal is © The Royal Society	of Chemistry 2009

a'	674(0)	679(1)	ag	674(0)	681(0)
a'	713(54)	695(80)	b_u	711(57)	685(113)
a"	1387(0)	1255(0)	b_g	1385(0)	1329(0)
a'	1432(555)	1296(66)	b_u	1431(553)	1375(82)
a"	1445(1)	1475(1)	a _u	1445(1)	1459(4)
a'	1480(0)	1501(1)	ag	1477(0)	1477(0)
a'	2037(0)	1936(256)	ag	2037(0)	1950(0)
a'	2043(1704)	1960(1007)	b_u	2044(1707)	1957(1428)
a"	2055(0)	1961(433)	bg	2055(0)	1964(0)
a"	2059(1950)	1971(1213)	a _u	2059(1950)	1967(1635)
a'	2094(1811)	2004(1782)	b_u	2094(1809)	2004(1792)
a'	2131(0)	2040(6)	ag	2131(0)	2039(0)

Table S11. Harmonic vibrational frequencies(in cm^{-1}) and Infrared Intensities (in Parentheses in km/mol) for 26-3 and 26-4.

_	26-3				26-4
_	B3LYP	BP86	_	B3LYP	BP86
a_2	22(0)	20(0)	а	32(0)	29(0)
b_1	49(0)	45(0)	а	35(0)	35(0)
a_1	61(0)	61(0)	а	51(0)	48(0)
b_2	71(0)	56(1)	а	69(0)	67(0)
a ₂	79(0)	79(0)	а	76(0)	74(0)
a_1	81(0)	80(0)	а	86(0)	88(0)
b_2	91(0)	85(1)	а	92(0)	90(0)
b_1	93(1)	92(1)	а	94(0)	96(0)
a_1	100(0)	102(0)	а	103(0)	104(0)
b_2	110(0)	110(0)	а	127(0)	135(0)
a ₂	120(0)	116(0)	а	134(0)	146(0)
a_1	204(0)	204(0)	а	221(3)	230(1)
b_1	346(1)	355(1)	а	327(1)	314(6)
a_1	372(9)	367(8)	а	357(1)	360(3)
a ₂	403(0)	413(0)	а	398(12)	418(0)
b_2	414(6)	416(7)	а	413(0)	420(2)
b_1	430(0)	431(1)	а	435(7)	434(5)
a ₂	446(0)	455(0)	а	438(3)	446(2)
b_2	447(10)	478(1)	а	452(34)	462(36)
a_1	455(7)	478(7)	а	462(8)	477(3)
b_1	475(55)	491(19)	а	471(19)	490(0)
a_1	492(30)	528(12)	а	474(23)	499(13)
b_2	495(0)	528(0)	a	504(16)	522(14)
a ₂	506(0)	519(0)	а	507(23	527(12)
b_1	552(22)	561(29)	a	591(53)	570(33)
a_1	564(9)	540(0)	а	602(69)	575(38)

Electroni	c Suppleme	entary Inf	ormation	for Dalton	Transactions
This	journal is ©	The Roy	al Societ	y of Chemi	stry 2009

	b_2	606(46)	606(11)	а	604(52)	600(55)
	a ₂	620(0)	627(0)	a	628(9)	630(28)
	b_1	621(14)	617(11)	a	634(9)	639(10)
	a ₁	655(2)	657(5)	a	681(36)	662(15)
	b_2	669(88)	677(82)	a	709(18)	685(20)
	a ₁	702(38)	700(34)	a	760(29)	706(29)
	a ₂	1367(0)	1334(0)	a	1203(2)	1096(15)
	b_1	1380(1)	1392(3)	a	1252(364)	1150(76)
	b_2	1401(677)	1371(112)	a	1497(9)	1497(3)
	a ₁	1430(4)	1492(1)	a	1609(51)	1690(30)
	b_2	2037(165)	1948(138)	a	2035(92)	1941(395)
	a ₂	2049(0)	1958(0)	a	2047(755)	1958(573)
	b_1	2053(1977)	1961(1646)	a	2048(1743)	1960(1197)
	a ₁	2058(1415)	1967(1139)	a	2067(1583)	1975(1172)
	b_2	2093(1739)	2001(1844)	а	2101(1046)	2012(1158)
_	a ₁	2131(48)	2039(59)	a	2141(74)	2047(47)

Table S12. Harmonic vibrational frequencies (in cm⁻¹) and Infrared Intensities (in Parentheses in km/mol) for 26-5T, 26-6T and 26-7T .

