Electronic Supplementary Information: B900030E

Synthesis and Spectroscopic Properties of Modular Platinum(II) Terpyridine Phosphorescent Pockets

Wah-Leung Tong,^a Michael C. W. Chan,^{*,a} Nianyong Zhu^b and Sze-Kar Leung^a

^a Department of Biology and Chemistry and Centre for Marine Environmental Research and Innovative Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

^b Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.

Experimental details and characterization data for functionalized terpyridine ligands and 1–4; 77 K glass and solid-state emission data for 1–4; absorption and solution emission spectra of 1 and 2 in CH₂Cl₂ and CH₃CN at 298 K.

Experimental Section

Synthetic Procedures

CAUTION: Perchlorate salts of metal-organic complexes are potentially explosive and should be handled with care and in small amounts. Compound **5** was purchased from Carbocore Inc. (USA). Published procedures or minor modifications thereof were used for the preparation of the following compounds (Scheme S1): **6** and **7**, ¹**8**; ² (Scheme S2): **11**; ³ (Scheme S3): **14**.⁴

Scheme S1

9: To a two-necked flask were added **7** (0.10 g, 0.186 mmol), **8** (0.094 g, 0.260 mmol), Pd(dppf)Cl₂ (CH₂Cl₂ adduct, 0.017 g, 0.0186 mmol) and K₂CO₃ (0.13 g, 0.928 mmol). The flask

was fitted with a septum, evacuated, and refilled with N₂. A degassed mixture of 1,4-dioxane/DI water (10:1; 5 mL) was added via syringe, and the sealed reaction mixture was stirred at 100 °C for 40 h. The resultant black suspension was diluted with CH₂Cl₂ and filtered with copious washing of CH₂Cl₂. The black filtrate was concentrated *in vacuo* and purified by alumina column chromatography (10 % ethyl acetate in hexane) to afford **9** as a white crystalline solid (0.11 g, 85%). ¹H NMR (300 MHz, CD₂Cl₂): δ 8.63 (d, *J* = 7.9 Hz, 2H), 8.58 (d, *J* = 4.0 Hz, 2H), 8.37 (s, 2H), 7.90-7.85 (m, 2H), 7.55 (d, *J* = 2.3 Hz, 1H), 7.50 (d, *J* = 2.4 Hz, 1H), 7.35 (d, *J* = 2.2 Hz, 1H), 7.33-7.31 (m, 2H), 7.24 (d, *J* = 8.5 Hz, 2H), 7.17 (d, *J* = 8.5 Hz, 2H), 7.14 (d, *J* = 2.4 Hz, 1H), 3.85 (s, 3H), 177 (s, 6H), 1.40 (s, 9H), 1.34 (s, 9H). ES-MS (+ve mode): m/z 689 [M + H]⁺.

10: A mixture of **9** (0.050 g, 0.0734 mmol) and 3.0 M NaOH (0.35 mL, 1.03 mmol) in THF (1 mL) in a round bottom flask was sealed then stirred at 100 °C for 3 hr. The resultant colourless solution was diluted with a mixture of diethyl ether and THF, and the reaction mixture was acidified by 2N HCl. The organic layer was separated and then washed with brine, and dried over MgSO₄. The solvent was evaporated *in vacuo*, and the resultant purple paste was re-dissolved in CH₃CN and filtered to afford **10** as a pale yellow powder (0.030 g, 60%). ¹H NMR (300 MHz, CDCl₃): δ 8.66 (d, *J* = 5.0 Hz, 2H), 8.65 (d, *J* = 6.6 Hz, 2H), 8.34 (s, 2H), 7.87-7.81 (m, 2H), 7.51 (d, *J* = 2.2 Hz, 1H), 7.49 (d, *J* = 2.5 Hz, 1H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 2.5 Hz, 1H), 7.33-7.29 (m, 2H), 7.24 (d, *J* = 8.5 Hz, 2H), 7.15 (d, *J* = 2.2 Hz, 2H), 1.78 (s, 6H), 1.38 (s, 9H), 1.36 (s, 9H). ES-MS (+ve mode): m/z 675 [M + H]⁺.

