Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

# Caesium-templated lanthanoid-containing polyoxotungstates

Firasat Hussain, Bernhard Spingler, Franziska Conrad, Manfred Speldrich, Paul Kögerler, Colette Boskovic and Greta Ricarda Patzke\*

# **Supporting Information**

| Synthesis S1:              | Synthesis, FT-IR and elemental analysis of compounds Gd-1 – Er-1.                                                | 2 |
|----------------------------|------------------------------------------------------------------------------------------------------------------|---|
| Figure S2:                 | Thermogravimetric data for Eu-1 – Er-1.                                                                          | 3 |
| Figure S3:<br>polyoxometal | FT-IR spectra of compounds <b>Eu-1 – Er-1</b> (recorded in KBr, only the ate "fingerprint region" is displayed). | 4 |
| Magnetic Measurements      |                                                                                                                  | 5 |
| Figure S4:                 | Magnetization of <b>Gd-1</b> as a function of external field at 2.0 K.                                           | 6 |
| Figure S5:                 | Temperature dependence of the reciprocal susceptibility of Gd-1.                                                 | 7 |

## Synthetic Details S1:Synthesis, FT-IR and elemental analysis of compounds Gd-1 – Er-1.

Synthesis of polyanion **Gd-1**: A sample of Na<sub>9</sub>[B- $\alpha$ -AsW<sub>9</sub>O<sub>33</sub>] (0.493 g, 0.20 mmol was added with stirring to a solution of Gd(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O (0.271 g, 0.60 mmol) in NaOAc/AcOH buffer (1.0 M, 25 mL) at pH 4.7. This solution was heated to 80 °C for 60 minutes and then cooled to room temperature and was filtered off to remove small amounts of precipitate. 2 ml of 0.5 M CsCl solution was added to the filtrate and the solution was stirred for 5 minutes and the resulting solution was left to evaporate. Yield (18%), FTIR of **Gd-1**: 951 (s), 859 (s), 785 (s), 707 (s), 635 (sh), 478 (m) cm<sup>-1</sup>. Elemental analysis (%); calcd. (found): Na 2.5 (2.8), Cs 3.4 (3.3), As 2.3 (2.3), W 60.0 (58.8), Gd 4.9 (4.6).

Synthesis of polyanion **Tb-1**: Experimental procedure cf. above,  $Tb(NO_3)_3 \cdot 6H_2O$  (0.261 g, 0.60 mmol) was used instead of  $Gd(NO_3)_3 \cdot 6H_2O$ . Yield (15%), FTIR of **Tb-1**: 948 (s), 860 (s), 789 (s), 709 (s), 636 (sh), 480 (m) cm<sup>-1</sup>. Elemental analysis (%); calcd (found): Na 2.5 (2.8), Cs 3.4 (3.4), As 2.3 (2.3), W 59.9 (58.6), Tb 4.9 (5.0).

Synthesis of polyanion **Dy-1**: Experimental procedure cf. above,  $Dy(NO_3)_3 \cdot 6H_2O$  (0.263 g, 0.60 mmol) was used instead of Gd(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O. Yield (13%), FTIR of **Dy-1**: 948 (s), 860 (s), 789 (s), 714 (s), 637 (sh), 481 (m) cm<sup>-1</sup>. Elemental analysis (%); calcd. (found): Na 2.7 (2.8), Cs 4.3 (5.0), As 2.4 (2.1), W 62.8 (63.4), Dy 5.3 (5.2).

Synthesis of polyanion **Ho-1**: Experimental procedure cf. above,  $Ho(NO_3)_3 \cdot 6H_2O$  (0.265 g, 0.60 mmol) was used instead of  $Gd(NO_3)_3 \cdot 6H_2O$ . Yield (20%), FTIR of **Ho-1**: 948 (s), 861 (s), 789 (s), 713 (s), 636 (sh), 478 (m) cm<sup>-1</sup>. Elemental analysis (%); calcd (found): Na 2.7 (2.7), Cs 4.3 (5.2), As 2.4 (2.1), W 62.8 (65.5), Ho 5.3 (5.2).