	26-5T			26-6T			26-	7T
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
a'	15(0)	45(0)	a"	26(0)	20i(0)	a_2	10i(0)	2(0)
a''	22(0)	25(0)	a'	31(0)	9(1)	b_1	49(0)	45(0)
a"	43(0)	38(0)	a"	32(0)	27(0)	a_1	70(0)	67(0)
a"	71(1)	64(0)	a"	67(0)	61(0)	b_2	71(2)	47(4)
a'	71(0)	71(0)	a'	71(1)	71(0)	a_1	74(0)	74(0)
a'	76(0)	76(0)	a'	79(0)	78(0)	a_2	77(0)	78(0)
a"	86(0)	85(0)	a'	86(0)	91(1)	b_1	85(1)	86(1)
a'	91(2)	95(0)	a"	92(0)	89(0)	b_2	92(1)	90(1)
a'	99(0)	105(0)	a'	102(0)	104(0)	a_1	109(0)	104(0)
a'	103(0)	135(1)	a'	113(0)	152(2)	b_2	114(1)	98(1)
a"	121(2)	119(1)	a"	120(1)	124(1)	a_2	121(0)	116(0)
a'	205(1)	225(0)	a'	186(0)	202(9)	a_1	238(0)	234(0)
a'	327(1)	367(6)	a"	327(1)	318(0)	b_1	290(1)	337(0)
a"	330(215)	342(0)	a"	341(0)	339(0)	a_2	360(0)	367(0)
a"	340(0)	364(1)	a'	341(11)	316(3)	a_1	366(0)	375(0)
a"	367(0)	392(14)	a'	385(21)	402(2)	b_1	370(1)	388(0)
a'	410(3)	424(9)	a'	399(9)	413(5)	b_2	403(6)	381(19)
a'	412(2)	427(1)	a"	410(0)	415(0)	b_1	410(20)	430(5)
a'	425(1)	440(4)	a'	431(15)	444(29)	a_2	410(0)	427(0)
a''	431(33)	433(26)	a"	444(1)	437(4)	b_2	429(88)	420(1)

a'	454(3)	472(18)	a'	447(26)	448(0)	9.	443(6)	465(4)
a 0"	459(37)	472(10)	a 0'	462(0)	482(2)	al b	465(61)	484(0)
a ,	439(47)	464(71)	a "	403(9)	402(2)	01	403(01)	484(0)
a	464(34)	4//(/)	a''	491(41)	503(20)	a_1	4/0(12)	487(0)
a''	484(3)	487(3)	a'	505(16)	523(10)	a_2	493(0)	489(0)
a'	554(1)	517(13)	a'	538(43)	551(36)	a_1	507(4)	493(8)
a"	564(0)	552(0)	a''	574(15)	543(3)	b_2	515(0)	457(18)
a'	590(94)	597(72)	a'	607(72)	568(72)	b_2	549(0)	561(18)
a'	625(34)	625(46)	a"	610(9)	580(1)	a_2	556(0)	580(0)
a''	641(59)	586(0)	a'	613(28)	618(23)	b_1	566(36)	574(40)
a"	654(0)	647(53)	a'	671(76)	673(47)	a_1	601(1)	616(0)
a'	676(164)	666(128)	a"	671(12)	642(29)	b_2	607(160)	608(81)
a'	714(109)	739(59)	a'	720(28)	682(37)	a_1	629(65)	627(47)
a"	1314(1)	1157(2)	a"	1187(0)	1098(1)	a_2	1348(0)	1292(0)
a'	1358(473)	1174(21)	a'	1231(605)	1128(264)	b_2	1388(8)	1337(1)
a''	1429(2)	1460(0)	a"	1438(4)	1477(0)	b_1	1510(2)	1481(0)
a'	1453(48)	1490(0)	a'	1461(261)	1487(31)	a_1	1536(0)	1511(0)
a"	1958(2406)	1910(1446)	a'	2027(95)	1935(539)	b_2	2051(2)	1940(152)
a"	2066(1008)	1983(900)	a'	2045(2068)	1960(960)	a_2	2057(0)	1959(0)
a'	2070(1538)	1944(701)	a"	2045(1010)	1964(832)	b_1	2059(2316)	1961(1961)
a'	2078(720)	1995(1426)	a'	2088(836)	1988(801)	a_1	2064(1271)	1973(1037)
a'	2096(736)	2001(561)	a'	2097(1456)	2009(1671)	b_2	2087(3138)	1985(2129)
a'	2149(103)	2058(255)	a'	2145(152)	2048(52)	a_1	2134(34)	2036(50)

_15-1		B3LYP			BP86	
_	Х	Y	Ζ	Х	Y	Ζ
Mn	0.000000	0.000000	0.154019	0.000000	0.000000	0.155700
Н	0.000000	0.000000	1.728898	0.000000	0.000000	1.732063
С	0.000000	1.844576	0.376009	0.000000	1.828967	0.376175
С	-1.844576	0.000000	0.376009	-1.828967	0.000000	0.376175
С	1.844576	0.000000	0.376009	1.828967	0.000000	0.376175
С	0.000000	-1.844576	0.376009	0.000000	-1.828967	0.376175
0	2.979638	0.000000	0.577351	2.979279	0.000000	0.573302
0	0.000000	-2.979638	0.577351	0.000000	-2.979279	0.573302
0	-2.979638	0.000000	0.577351	-2.979279	0.000000	0.573302
0	0.000000	2.979638	0.577351	0.000000	2.979279	0.573302
С	0.000000	0.000000	-1.702478	0.000000	0.000000	-1.688525
0	0.000000	0.000000	-2.857995	0.000000	0.000000	-2.858409

Table S13. Atomic coordinates of the optimized structure 15-1.

Table S14. Atomic coordinates of the optimized structure 14-1.