 $1[ClO_4]$ and $2[ClO_4]$: see main paper. 2[Cl] was obtained before the anion metathesis procedure. $2[PF_6]$ was afforded by anion metathesis using KPF₆ in CH₃CN. Like $2[ClO_4]$, 2[Cl] and $2[PF_6]$ were recrystallized by vapour diffusion of diethyl ether into a CH₂Cl₂/CH₃CN solution to give analytically pure yellow to yellow-orange crystalline solids.

12: To a mixture of 11 (0.237 g, 0.559 mmol), powdered KOH (0.038 g, 0.670 mmol) and dicyanodiamide (0.235 g, 2.798 mmol) was added 20 mL of 1-propanol. The reaction mixture was stirred at reflux overnight, then poured into CH₂Cl₂. The organic layer was washed with water and brine, dried over MgSO₄ and then concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (chloroform to 10% methanol in chloroform) to afford 12 as white solids (0.182 g, 64%). ¹H NMR (CDCl₃, 300 MHz) δ 7.51 (d, *J* = 2.2 Hz, 1H), 7.48 (d, *J* = 2.5 Hz, 1H), 7.40 (d, *J* = 2.2 Hz, 1H), 7.31 (d, *J* = 2.2 Hz, 1H), 5.31 (br, s, 4H), 1.64 (s, 6H), 1.34 (s, 9H), 1.30 (s, 9H). ES-MS (+ve mode): m/z 510 [M + H]⁺.

13: Under an inert atmosphere, **12** (0.142 g, 0.278 mmol), **8** (0.100 g, 0.279 mmol), K₂CO₃ (0.192 g, 1.391 mmol) and Pd(dppf)Cl₂ (0.023 g, 0.028 mmol) in dioxane/water (10:1, 10 mL) were added to a reaction flask. The reaction mixture was heated to 100°C, then sealed and stirred at this temperature for 2 d. The crude product was diluted with CH₂Cl₂ and filtered through celite. The filtrate was concentrated *in vacuo* and purified by alumina column chromatography (CHCl₃ to 2% MeOH in CHCl₃) to afford **13** as white solid (0.137 g, 75%). ¹H NMR (CDCl₃, 300 MHz) δ 8.61-8.58 (m, 4H), 8.49 (s, 2H), 7.41 (dd, *J* = 7.7, 7.7 Hz, 2H), 7.50 (d, *J* = 2.2 Hz, 1H), 7.46 (d, *J* = 2.2 Hz, 1H), 7.30 (d, *J* = 2.2 Hz, 1H), 7.27 (d, *J* = 2.2 Hz, 1H), 7.16-7.12 (m, 2H), 5.29 (br, s, 4H), 1.76 (s, 6H), 1.36 (s, 9H), 1.34 (s, 9H). ES-MS (+ve mode): m/z 663 [M + H]⁺.

3[ClO₄]: see main paper.

Scheme S3

Compounds 15–18 were prepared by modifying the synthetic procedures for 6, 7, 9 and 10 respectively.²

15: 53 % yield. ¹H NMR (300 MHz, CDCl₃): δ 8.03 (d, J = 0.8 Hz, 1H), 8.00 (d, J = 0.8 Hz, 1H), 7.94 (d, J = 0.8 Hz, 1H), 7.73 (d, J = 0.8 Hz, 1H), 0.36 (s, 9H), 0.37 (s, 9H).

16: 49 % yield. ¹H NMR (300 MHz, CDCl₃): δ 8.23 (d, J = 8.3 Hz, 2H), 8.13 (d, J = 1.2 Hz, 1H), 8.07 (s, 1H), 8.05 (d, J = 8.3 Hz, 2H), 7.79 (d, J = 1.2 Hz, 1H), 7.73 (s, 1H), 3.99 (s, 3H), 0.41 (s, 9H), 0.38 (s, 9H).

