Electronic Supporting Information

Reactions of $Tp(NH=CPh_2)(PPh_3)Ru-CI$ with HC=CPh in the presence of H_2O : Insertion/Hydration Products

Chih-Jen Cheng,^a Hung-Chun Tong,^a Yih-Hsing Lo,^{*b} Po-Yo Wang,^b

Yih-Hsuan Fong^b and Chia-Her Lin^c

^aDepartment of Chemical Engineering, Tatung University, Taipei, Taiwan 106, Republic of China.

^bDepartment of Science, Taipei Municipal University of Education, Taipei, Taiwan 100, Republic of China. E-mail: yhlo@mail.tmue.edu.tw; Fax: (886)-2-2389-7641

^cDepartment of Chemistry, Chung Yuan Christian University, Chung Li, Taiwan 320, Republic of China.

General Procedure. All manipulations were performed under nitrogen using vacuum-line, drybox, and standard Schlenk techniques. CH₃CN and CH₂Cl₂ were distilled from CaH₂ and diethyl ether and THF from Na/ketyl. All other solvents and reagents were of reagents grade and were used without further purification. NMR spectra were recorded on Bruker AC-200 and AM-300WB FT-NMR spectrometers at room temperature (unless stated otherwise) and are reported in unit δ with residual protons in the solvent as an internal standard (CDCl₃, δ 7.24; CD₃CN, δ 1.93; C₂D₆CO, δ 2.04). FAB mass spectra were recorded on a JEOL SX-102A spectrometer. Elemental analyses and X-ray diffraction studies were carried out at the Regional Center of Analytical Instrument at National Taiwan University.

Preparation of Tp(PPh₃)(NH=CPh₂)Ru-Cl (1). To a solution of Tp(PPh₃)₂Ru-Cl (3.95 g, 4.50 mmol) in 100 mL toluene was added an excess of benzophenone imine (7.9 mL, 45.0 mmol) were added. The mixture was heated using a warm water bath for 30 min. A deep yellow color developed during this time. The reaction mixture was stirred for a further 2 h at room temperature. Then it was concentrated to approximately half of the volume and cooled to 0 °C. The yellow precipitate was filtered off, washed with ethanol and ether and dried was dried under vacuum to give the compound 1 (3.34 g, 95% yield). Spectroscopic data for 1 are as follows: ¹H NMR (CDCl₃): δ12.45 (s, 1H, HN), 8.13 (d, 1H, *J*_{H-H} = 2.0 Hz, Tp), 6.73-7.70 (Ph, Tp), 6.45 (d, 1H, *J*_{H-H} = 2.0 Hz, Tp), 6.11 (t, 1H, *J*_{H-H} = 2.0 Hz, Tp), 5.95 (d, 1H, *J*_{H-H} = 2.0 Hz, Tp), 5.78 (t, 1H, *J*_{H-H} = 2.0 Hz, Tp), 5.67 (t, *J*_{H-H} = 2.0 Hz, 1H, Tp). ¹³C NMR (CDCl₃): 179.9 (s, HN=C(Ph)₂), 105.2-148.4 (m, Ph, PPh₃, Tp). ³¹P NMR (CDCl₃): δ1.3. MS (*m*/*z*, Ru102): 793.2

(M⁺), 758.1 (M⁺ - Cl), 612.2 (M⁺ - HN=C(Ph)₂). Anal. Calcd for C₄₀H₃₆BClN₇PRu: C, 60.58; H, 4.58; N, 12.36. Found: C, 60.43; H, 4.61; N, 12.42.

Reaction of complex 1 with HC=CPh in the presence of H₂O.

Condition 1: To a distilled ethanol (20 mL) solution of **1** (0.1 g, 0.126 mmol) and H₂O (3 μ L, 0.17 mmol) was added phenylacetylene (0.14 mL, 1.3 mmol) at -10 °C. The reaction mixture turned green in 2 h and staring material disappeared as indicated by ³¹P NMR spectrum. Then the resulting green solution was dried *in vacuo*. The residue was extracted with hexane and the residual solid was further washed with diethyl ether to give the complex {Tp(PPh₃)(NH=CPh₂)Ru(=C=CHPh)}Cl (**2**) (0.88 g, 78% yield). The hexane extract was concentrated and was then eluted with CH₂Cl₂ on a silica gel packed column to give Tp(PPh₃)(NH=CPh₂)Ru(-C=C-Ph)(=C=CHPh) (**3**) (0.006 g, 6% yield).