_14-1		B3LYP			BP86	
_	Х	Y	Z	Х	Y	Ζ
Mn	0.377917	-0.237922	0.000000	0.423412	-0.181494	0.000000
С	0.413828	-0.566942	1.826636	0.469463	-0.534209	1.803161
С	0.413828	-0.566942	-1.826636	0.469463	-0.534209	-1.803161
С	0.510399	1.619850	0.000000	0.312067	1.661272	0.000000
0	0.413828	-0.859963	-2.943003	0.469463	-0.851501	-2.928748
0	0.577083	2.774506	0.000000	0.213720	2.829016	0.000000
0	0.413828	-0.859963	2.943003	0.469463	-0.851501	2.928748
С	-1.419260	-0.235197	0.000000	-1.331267	-0.367663	0.000000
0	-2.576923	-0.271923	0.000000	-2.497631	-0.509590	0.000000
Н	0.416787	-1.817812	0.000000	0.656232	-1.745188	0.000000

Table S15. Atomic coordinates of the optimized structure 14-2.

14-2		B3LYP			BP86	
_	Х	Y	Ζ	Х	Y	Ζ
Mn	0.000000	0.000000	0.228194	0.000000	0.000000	0.234176
Н	0.000000	0.000000	-1.296991	0.000000	0.000000	-1.281241
С	0.000000	1.846331	0.044041	0.000000	1.828077	0.045551
С	1.846331	0.000000	0.044041	1.828077	0.000000	0.045551
С	-1.846331	0.000000	0.044041	-1.828077	0.000000	0.045551
С	0.000000	-1.846331	0.044041	0.000000	-1.828077	0.045551
0	-2.981798	0.000000	-0.170776	-2.977704	0.000000	-0.177075
0	0.000000	-2.981798	-0.170776	0.000000	-2.977704	-0.177075
0	2.981798	0.000000	-0.170776	2.977704	0.000000	-0.177075
0	0.000000	2.981798	-0.170776	0.000000	2.977704	-0.177075

14-3T		B3LYP			BP86	
	Х	Y	Ζ	Х	Y	Ζ
Mn	0.000000	0.000000	0.280227	0.000000	0.000000	0.255214
С	0.000000	1.809437	0.675035	0.000000	1.790075	0.656292
С	0.000000	-1.809437	0.675035	0.000000	-1.790075	0.656292
С	1.604839	0.000000	-0.814669	1.578473	0.000000	-0.773422
0	0.000000	-2.916718	1.008635	0.000000	-2.909969	0.998864
0	2.559798	0.000000	-1.457987	2.549275	0.000000	-1.423740
0	0.000000	2.916718	1.008635	0.000000	2.909969	0.998864
С	-1.604839	0.000000	-0.814669	-1.578473	0.000000	-0.773422
Ο	-2.559798	0.000000	-1.457987	-2.549275	0.000000	-1.423740
Н	0.000000	0.000000	1.859552	0.000000	0.000000	1.823233

Table S16. Atomic coordinates of the optimized structure 14-3T.

Table S17. Atomic coordinates of the optimized structure 13-1.

13-1		B3LYP			BP86	
_	Х	Y	Ζ	Х	Y	Ζ
Mn	-0.525244	-0.596119	0.000000	-0.512757	-0.632131	0.000000
С	1.293164	-1.020420	0.000000	1.305314	-0.965501	0.000000
С	-0.428093	0.650873	1.279558	-0.454304	0.615077	1.230432
С	-0.428093	0.650873	-1.279558	-0.454304	0.615077	-1.230432
0	-0.428093	1.467004	2.103500	-0.454304	1.459046	2.051687
0	-0.428093	1.467004	-2.103500	-0.454304	1.459046	-2.051687
0	2.431465	-1.234082	0.000000	2.473424	-1.088754	0.000000
Н	-2.093004	-0.384405	0.000000	-2.079851	-0.419363	0.000000

 Table S18.
 Atomic coordinates of the optimized structure 13-2.

13-2		B3LYP			BP86	
	Х	Y	Ζ	Х	Y	Ζ
Mn	-0.480633	-0.269273	0.000000	-0.463999	-0.350060	0.000000
С	-0.523707	0.022526	1.823823	-0.507385	-0.024719	1.797282
С	-0.523707	0.022526	-1.823823	-0.507385	-0.024719	-1.797282
С	-0.523707	0.349060	-2.935058	-0.507385	0.349108	-2.911123
0	-0.523707	0.349060	2.935058	-0.507385	0.349108	2.911123
0	1.295227	-0.108981	0.000000	1.243795	0.019029	0.000000
0	2.449212	0.035773	0.000000	2.396478	0.278519	0.000000
Н	-0.685440	1.244251	0.000000	-0.827817	1.120077	0.000000

13-3T	а	B3LYP			BP86	
	Х	Y	Ζ	Х	Y	Ζ
Mn	0.000000	0.000000	0.331501	0.000000	0.000000	0.319999
Η	0.000000	0.000000	1.931592	0.000000	0.000000	1.916957
С	0.000000	1.834482	0.631306	0.000000	1.815669	0.631242
С	0.000000	-1.834482	0.631306	0.000000	-1.815669	0.631242
Ο	0.000000	-2.963356	0.891044	0.000000	-2.957486	0.900853
Ο	0.000000	2.963356	0.891044	0.000000	2.957486	0.900853
С	0.000000	0.000000	-1.631699	0.000000	0.000000	-1.612710
0	0.000000	0.000000	-2.782663	0.000000	0.000000	-2.778653

Table S19. Atomic coordinates of the optimized structure 13-3T.

Table S20. Atomic coordinates of the optimized structure 13-4.

