# Supplementary Material (ESI) for Dalton Transactions # This journal is (c) The Royal Society of Chemistry 2009 data_global _journal_coden_Cambridge 222 _journal_volume ? _journal_page_first ? _journal_year ? loop_ _publ_author_name 'Sean McGrady' 'Richard P. L. Burchell' 'Andreas Decken' 'Peter Sirsch' _publ_contact_author_name 'Sean McGrady' _publ_contact_author_email SMCGRADY@UNB.CA _publ_section_title ; A Structural Study of [CpM(CO)3H] (M = Cr, Mo and W) by Single-Crystal X-Ray Diffraction and DFT Calculations: Sterically Crowded Yet Surprisingly Flexible Molecules ; # Attachment 'compd_1_2_3.cif' data_sg081152 # Compound 1 _database_code_depnum_ccdc_archive 'CCDC 719806' _audit_creation_date 'May 28 11:12:34 2008' _audit_update_record ; Feb 05, 2009 updated by author P. Sirsch ; _audit_creation_method SHELXL-97 _chemical_name_systematic ; Tricarbonylcyclopentadienylhydridochromium(II) ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C8 H6 Cr O3' _chemical_formula_sum 'C8 H6 Cr O3' _chemical_formula_weight 202.13 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cr Cr 0.3209 0.6236 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 21/n' _symmetry_space_group_name_Hall '-P 2yn ' _symmetry_int_tables_number 14 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 10.8820(16) _cell_length_b 7.2619(11) _cell_length_c 11.6420(17) _cell_angle_alpha 90.00 _cell_angle_beta 116.778(2) _cell_angle_gamma 90.00 _cell_volume 821.3(2) _cell_formula_units_Z 4 _cell_measurement_temperature 198(1) _cell_measurement_reflns_used 2734 _cell_measurement_theta_min 3.422 _cell_measurement_theta_max 28.000 _exptl_crystal_description hexagonal _exptl_crystal_colour yellow _exptl_crystal_size_max 0.35 _exptl_crystal_size_mid 0.35 _exptl_crystal_size_min 0.15 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.635 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 408 _exptl_absorpt_coefficient_mu 1.351 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.6493 _exptl_absorpt_correction_T_max 0.8231 _exptl_absorpt_process_details 'SADABS (Sheldrick, 2004)' _exptl_special_details ; Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections. ; _diffrn_ambient_temperature 198(1) _diffrn_radiation_probe x-ray _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_source 'fine-focus sealed tube' _diffrn_source_type K760 _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker AXS SMART1000/P4' _diffrn_measurement_method 'phi and omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time 0 _diffrn_standards_decay_% 0 _diffrn_reflns_number 5407 _diffrn_reflns_av_R_equivalents 0.0249 _diffrn_reflns_av_sigmaI/netI 0.0221 _diffrn_reflns_limit_h_min -14 _diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -9 _diffrn_reflns_limit_k_max 