Synthesis of polyanion **Er-1**: Experimental procedure cf. above,  $Er(NO_3)_3 \cdot 5H_2O$  (0.266 g, 0.60 mmol) was used instead of  $Gd(NO_3)_3 \cdot 6H_2O$ . Yield (20%), FTIR of **Er-1**: 949 (s), 861 (s), 787 (s), 710 (s), 634 (sh), 477 (m) cm<sup>-1</sup>. Elemental analysis (%); calcd. (found) : Na 2.7 (3.8), Cs 4.3 (5.0), As 2.4 (2.0), W 62.7 (59.5), Er 5.4 (5.4).

Elemental analyses of **Eu-1**, **Gd-1** and **Tb-1** were performed by Mikroanalytisches Labor Pascher, Remagen Germany and for **Dy-1**, **Ho-1** and **Er-1** by Zentrale Chemische Analytik (ZCH), Forschungszentrum Jülich, Jülich, Germany.



Figure S2. Representative thermogravimetric analysis of Ho-1 displaying the mass loss corresponding to crystal water molecules (Eu-1 = 7.22 %; Gd-1 = 10.63 %; Tb-1 = 5.78 %; Dy-1 = 6.98 %; Er-1 = 6.26 %).

TG measurements were performed on a Netzsch STA 449 C apparatus between 25 and 600 °C with a heating rate of 5 K/min in nitrogen atmosphere.



**Figure S3.** FT-IR spectra of compounds **Eu-1** – **Er-1** (recorded in KBr, only the polyoxometalate "fingerprint region" is displayed).

### **Magnetic Measurements**

Magnetic susceptibility measurements were performed in a temperature range of 2 – 290 K for (**Gd-1**) at 0.1 – 5.0 T and for (**Er-1**) at 0.1 Tesla using a Quantum Design MPMS-5XL SQUID magnetometer. The experimental susceptibility values were corrected for the sample holder (Teflon tubes, the diamagnetic and temperature-independent paramagnetic (TIP) contributions of Gd<sup>3+</sup> / Er<sup>3+</sup> and the polyoxotungstate ligands ( $\chi_{dia/TIP}$ (**Gd-1**) = -35.0 × 10<sup>-9</sup> m<sup>3</sup> mol<sup>-1</sup>; ( $\chi_{dia/TIP}$ (**Er-1**) = -32.0 × 10<sup>-9</sup> m<sup>3</sup> mol<sup>-1</sup>).<sup>[1, 2]</sup>

Theoretical modeling: We consider a magnetically isolated  $f^N$  metal ion surrounded by ligands imposing a distinct point symmetry upon the magnetic center. In a static magnetic field **B** the Hamiltonian of the metal ion is then represented by

$$\hat{H} = \sum_{i=1}^{N} \left[ -\frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} + V(r_{i}) \right] + \sum_{i>j}^{N} \frac{e^{2}}{r_{ij}} + \sum_{i=1}^{N} \zeta(r_{i}) \kappa \ \hat{l}_{i} \cdot \hat{s}_{i} + \sum_{\hat{H}^{(0)}} \sum_{\hat{H}_{ee}} \sum_{i=1}^{N} \sum_{k=0}^{\infty} \left\{ B_{0}^{k} C_{0}^{k}(i) + \sum_{q=2}^{k} \left[ B_{q}^{k} \left( C_{-q}^{k}(i) + (-1)^{q} C_{q}^{k}(i) \right) \right] \right\} + (1) \frac{\hat{H}_{LF}}{\hat{H}_{LF}}$$

$$\sum_{i=1}^{N} \mu_{B}(\kappa \ \hat{l}_{i} + 2 \ \hat{s}_{i}) \cdot B_{\hat{H}_{ee}} \sum_{\hat{H}_{ee}} \sum_{i=1}^{N} \mu_{B}(\kappa \ \hat{l}_{i} + 2 \ \hat{s}_{i}) \cdot B_{\hat{H}_{ee}} \right]$$