13-4		B3LYP			BP86	
_	Х	Y	Ζ	Х	Y	Ζ
Mn	0.000000	0.000000	0.283962	0.000000	0.000000	0.275382
Н	0.000000	0.000000	1.878808	0.000000	0.000000	1.865653
С	0.000000	1.826643	0.625348	0.000000	1.805010	0.627250
С	0.000000	-1.826643	0.625348	0.000000	-1.805010	0.627250
0	0.000000	-2.941869	0.930339	0.000000	-2.934187	0.940709
0	0.000000	2.941869	0.930339	0.000000	2.934187	0.940709
С	0.000000	0.000000	-1.578167	0.000000	0.000000	-1.566027
0	0.000000	0.000000	-2.737306	0.000000	0.000000	-2.741550

29-1		B3LYP			BP86	
_	X	Y	Ζ	Х	Y	Ζ
Mn	0.023730	-1.429978	0.000000	0.046045	-1.409311	0.000000
Mn	0.328897	1.540246	0.000000	0.305031	1.512303	0.000000
С	-1.268101	-1.133916	1.310818	-1.241140	-1.127960	1.300221
С	0.331870	1.425738	1.863437	0.298195	1.438778	1.848884
С	0.331870	1.425738	-1.863437	0.298195	1.438778	-1.848884
С	1.343163	-1.449533	-1.311048	1.352121	-1.453718	-1.306517
С	1.343163	-1.449533	1.311048	1.352121	-1.453718	1.306517
С	-0.194483	-3.231082	0.000000	-0.177590	-3.199092	0.000000
С	-1.497355	1.698589	0.000000	-1.500714	1.699696	0.000000
0	-2.075509	-0.989205	2.123773	-2.064227	-1.009741	2.121230
0	0.324393	1.396280	3.017832	0.280487	1.453502	3.017885
0	2.164526	-1.488766	2.123720	2.176934	-1.523073	2.133214
0	2.164526	-1.488766	-2.123720	2.176934	-1.523073	-2.133214
0	0.324393	1.396280	-3.017832	0.280487	1.453502	-3.017885
0	-0.334360	-4.379778	0.000000	-0.324382	-4.361645	0.000000
0	-2.646976	1.826390	0.000000	-2.660272	1.866009	0.000000
Н	1.830675	0.737938	0.000000	1.757348	0.659564	0.000000
С	0.608325	3.330037	0.000000	0.618837	3.283637	0.000000
0	0.770547	4.476614	0.000000	0.813108	4.440381	0.000000
Н	2.043296	1.533877	0.000000	1.993719	1.486010	0.000000
С	-1.268101	-1.133916	-1.310818	-1.241140	-1.127960	-1.300221
0	-2.075509	-0.989205	-2.123773	-2.064227	-1.009741	-2.121230

Table S21. Atomic coordinates of the optimized structure 29-1.

Table S22. Atomic coordinates of the optimized structure 29-2.

29-2		B3LYP			BP86	
_	Х	Y	Ζ	Х	Y	Ζ
С	1.524006	1.557122	-1.078314	1.434360	1.609377	-0.938581
0	1.470432	2.501729	-1.728244	1.435795	2.606222	-1.538640
С	1.252682	-1.009879	-1.566158	1.057580	-0.861502	-1.590692
0	1.095364	-1.628805	-2.519702	0.927767	-1.413019	-2.608202
Mn	1.591659	0.008793	-0.016652	1.494130	0.008663	0.002240
Mn	-1.719280	0.028152	-0.113637	-1.599471	0.036462	-0.101429
С	3.422844	-0.177709	-0.178844	3.279006	-0.203962	-0.295520
С	-3.493155	-0.012001	-0.464252	-3.363445	0.041591	-0.431434
С	-1.713461	1.851323	-0.394238	-1.617816	1.852584	-0.337416
С	-1.617210	-1.784873	-0.430708	-1.569113	-1.757404	-0.485947
С	1.715007	1.067990	1.523755	1.774553	0.939205	1.578177
С	1.400134	-1.524993	1.048743	1.370855	-1.588808	0.940989
0	-1.568789	-2.907209	-0.712178	-1.610993	-2.883393	-0.807307
0	-1.709490	2.979430	-0.652069	-1.675039	2.999839	-0.565108
0	1.753467	1.723614	2.466232	1.941509	1.532873	2.565918
0	1.262123	-2.456588	1.705803	1.298464	-2.586189	1.535658

0	-4.624658	-0.032027	-0.715220	-4.516336	0.054315	-0.647060
0	4.567262	-0.289404	-0.267711	4.426535	-0.341069	-0.470011
Н	-1.452295	0.061335	-1.671704	-1.362671	0.128768	-1.662648
Н	-0.004097	0.258777	0.278154	-0.058725	0.272589	0.651145
С	-1.937417	-0.002043	1.719192	-1.882928	-0.068404	1.706810
0	-2.079915	-0.019910	2.870054	-2.083125	-0.132772	2.861365

Table S23. Atomic coordinates of the optimized structure 28-1.