In a similar manner as above, solution of **1** (0.10 g, 0.126 mmol) and H₂O (3 μ L, 0.17 mmol) was added trimethylsilylacetylene (0.18 mL, 1.3 mmol) at -10 °C, the reaction was performed to afford complex Tp(PPh₃)(NH=CPh₂)Ru(-C=C-H)(=C=CH₂) (**3***) (0.013 g, 16% yield).

Condition 2: To a Schlenk flask charged with **1** (0.10 g, 0.126 mmol) were added H₂O (3 μ L, 0.17 mmol), and distilled ethanol (20 mL). The mixture was stirred at room temperature for 5 h then the solvent was dried *in vacuo*. The residue was chromatographed on a silica gel column using CH₂Cl₂ as an eluent to give **3** (0.016 g, 16%) and Tp(PPh₃)(NH=CPh₂)Ru(-C(CH₂Ph)=CHC(O)Ph) (**4**) as a yellow solid (0.052 g, 52%).

Reaction of complex 2 with HC=CPh in the presence of H_2O .

Acetone (20 mL) was added to a round-bottomed flask charged with complex 2 (0.10 g, 0.11 mmol) and H₂O (3 μ L, 0.17 mmol). The reaction mixture was stirred at room temperature for 3 h. The solvent was evaporated under reduced pressure to 5 mL. To the solution was added 20 mL of *n*-hexane, whereupon a yellow compound was precipitated. The precipitate was filtered, washed with 10 mL of *n*-hexane and dried under vacuum to yield Tp(PPh₃)(NH=CPh₂)Ru(-C(CH₂Ph)=CHC(O)Ph) (4) (0.006 g, 7 % yield) and Tp(PPh₃)(NH=CPh₂)Ru(-C(Ph)=CHC(O)CH₂Ph) (5) (0.072 g, 82 % yield).

Spectroscopic data for **2**: ¹H NMR (CDCl₃): δ 11.58 (s, 1H, NH), 7.89 (br, 1H, Tp), 7.62 (br, 2H, Tp), 7.42-6.94 (m, PPh₃, Ph), 6.78 (br, 1H, Tp), 6.66 (br, 1H, Tp), 5.73 (br, 2H, Tp), 5.60 (br, 1H, Tp), 5.47 (br, 1H, Tp). 5.18 (d, J_{P-H} = 3.7 Hz, 1H, CH). ¹³C NMR (CDCl₃): δ 372.3 (t, J_{P-C} = 16.5 Hz, C α), 176.4 (s, HN=*C*(Ph)₂), 146.2 - 106.8 (m, Ph, Tp, PPh₃, C_β). ³¹P NMR (CDCl₃): δ 37.5. MS (FAB) m/z: 860.2 (M⁺ - Cl), 679.2 (M⁺ - Cl, HN=C(Ph)₂), 577.1 (M⁺ - Cl, HN=C(Ph)₂, C₂PhH). Anal. Calcd for C₄₈H₄₂N₇BClN₇PRu (895.2): C, 64.40; H, 4.73; N, 10.95. Found: C, 64.37; H, 4.70; N, 10.89.

Spectroscopic data for **3**: ¹H NMR (CDCl₃): δ 7.85 (d, J_{H-H} = 2.2 Hz, 1H, Tp), 7.81 (d, J_{H-H} = 2.2 Hz, 1H, Tp), 7.69 (d, J_{H-H} = 2.2 Hz, 1H, Tp), 7.40 -7.07 (m, Ph), 6.86 (1H, Tp), 6.78 (1H, Tp), 6.76 (1H, Tp), 6.02 (t, J_{H-H} = 2.2 Hz, 1H, Tp), 5.98 (t, J_{H-H} =2.2 Hz, 1H, Tp), 5.85 (t, J_{H-H} =2.2 Hz, 1H, Tp), 4.85 (br, 1H, CH). ¹³C NMR (CDCl₃): δ 375.3 (d, J_{P-C} = 16.3 Hz, Ru=*C*), 136.3 (d, J_{P-C} = 12.3 Hz, Ru-*C*=), 146.9 -105.6 (m, Ph, PPh₃, Tp).