While  $H^{(0)}$  represents the energy in the central field approximation,  $H_{ee}$  and  $H_{so}$  account for interelectronic repulsion and spin-orbit coupling (modified by the orbital reduction factor  $\kappa$ ), respectively. The former is taken into account by the Slater-Condon parameters F<sup>2</sup>, F<sup>4</sup>, F<sup>6</sup>, the latter by the one-electron spin-orbit coupling parameter  $\zeta$ . These sets of interelectronic repulsion parameters as well as  $\zeta$  and  $\kappa$  are used as constants in the fitting calculations.

 $H_{lf}$  gives the electrostatic effect of the ligands in the framework of ligand field theory on the basis of the global parameters  $B_q^k$ . The spherical tensors  $C_q^k$  are directly related to the spherical harmonics  $C_q^k = \sqrt{4\pi/(2k+1)}Y_q^k$  and the real ligand field parameters  $B_q^k$  (Wybourne notation<sup>[3, 4]</sup>) are given by  $A_q^k \langle r^k \rangle$  where  $A_q^k$  is a numerical constant describing the charge distribution in the environment of the metal ion and  $\langle r^k \rangle$  is the expectation value of  $\langle r^k \rangle$  for the wave function.

For f electrons the terms in the expansion with  $k \le 6$  are nonzero, whereas all terms with odd k values vanish since we consider only configurations containing equivalent electrons. The values of k and q are limited by the point symmetry of the metal ion site.

If the spherically symmetric term  $B_0^0 C_0^0$  (which does not cause any splitting) is ignored, in cubic systems only spherical tensors with k = 4 and k = 6 are relevant and all  $B_q^k$  are zero. The ligand field operator with reference to the fourfold rotation axis for the angular part of the wave function reads.

$$H_{LF}^{tet} = B_0^2 \sum_{i=1}^{N} C_0^2(i) + B_0^4 \sum_{i=1}^{N} \left[ C_0^4(i) + \sqrt{5/14} \left( C_4^4(i) + C_{-4}^4(i) \right) \right] + B_0^6 \sum_{i=1}^{N} \left[ C_0^6(i) - \sqrt{7/2} \left( C_4^6(i) + C_{-4}^6(i) \right) \right]$$

For magnetochemical analyses, we developed the computer program CONDON.<sup>[5]</sup> For modeling the magnetic behaviour of the 4f-system (**Gd-1**) interelectronic repulsion ( $H_{ee}$ ) and spin-orbit-coupling ( $H_{so}$ ) and (**Er-1**) interelectronic repulsion ( $H_{ee}$ ), spin-orbit-coupling ( $H_{so}$ ) and lf effect ( $H_{LF}$ ), has to be taken into account.

In order to determine the magnetic behaviour of (**Gd-1**) we use only the Slater Condon Parameter  $({}^{2}F = 91\ 800\ \text{cm}^{-1}, {}^{4}F = 64\ 425\ \text{cm}^{-1}, {}^{6}F = 49\ 258\ \text{cm}^{-1})$ , the spin orbit-coupling constant ( $\zeta = 1\ 470\ \text{cm}^{-1}$ ) and the applied magnetic field ( $B_{\theta} = 0.1, 0.5, 1, 2, 3, 4, 5\ \text{T}$ ).<sup>[6, 7]</sup> The magnetochemical analyses show a g-value of 1.993 with the corresponding magnetic moment of 7.91. The reduce g-value is a result of the large spin-orbit interaction that mixes significant amounts of other terms into with J = 7/2 into the ground state. The major SL components of the ground state are <sup>8</sup>S (97 %) and <sup>6</sup>P (2.7 %) with the corresponding  $g_{\text{J}}$  factor 1.993.<sup>[8]</sup>



**Figure S4.** Magnetization as a function of external field at 2.0 K, showing a Brillouin-type behavior (experimental data: open circles, best fit: red graph). Parameters employed: S = 7/2,  $g_J = 1.993$  and SQ = 0.18 %.