28-1		B3LYP			BP86	
_	Х	Y	Ζ	Х	Y	Ζ
Mn	-1.361141	0.000000	0.000000	-1.351601	0.000000	0.000000
Mn	1.361141	0.000000	0.000000	1.351601	0.000000	0.000000
С	-1.433033	1.867563	0.000000	-1.435772	1.848268	0.000000
С	1.433033	1.867563	0.000000	1.435772	1.848268	0.000000
С	2.584814	0.000000	1.360925	2.576310	0.000000	1.329438
С	1.433033	-1.867563	0.000000	1.435772	-1.848268	0.000000
С	-1.433033	-1.867563	0.000000	-1.435772	-1.848268	0.000000
С	-2.584814	0.000000	1.360925	-2.576310	0.000000	1.329438
С	-2.584814	0.000000	-1.360925	-2.576310	0.000000	-1.329438
С	2.584814	0.000000	-1.360925	2.576310	0.000000	-1.329438
0	-1.581141	3.010382	0.000000	-1.607823	3.002820	0.000000
0	1.581141	3.010382	0.000000	1.607823	3.002820	0.000000
0	3.326646	0.000000	2.247732	3.347412	0.000000	2.211444
0	-3.326646	0.000000	2.247732	-3.347412	0.000000	2.211444
0	-1.581141	-3.010382	0.000000	-1.607823	-3.002820	0.000000
0	1.581141	-3.010382	0.000000	1.607823	-3.002820	0.000000
0	-3.326646	0.000000	-2.247732	-3.347412	0.000000	-2.211444
0	3.326646	0.000000	-2.247732	3.347412	0.000000	-2.211444
Н	0.000000	0.000000	-1.084224	0.000000	0.000000	-1.089518
Н	0.000000	0.000000	1.084224	0.000000	0.000000	1.089518

Table S24. Atomic coordinates of the optimized structure 27-1.

27-1		B3LYP			BP86	
_	Х	Y	Ζ	Х	Y	Ζ
Mn	0.026916	1.182331	0.000000	-0.034703	1.159143	0.000000
Mn	0.055781	-1.228810	0.000000	0.254252	-1.163740	0.000000
С	1.829677	1.675100	0.000000	1.547908	2.106547	0.000000
С	1.649347	-2.060242	0.000000	1.847772	-1.946119	0.000000
С	-0.568641	-2.313956	1.329334	-0.297316	-2.284036	1.294142
С	-1.751879	0.608742	0.000000	-1.671824	0.240800	0.000000
С	-0.346488	2.346325	1.380744	-0.657903	2.188482	1.372159
С	-0.346488	2.346325	-1.380744	-0.657903	2.188482	-1.372159
С	-0.568641	-2.313956	-1.329334	-0.297316	-2.284036	-1.294142
0	2.948092	1.943000	0.000000	2.555410	2.690844	0.000000

Electronic Supplementary Information	for Dalton Transactions
This journal is © The Royal Societ	y of Chemistry 2009

0	2.700221	-2.548189	0.000000	2.920676	-2.424673	0.000000
0	-0.965383	-2.971624	2.195295	-0.657903	-2.992176	2.158318
0	-0.568641	3.040083	2.276336	-1.042558	2.814742	2.281430
0	-2.886822	0.390074	0.000000	-2.797057	-0.085259	0.000000
0	-0.568641	3.040083	-2.276336	-1.042558	2.814742	-2.281430
0	-0.965383	-2.971624	-2.195295	-0.657903	-2.992176	-2.158318
Н	0.501853	0.028758	-1.128275	0.702949	0.122928	-1.101085
Н	0.501853	0.028758	1.128275	0.702949	0.122928	1.101085

Table S25. Atomic coordinates of the optimized structure 27-2.

27-2		B3LYP			BP86	
_	Х	Y	Ζ	Х	Y	Ζ
Mn	-0.036832	1.271670	0.000000	-0.892188	0.856442	0.000000
Mn	-0.071387	-1.216169	0.000000	0.802885	-0.892998	0.000000
С	1.288000	-2.461217	0.000000	2.627335	-0.831398	0.000000
С	-0.073203	-1.117319	1.859848	0.728168	-0.826131	1.846473
С	-1.438376	-2.449436	0.000000	0.716766	-2.713915	0.000000
С	-1.405172	2.489010	0.000000	-2.691003	0.747236	0.000000
С	-0.073203	-1.117319	-1.859848	0.728168	-0.826131	-1.846473
0	2.164007	-3.213671	0.000000	3.794598	-0.759686	0.000000
0	-0.073203	-1.067676	3.012037	0.700530	-0.804600	3.013281
0	-2.284579	3.239755	0.000000	-3.860677	0.657201	0.000000
0	-2.323421	-3.191696	0.000000	0.626967	-3.880330	0.000000
0	-0.073203	-1.067676	-3.012037	0.700530	-0.804600	-3.013281
Н	-1.241363	-0.016117	0.000000	-0.872830	-0.893153	0.000000
Н	1.114491	-0.010431	0.000000	0.835108	0.793229	0.000000
С	0.872401	2.165687	1.278676	-0.931496	2.125184	1.242182
С	0.872401	2.165687	-1.278676	-0.931496	2.125184	-1.242182
0	1.456153	2.687261	2.132163	-0.931496	2.934360	2.094494
0	1.456153	2.687261	-2.132163	-0.931496	2.934360	-2.094494

Table S26. Atomic coordinates of the optimized structure 27-5.