9 _diffrn_reflns_limit_l_min -14 _diffrn_reflns_limit_l_max 13 _diffrn_reflns_theta_min 2.13 _diffrn_reflns_theta_max 27.49 _reflns_number_total 1824 _reflns_number_gt 1489 _reflns_threshold_expression 'I > 2\s(I)' _computing_data_collection ; Bruker (1999). SMART, version 5.054, Bruker AXS Inc., Madison, Wisconsin, USA. ; _computing_cell_refinement ; Bruker (1999). SMART, version 5.054, Bruker AXS Inc., Madison, Wisconsin, USA. ; _computing_data_reduction ; Bruker (2001). SAINT, version 7.23a, Bruker AXS Inc., Madison, Wisconsin, USA. ; _computing_structure_solution ; Sheldrick, G. M. (1997). SHELXS97. University of Gottingen, Germany. ; _computing_structure_refinement ; Sheldrick, G. M. (1997). SHELXL97. University of Gottingen, Germany. ; _computing_molecular_graphics ; Farrugia, L. J. (1997) ORTEP-3. J Appl. Crystallogr. 30, 565. ; _computing_publication_material ; Bruker AXS (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA. ; _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were either found in Fourier difference maps or inferred from neighbouring sites, and refined isotropically. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0510P)^2^+0.6160P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1824 _refine_ls_number_parameters 133 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0461 _refine_ls_R_factor_gt 0.0360 _refine_ls_wR_factor_ref 0.1070 _refine_ls_wR_factor_gt 0.0941 _refine_ls_goodness_of_fit_ref 1.070 _refine_ls_restrained_S_all 1.070 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cr1 Cr 0.01601(4) -0.00786(5) 0.28257(4) 0.03929(17) Uani 1 d . . . C1 C 0.1613(4) 0.1959(5) 0.4063(4) 0.0679(9) Uani 1 d . . . H1 H 0.181(4) 0.203(6) 0.483(4) 0.087(13) Uiso 1 d . . . C2 C 0.0525(3) 0.2864(4) 0.3039(4) 0.0662(10) Uani 1 d . . . H2 H -0.007(4) 0.352(5) 0.310(4) 0.086(12) Uiso 1 d . . . C3 C 0.0538(3) 0.2321(5) 0.1917(4) 0.0653(9) Uani 1 d . . . H3 H 0.005(4) 0.268(6) 0.122(4) 0.085(13) Uiso 1 d . . . C4 C 0.1610(3) 0.1095(4) 0.2205(4) 0.0591(8) Uani 1 d . . . H4 H 0.172(4) 0.050(6) 0.156(4) 0.081(12) Uiso 1 d . . . C5 C 0.2275(3) 0.0860(4) 0.3522(3) 0.0569(8) Uani 1 d . . . H5 H 0.300(5) 0.013(5) 0.399(5) 0.086(14) Uiso 1 d . . . C6 C -0.1542(3) 0.0174(4) 0.2745(3) 0.0535(7) Uani 1 d . . . C7 C -0.0269(3) -0.1952(4) 0.1650(3) 0.0482(6) Uani 1 d . . . C8 C 0.0671(4) -0.1997(4) 0.3988(3) 0.0562(7) Uani 1 d . . . O1 O -0.2606(3) 0.0363(4) 0.2691(4) 0.0992(11) Uani 1 d . . . O2 O -0.0521(3) -0.3125(3) 0.0920(2) 0.0773(7) Uani 1 d . . . O3 O 0.0993(4) -0.3187(3) 0.4709(2) 0.0940(10) Uani 1 d . . . H6 H -0.016(6) -0.009(6) 0.378(6) 0.13(2) Uiso 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cr1 0.0379(2) 0.0289(2) 0.0578(3) -0.00027(15) 0.0275(2) -0.00085(14) C1 0.0631(19) 0.078(2) 