17: 83 % yield. ¹H NMR (300 MHz, CDCl₃): δ 9.08 (s, 2H), 8.75 (d, J = 4.8 Hz, 2H), 8.71 (d, J = 7.9 Hz, 2H), 8.26 (s, 1H), 8.21 (s, 1H), 8.12 (d, J = 8.3 Hz, 2H), 8.04 (s, 1 H), 7.93 (t, J = 7.5 Hz, 2H), 7.87 (d, J = 8.3 Hz, 2H), 7.83 (s, 1H), 7.41 (t, J = 6.1 Hz, 2H), 3.89 (s, 3H), 0.46 (s, 9H), 0.43 (s, 9H).

18: 95 % yield. ¹H NMR (300 MHz, CDCl₃): δ 9.09 (s, 2H), 8.77 (d, J = 4.1 Hz, 2H), 8.70 (d, J = 7.9 Hz, 2H), 8.26 (d, J = 0.9 Hz, 1H), 8.23 (d, J = 0.9 Hz, 1H), 8.15 (d, J = 8.5 Hz, 2H), 8.05 (d, J = 1.2 Hz, 1H), 7.95 (d, J = 8.5 Hz, 2H), 7.95-7.90 (m, 2H), 7.84 (d, J = 1.2, 1H), 7.43-7.39 (m, 2H), 0.45 (s, 9H), 0.44 (s, 9H). ES-MS (+ve mode): m/z 664 [M + H]⁺.

4[ClO₄]: see main paper.

Fig. S1. ESI mass spectra of $[M^+]$ in CH₂Cl₂ (upper) and isotopic distribution simulation (lower) for $1[ClO_4]$ (left) and $2[ClO_4]$ (right).

Fluid	λ_{ex}/nm	77K: λ_{max}/nm ; $\tau/\mu s$	
1 [ClO ₄]	419	520 ^a (max; $\tau = 32$), 554, 598	
2 [ClO ₄]	425	520 ^b (max; $\tau = 35$), 555, 610 ^c ($\tau_1 = 3.4$; $\tau_2 = 41$)	
$3[ClO_4]$	410	519 ^b (max; $\tau = 29$), 556, 597	
4 [ClO ₄]	406	542 ^d (max; $\tau = 11$), 584, 654 ^c ($\tau_1 = 2.1$; $\tau_2 = 9.5$)	

Table S1.77 K glass (10^{-5} M unless specified) and solid-state emission data

Solid state		298 K: λ_{max}/nm ; $\tau/\mu s$	77K: λ_{max}/nm ; $\tau/\mu s$
1 [ClO ₄]	419	518 (max), 548; 1.6	519 (max), 556, 593; 14
2 [Cl]	425	552; 1.4	549; 28
2 [ClO ₄]	425	585; 0.8	555 (max), 583; 34
2 [PF ₆]	420	597; 1.1	574; 36
3 [ClO ₄]	430	583; 0.2	547, 601 (max); 15
4 [ClO ₄]	406	595; 0.5	537, 624 (max); 11

^a In MeOH:EtOH (1:4). ^b In butyronitrile. ^c Excimeric emission observed at 10⁻³ M. ^d In DMSO.

Fig. S2. Absorption (dots) and solution emission (line; λ_{ex} 410 nm) spectra of Cl⁻ (black), ClO₄⁻ (red) and PF₆⁻ (blue) salts of **2** in CH₂Cl₂ (10⁻⁵ M) at 298 K.

Fig. S3. Absorption (dots) and solution emission (line; λ_{ex} 410 nm) spectra of **1** in CH₂Cl₂ (red) and CH₃CN (black) (10⁻⁵ M) at 298 K.

Fig. S4. Absorption (dots) and solution emission (line; λ_{ex} 410 nm) spectra of **2** in CH₂Cl₂ (red) and CH₃CN (black) (10⁻⁵ M) at 298 K.

References in ESI

- 1 S-Y. Liu and D. G. Nocera, J. Am. Chem. Soc., 2005, 127, 5278.
- 2 C. J. Aspley and J. A. G. Williams, *New J. Chem.*, 2001, 25, 1136.
- 3 B. A. Anderson, E. C. Bell, F. O. Ginah, N. K. Harn, L. M. Pagh and J. P. Wepsiec, J. Org. Chem., 1998, 63, 8224.
- 4 E. B. Schwartz, C. B. Knobler and D. J. Cram, J. Am. Chem. Soc., 1992, 114, 10775.