27-5		B3LYP			BP86		
_	Х	Y	Ζ	Х	Y	Ζ	
Mn	0.030342	-1.098738	0.000000	0.013399	-1.081603	0.000000	
Mn	-0.452821	1.538535	0.000000	-0.481270	1.527449	0.000000	
С	0.034032	-1.147608	1.867421	0.002844	-1.147821	1.849639	
С	-0.536992	1.677075	1.866830	-0.521510	1.689298	1.839968	
С	-0.536992	1.677075	-1.866830	-0.521510	1.689298	-1.839968	
С	0.034032	-1.147608	-1.867421	0.002844	-1.147821	-1.849639	
С	1.612372	-2.020716	0.000000	1.593661	-1.966654	0.000000	
С	-1.050554	-2.572414	0.000000	-0.981522	-2.583393	0.000000	
С	0.678512	2.959870	0.000000	0.661930	2.899467	0.000000	
0	0.050550	-1.264439	3.014031	0.006911	-1.295859	3.007396	

Electronic	c Suppleme	ntary Infor	mation for	or Dalton T	Fransactions
This j	ournal is ©	The Royal	Society	of Chemis	stry 2009

0	-0.611700	1.883466	3.000068	-0.553940	1.934413	2.984765
0	2.629580	-2.570987	0.000000	2.627751	-2.517520	0.000000
0	0.050550	-1.264439	-3.014031	0.006911	-1.295859	-3.007396
0	-0.611700	1.883466	-3.000068	-0.553940	1.934413	-2.984765
0	-1.769629	-3.478549	0.000000	-1.656657	-3.541713	0.000000
0	1.465893	3.811965	0.000000	1.473484	3.752477	0.000000
Н	-1.315208	-0.011890	0.000000	-1.341966	-0.028211	0.000000
Н	0.842382	0.459056	0.000000	0.814178	0.524984	0.000000

Table S27. Atomic coordinates of the optimized structure 27-3T.

27-3T		B3LYP			BP86	
	Х	Y	Ζ	Х	Y	Ζ
Mn	0.772576	0.953037	0.000000	0.488887	-1.094298	0.000000
Mn	-0.793630	-1.087376	0.000000	-0.677397	1.147244	0.000000
С	0.706185	0.886520	1.859014	0.464330	-1.023434	1.846688
С	-0.809412	-2.094055	1.656370	-1.463640	1.647629	1.629814
С	-2.628764	-1.129991	0.000000	0.101286	2.772892	0.000000
С	0.706185	0.886520	-1.859014	0.464330	-1.023434	-1.846688
С	0.454053	2.760065	0.000000	2.244311	-1.559466	0.000000
С	2.602987	1.104807	0.000000	-0.109096	-2.809995	0.000000
С	-0.809412	-2.094055	-1.656370	-1.463640	1.647629	-1.629814
Ο	0.664469	0.849103	3.011340	0.464330	-1.001414	3.014059
Ο	-0.809412	-2.728280	2.616815	-2.005866	2.013044	2.598967
Ο	-3.788417	-1.108276	0.000000	0.654722	3.809747	0.000000
Ο	0.216781	3.891681	0.000000	3.383431	-1.831456	0.000000
Ο	0.664469	0.849103	-3.011340	0.464330	-1.001414	-3.014059
Ο	3.757720	1.164379	0.000000	-0.522001	-3.905805	0.000000
Ο	-0.809412	-2.728280	-2.616815	-2.005866	2.013044	-2.598967
Н	0.919874	-0.742534	0.000000	-1.115612	-0.547997	0.000000
Н	-0.894038	0.666730	0.000000	0.936418	0.547475	0.000000

Table S28. Atomic coordinates of the optimized structure 27-4T.

27-4T	B3LYP				BP86	
	Х	Y	Ζ	Х	Y	Ζ
Mn	0.000000	0.000000	-1.178676	0.000000	0.000000	-1.152073
Mn	0.000000	0.000000	1.583440	0.000000	0.000000	1.576244
С	0.000000	1.861423	-1.258157	0.000000	1.844613	-1.256838
С	0.000000	1.877080	1.624549	0.000000	1.852062	1.625628
С	0.000000	-1.877080	1.624549	0.000000	-1.852062	1.625628
С	0.000000	-1.861423	-1.258157	0.000000	-1.844613	-1.256838
С	-1.383679	0.000000	-2.373071	-1.359356	0.000000	-2.346979
С	1.383679	0.000000	-2.373071	1.359356	0.000000	-2.346979
С	0.000000	0.000000	3.506825	0.000000	0.000000	3.456978
О	0.000000	3.005098	-1.414468	0.000000	2.997184	-1.450942
Ο	0.000000	3.026645	1.728043	0.000000	3.016173	1.743566
Ο	-2.283836	0.000000	-3.101066	-2.256719	0.000000	-3.101429
Ο	0.000000	-3.005098	-1.414468	0.000000	-2.997184	-1.450942

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

0	0.000000	-3.026645	1.728043	0.000000	-3.016173	1.743566
0	0.000000	0.000000	4.657954	0.000000	0.000000	4.624524
Н	1.086802	0.000000	0.128167	1.080365	0.000000	0.168396
Н	-1.086802	0.000000	0.128167	-1.080365	0.000000	0.168396

Table S29. Atomic coordinates of the optimized structure 26-1.