**Figure S5.** Temperature dependence of the reciprocal susceptibility  $(\chi_m^{-1})$  of (**Gd-1**) at 0.1 Tesla emphasizing the near perfect Curie paramagnetism (experimental data: open circles, best fit: red graph); see text for parameters.

In the case of Er (III), the consideration of the ligand field effect ( $H_{lf}$ ) is especially important. To reduce the number of lf parameters, the local point symmetry  $C_s$ ; (15 independent lf parameters) was idealised to  $D_{4h}$  (3 independent lf parameters). The initial set of  $B_q^k$  parameter values was taken from spectroscopically determined energy levels for Er(III) in cubic elpasolite crystals.<sup>[10]</sup> In order to determine the corresponding ligand field parameters  $B_q^k$  the assumption of  $D_{4h}$  symmetry

was sufficient to yield an excellent fit (Figure 3; SQ 0.4%)  $B_0^2 = 240 \text{ cm}^{-1}$ ,  $B_0^4 = 1550 \text{ cm}^{-1}$ ,  $B_0^6 = 230 \text{ cm}^{-1}$  and a spin-orbit coupling parameter  $\zeta = 2369 \text{ cm}^{-1}$ .

The following fitting procedure was employed:

- (1) Starting parameters for a cubic Er (III) system ( $B_0^4$  and  $B_0^6$ ); the corresponding compound is listed in ref. 10.
- (2) The ratios between the parameters  $B_0^4$  and  $B_4^4$  as well as  $B_0^4$  and  $B_4^4$  were set as constant, reflecting cubic ligand field symmetry ( $B_4^4 = \sqrt{5/14} B_0^4$  and  $B_4^6 = \sqrt{7/2} B_0^6$ ).<sup>[10]</sup> Note that the quality of the fit does not increase significantly upon removing these constraints.
- (3) To accommodate the assumed near-tetragonal symmetry of the Er (III) ligand field, a third free parameter  $B_0^2$  was introduced.
- (4) The (fixed) spin-orbit coupling parameter was chosen as  $\zeta = 2369 \text{ cm}^{-1}$  according to ref. 10.

#### References

- [1] W. Haberditzl, Angew. Chem. 1966, 78, 277 288.
- [2] H. Lueken, *Magnetochemie*, Teubner, Stuttgart 1999, pp. 426 427.
- [3] B.G. Wybourne, *Spectroscopic Properties of Rare Earths*, Wiley, New York, London, Sydney 1965.
- [4] C. Görller-Walrand, K. Binnemans, Rationalization of crystal-field parametrization, in: K.A. Gschneidner, Jr., L. Eyring (Eds.), *Handbook on the Physics and Chemistry of Rare Earths*, Vol. 23, Ch. 155, p. 121, Elsevier, Amsterdam, 1996.
- [5] H. Schilder and H. Lueken, J. Magn. Magn. Mat. 2004, 281, 17 26.
- [6] E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, Cambridge, 1953.
- [7] S. Hüfner, *Optical Spectra of Transparent Rare Earth Compounds*, Academic Press, Inc. New York, 1978.
- [8] J. Sytsma, K. M. Murdoch, N. M. Edelstein, L. A. Boatner and M. M. Abraham, *Phys. Rev. B* 1995, **52**, 12668 – 12676
- [9] A. J. Shuskus, *Phys. Rev.* 1962, **127**, 2022 2024.
- [10] P. A. Tanner, V. V. Ravi Kanth Kumar, C. K. Jayasankar, M. F. Reid, Analysis of spectral data and comparative energy level parametrizations for Ln<sup>3+</sup> in cubic elpasolite crystals, *J. Alloys Comp.* 1994, **215**, 349 – 370.