³¹P NMR (acetone): δ 49.1. MS (FAB) m/z: 780.2 (M⁺ + 1), 678.1 (M⁺ + 1 - C₂HPh),
577.1 (M⁺ + 1 - C₂HPh, C₂Ph). Anal. Calcd for C₄₃H₃₆N₆BPRu (780.2): C, 66.24; H,
4.65; N, 10.78. Found: C, 66.21; H, 4.59; N, 10.58.

Spectroscopic data for **3***: ¹H NMR (CDCl₃): δ 7.91 (1H, Tp), 7.84 (1H, Tp), 7.61 (1H, Tp), 7.51 -7.18 (m, Ph), 6.97 (1H, Tp), 6.88 (1H, Tp), 6.71 (1H, Tp), 6.01 (1H, Tp), 5.92 (1H, Tp), 5.76 (1H, Tp), 4.82 (br, 2H, CH), 1.54 (d, $J_{\text{H-H}}$ = 3.2 Hz, 1H, =CH). ³¹P NMR (acetone): δ 49.4. MS (FAB) m/z: 628.2 (M⁺ + 1), 602.2 (M⁺ + 1 - C₂H₂), 577.1 (M⁺ + 1 - C₂H₂, C₂H). Anal. Calcd for C₃₁H₂₈N₆BPRu (628.2): C, 59.34; H, 4.50; N, 13.39. Found: C, 59.23; H, 4.46; N, 13.29.

Spectroscopic data for **4**: ¹H NMR (CDCl₃): δ 7.68 (d, $J_{H-H} = 2.1$ Hz, 1H, Tp), 7.54 (s, 1H, =CH), 7.35 (d, JH-H = 2.1 Hz, 2H, Tp), 7.24-6.91 (m, PPh₃), 6.64 (d, $J_{H-H} = 2.1$ Hz, 2H, Tp), 5.71 (t, JH-H = 2.1 Hz, 2H, Tp), 5.36 (t, $J_{H-H} = 2.1$ Hz, 1H, Tp), 5.11 (d, $J_{H-H} = 2.1$ Hz, 1H, Tp), 4.64 (d, $J_{H-H} = 17.3$ Hz, CHHPh), 4.52 (d, $J_{H-H} = 17.3$ Hz, CHHPh). ¹³C NMR (CDCl₃): δ 198.4 (C=O), 171.3 (d, $J_{P-C} = 14.1$ Hz, Ru-C=), 148.3-122.7 (m, Ph, PPh₃, Tp, C_β), 54.9 (CH₂Ph). ³¹P NMR (CDCl₃): δ 59.1. MS (FAB) m/z: 798.2 (M⁺), 577.1 (M⁺ -CCH₂PhCHCPhCO). Anal. Calcd for C₄₅H₄₀BN₉P₂Ru (798.2): C, 64.75; H, 4.80; N, 10.54. Found: C, 64.57; H, 4.74; N, 10.45.

Spectroscopic data for **5**: ¹H NMR (CDCl₃): δ 8.03 (br, 1H, Tp), 7.96 (br, 1H, Tp), 7.83 (br, 1H, Tp), 7.65 (br, 1H, Tp), 7.43 - 7.10 (m, Ph), 7.04 (s, 1H, CH), 6.71 (s, 1H, CH), 6.53 (br, 1H, Tp), 6.24 (br, 1H, Tp), 6.03 (br, 1H, Tp), 5.83 (br, 1H, Tp), 5.40 (br, 1H,

Tp), 3.35 (d, $J_{\text{H-H}} = 16.8$ Hz, 1H, CHHPh), 3.18 (d, $J_{\text{H-H}} = 16.8$ Hz, 1H, CHHPh). ¹³C NMR (CDCl³): δ 202.4 (C=O), 166.3 (d, $J_{\text{P-C}} = 14.0$ Hz, Ru-C=), 148.3-122.7 (m, Ph, PPh₃, Tp, C_β), 51.3 (CH₂Ph). ³¹P NMR (CDCl₃): d 51.4. Anal. Calcd for C₄₅H₄₀BN₉P₂Ru (798.2): C, 64.75; H, 4.80; N, 10.54. Found: C, 64.57; H, 4.74; N, 10.45.