26-1		B3LYP			BP86	
_	Х	Y	Ζ	Х	Y	Ζ
Mn	-0.156488	1.232809	0.000000	0.233525	1.055292	0.000000
Mn	0.157571	-1.233212	0.000000	0.190138	-1.319163	0.000000
С	1.580811	1.670134	0.000000	1.883021	1.684983	0.000000
С	0.522792	-2.424768	1.353315	-0.067142	-2.514785	1.350048
С	-1.580323	-1.668153	0.000000	-1.526259	-0.916922	0.000000
С	-0.523412	2.423878	1.353242	-0.250814	2.200327	1.314417
С	-0.523412	2.423878	-1.353242	-0.250814	2.200327	-1.314417
С	0.522792	-2.424768	-1.353315	-0.067142	-2.514785	-1.350048
0	2.713335	1.920852	0.000000	2.992234	2.073999	0.000000
0	0.742693	-3.146634	2.229437	-0.250814	-3.245199	2.247236
0	-0.744384	3.145488	2.229312	-0.548179	2.923322	2.189325
0	-2.713172	-1.917422	0.000000	-2.679566	-0.671491	0.000000
0	-0.744384	3.145488	-2.229312	-0.548179	2.923322	-2.189325
0	0.742693	-3.146634	-2.229437	-0.250814	-3.245199	-2.247236
Н	0.001592	-0.000116	-1.166595	0.682938	-0.154068	-1.133745
Н	0.001592	-0.000116	1.166595	0.682938	-0.154068	1.133745

Table S30. Atomic coordinates of the optimized structure 26-2.

26-2		B3LYP			BP86	
-	Х	Y	Z	Х	Y	Ζ
Mn	0.121982	1.236757	0.000000	0.081716	1.210557	0.000000
Mn	-0.121982	-1.236757	0.000000	-0.081716	-1.210557	0.000000
С	1.913071	1.276074	0.000000	1.842074	1.245746	0.000000
С	-0.028444	-2.479380	1.353447	-0.013519	-2.452631	1.323358
С	-1.913071	-1.276074	0.000000	-1.842074	-1.245746	0.000000
С	0.028444	2.479380	1.353447	0.013519	2.452631	1.323358
С	0.028444	2.479380	-1.353447	0.013519	2.452631	-1.323358
С	-0.028444	-2.479380	-1.353447	-0.013519	-2.452631	-1.323358
0	3.072988	1.268397	0.000000	3.018880	1.254096	0.000000
0	0.028444	-3.231647	2.229740	0.013519	-3.230156	2.200425
0	-0.028444	3.231647	2.229740	-0.013519	3.230156	2.200425
0	-3.072988	-1.268397	0.000000	-3.018880	-1.254096	0.000000
0	-0.028444	3.231647	-2.229740	-0.013519	3.230156	-2.200425
0	0.028444	-3.231647	-2.229740	0.013519	-3.230156	-2.200425
Н	0.000000	0.000000	-1.167137	0.000000	0.000000	-1.192664
Н	0.000000	0.000000	1.167137	0.000000	0.000000	1.192664

26-3		B3LYP			BP86	
_	Х	Y	Ζ	Х	Y	Ζ
Mn	0.000000	1.284513	-0.362464	0.000000	1.261002	-0.389869
Mn	0.000000	-1.284513	-0.362464	0.000000	-1.261002	-0.389869
Н	1.142415	0.000000	-0.404780	1.154850	0.000000	-0.501505
Н	-1.142415	0.000000	-0.404780	-1.154850	0.000000	-0.501505
С	-1.346729	2.505121	-0.604577	-1.317139	2.486429	-0.574345
С	0.000000	1.571436	1.408723	0.000000	1.524743	1.351542
С	1.346729	2.505121	-0.604577	1.317139	2.486429	-0.574345
С	-1.346729	-2.505121	-0.604577	-1.317139	-2.486429	-0.574345
С	0.000000	-1.571436	1.408723	0.000000	-1.524743	1.351542
С	1.346729	-2.505121	-0.604577	1.317139	-2.486429	-0.574345
0	0.000000	1.745791	2.553664	0.000000	1.721669	2.510163
0	2.218804	3.249540	-0.760021	2.189424	3.262515	-0.690636
0	-2.218804	3.249540	-0.760021	-2.189424	3.262515	-0.690636
0	0.000000	-1.745791	2.553664	0.000000	-1.721669	2.510163
0	-2.218804	-3.249540	-0.760021	-2.189424	-3.262515	-0.690636
0	2.218804	-3.249540	-0.760021	2.189424	-3.262515	-0.690636

Table S31. Atomic coordinates of the optimized structure 26-3.

Table S32. Atomic coordinates of the optimized structure 26-4.

26-4		B3LYP			BP86	
_	Х	Y	Ζ	Х	Y	Ζ
Mn	-1.354000	-0.027207	-0.479698	-1.332581	-0.013717	-0.467937
Mn	0.948590	0.082707	0.019967	0.904944	0.157816	0.017739
Η	-0.029886	0.641061	-1.317119	-0.079145	0.831099	-1.262089
Н	-0.568276	0.292731	0.903957	-0.648238	0.388379	0.910514
С	-2.727520	-0.663535	0.557798	-2.570652	-0.813689	0.577869
С	-2.024354	1.725356	-0.406397	-2.283808	1.572325	-0.416156
С	-0.694306	-1.763436	-0.670674	-0.466155	-1.657815	-0.687065
С	1.731350	-0.693479	1.474606	1.689583	-0.633858	1.431190
С	1.696608	1.675824	0.388777	1.715829	1.694270	0.399459
С	2.320392	-0.359383	-1.094044	2.263685	-0.285609	-1.062352
Ο	-2.394504	2.812778	-0.332591	-2.863256	2.582903	-0.349943
Ο	-0.440401	-2.879735	-0.845207	-0.182597	-2.772180	-0.927936
Ο	-3.539269	-1.053335	1.285164	-3.313682	-1.316476	1.335369
Ο	2.128078	2.727186	0.617223	2.214913	2.729222	0.646110
0	2.196536	-1.192991	2.410060	2.179994	-1.152836	2.363570
0	3.164607	-0.645074	-1.833894	3.130556	-0.580094	-1.798561

26-5T	B3LYP			BP86		
	Х	Y	Ζ	Х	Y	Ζ
Mn	0.000012	1.004542	0.000000	0.520611	-0.821667	0.000000
Mn	0.000076	-1.516550	0.000000	-0.426635	1.363952	0.000000
С	1.855027	0.882060	0.000000	-1.341468	-0.773767	0.000000
С	0.000054	-2.674590	1.467396	-0.995360	2.377363	1.426398
С	-1.854976	0.881669	0.000000	2.360440	-0.725916	0.000000
С	-0.000122	2.249176	1.353495	0.535231	-2.041229	1.348808
С	-0.000122	2.249176	-1.353495	0.535231	-2.041229	-1.348808
С	0.000054	-2.674590	-1.467396	-0.995360	2.377363	-1.426398
Ο	3.005688	0.794843	0.000000	-2.510525	-0.900256	0.000000
Ο	0.000043	-3.313772	2.432112	-1.302374	2.976887	2.386714
Ο	-0.000204	3.003984	2.228809	0.535231	-2.797098	2.242826
Ο	-3.005621	0.794232	0.000000	3.525181	-0.653646	0.000000
Ο	-0.000204	3.003984	-2.228809	0.535231	-2.797098	-2.242826
Ο	0.000043	-3.313772	-2.432112	-1.302374	2.976887	-2.386714
Н	0.000179	-0.216593	-1.171274	0.607689	0.480980	-1.089859
Н	0.000179	-0.216593	1.171274	0.607689	0.480980	1.089859

Table S33. Atomic coordinates of the optimized structure 26-5T.

Table S34. Atomic coordinates of the optimized structure 26-6T.

26-6T		B3LYP		BP86		
	Х	Y	Ζ	Х	Y	Ζ
Mn	0.672077	1.219344	0.000000	0.673850	1.159899	0.000000
Mn	-0.520798	-0.924743	0.000000	-0.664149	-0.742499	0.000000
Н	-0.292238	0.319496	1.146028	-0.493769	0.559966	1.105411
Н	-0.292238	0.319496	-1.146028	-0.493769	0.559966	-1.105411
С	2.075733	2.559543	0.000000	2.379301	1.999067	0.000000
С	-0.726507	2.474723	0.000000	-0.242884	2.761533	0.000000
С	1.984650	-0.111852	0.000000	1.645350	-0.463171	0.000000
С	-0.533659	-2.156703	-1.349575	-0.675480	-1.969816	-1.325090
С	-2.309962	-0.813108	0.000000	-2.441808	-0.704657	0.000000
С	-0.533659	-2.156703	1.349575	-0.675480	-1.969816	1.325090
Ο	-1.616876	3.205594	0.000000	-0.867540	3.748517	0.000000
Ο	2.859264	-0.871668	0.000000	2.493159	-1.277460	0.000000
Ο	2.920860	3.339455	0.000000	3.441383	2.480465	0.000000
Ο	-3.463066	-0.685672	0.000000	-3.614665	-0.630194	0.000000
Ο	-0.533659	-2.917568	-2.223155	-0.675480	-2.752776	-2.199585
0	-0.533659	-2.917568	2.223155	-0.675480	-2.752776	2.199585

26-7T	B3LYP			BP86		
	Х	Y	Ζ	Х	Y	Ζ
Mn	0.000000	1.173779	-0.392860	0.000000	1.175486	-0.410387
Mn	0.000000	-1.173779	-0.392860	0.000000	-1.175486	-0.410387
Н	1.138627	0.000000	-0.847896	1.132518	0.000000	-0.891749
Н	-1.138627	0.000000	-0.847896	-1.132518	0.000000	-0.891749
С	-1.427172	2.351840	-0.583703	-1.397856	2.346831	-0.565217
С	0.000000	1.413183	1.428527	0.000000	1.419465	1.384035
С	1.427172	2.351840	-0.583703	1.397856	2.346831	-0.565217
С	-1.427172	-2.351840	-0.583703	-1.397856	-2.346831	-0.565217
С	0.000000	-1.413183	1.428527	0.000000	-1.419465	1.384035
С	1.427172	-2.351840	-0.583703	1.397856	-2.346831	-0.565217
Ο	0.000000	1.649828	2.562051	0.000000	1.665347	2.530976
Ο	2.356872	3.024099	-0.712108	2.332658	3.045479	-0.663624
Ο	-2.356872	3.024099	-0.712108	-2.332658	3.045479	-0.663624
Ο	0.000000	-1.649828	2.562051	0.000000	-1.665347	2.530976
Ο	-2.356872	-3.024099	-0.712108	-2.332658	-3.045479	-0.663624
0	2.356872	-3.024099	-0.712108	2.332658	-3.045479	-0.663624

Table S35. Atomic coordinates of the optimized structure 26-7T.

Complete Gaussian 03 reference (Reference 40)

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03, Revision C.02; Gaussian, Inc., Wallingford CT, **2004**.