0.063(2) -0.0190(18) 0.0286(16) -0.0306(17) C2 0.0495(16) 0.0283(13) 0.127(3) -0.0037(16) 0.0457(19) -0.0027(12) C3 0.0500(16) 0.0621(19) 0.075(2) 0.0299(18) 0.0207(16) -0.0035(14) C4 0.0596(17) 0.0582(18) 0.076(2) -0.0028(16) 0.0454(16) -0.0119(14) C5 0.0367(13) 0.0464(15) 0.083(2) 0.0184(15) 0.0231(14) 0.0030(12) C6 0.0409(14) 0.0422(14) 0.0766(19) -0.0145(13) 0.0259(13) -0.0069(11) C7 0.0487(14) 0.0499(15) 0.0416(13) 0.0017(12) 0.0164(11) -0.0068(12) C8 0.089(2) 0.0356(13) 0.0472(14) -0.0097(12) 0.0336(15) -0.0175(14) O1 0.0496(13) 0.0765(16) 0.184(3) -0.0419(19) 0.0632(17) -0.0131(12) O2 0.1005(18) 0.0705(15) 0.0522(12) -0.0173(11) 0.0267(12) -0.0229(14) O3 0.164(3) 0.0475(13) 0.0564(13) 0.0038(11) 0.0372(16) -0.0279(15) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cr1 C6 1.821(3) . ? Cr1 C7 1.835(3) . ? Cr1 C8 1.845(3) . ? Cr1 C2 2.167(3) . ? Cr1 C1 2.171(3) . ? Cr1 C3 2.171(3) . ? Cr1 C5 2.177(3) . ? Cr1 C4 2.183(3) . ? Cr1 H6 1.30(6) . ? C1 C5 1.400(5) . ? C1 C2 1.409(5) . ? C1 H1 0.82(4) . ? C2 C3 1.370(5) . ? C2 H2 0.83(4) . ? C3 C4 1.384(5) . ? C3 H3 0.79(4) . ? C4 C5 1.380(5) . ? C4 H4 0.92(4) . ? C5 H5 0.90(4) . ? C6 O1 1.139(4) . ? C6 H6 1.46(6) . ? C7 O2 1.145(3) . ? C8 O3 1.144(4) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C6 Cr1 C7 97.19(12) . . ? C6 Cr1 C8 94.46(15) . . ? C7 Cr1 C8 83.01(12) . . ? C6 Cr1 C2 92.05(12) . . ? C7 Cr1 C2 142.05(15) . . ? C8 Cr1 C2 132.97(14) . . ? C6 Cr1 C1 112.67(13) . . ? C7 Cr1 C1 149.86(13) . . ? C8 Cr1 C1 98.02(14) . . ? C2 Cr1 C1 37.89(15) . . ? C6 Cr1 C3 107.76(13) . . ? C7 Cr1 C3 105.80(15) . . ? C8 Cr1 C3 154.50(14) . . ? C2 Cr1 C3 36.81(15) . . ? C1 Cr1 C3 62.28(15) . . ? C6 Cr1 C5 150.21(13) . . ? C7 Cr1 C5 112.40(13) . . ? C8 Cr1 C5 92.54(13) . . ? C2 Cr1 C5 62.64(11) . . ? C1 Cr1 C5 37.58(13) . . ? C3 Cr1 C5 61.96(12) . . ? C6 Cr1 C4 144.45(14) . . ? C7 Cr1 C4 91.24(13) . . ? C8 Cr1 C4 120.89(14) . . ? C2 Cr1 C4 62.01(13) . . ? C1 Cr1 C4 62.24(13) . . ? C3 Cr1 C4 37.07(13) . . ? C5 Cr1 C4 36.90(12) . . ? C6 Cr1 H6 52(3) . . ? C7 Cr1 H6 124(2) . . ? C8 Cr1 H6 59(2) . . ? C2 Cr1 H6 91(2) . . ? C1 Cr1 H6 80(2) . . ? C3 Cr1 H6 127(2) . . ? C5 Cr1 H6 109(3) . . ? C4 Cr1 H6 142(2) . . ? C5 C1 C2 107.0(3) . . ? C5 C1 Cr1 71.44(19) . . ? C2 C1 Cr1 70.92(18) . . ? C5 C1 H1 126(3) . . ? C2 C1 H1 127(3) . . ? Cr1 C1 H1 121(3) . . ? C3 C2 C1 107.8(3) . . ? C3 C2 Cr1 71.75(18) . . ? C1 C2 Cr1 71.19(18) . . ? C3 C2 H2 126(3) . . ? C1 C2 H2 126(3) . . ? Cr1 C2 H2 118(3) . . ? C2 C3 C4 108.9(3) . . ? C2 C3 Cr1 71.44(18) . . ? C4 C3 Cr1 71.92(18) . . ? C2 C3 H3 127(3) . . ? C4 C3 H3 124(3) . . ? Cr1 C3 H3 125(3) . . ? C5 C4 C3 108.2(3) . . ? C5 C4 Cr1 71.32(17) . . ? C3 C4 Cr1 71.01(17) . . ? C5 C4 H4 131(3) . . ? C3 C4 H4 121(3) . . ? Cr1 C4 H4 118(3) . . ? C4 C5 C1 108.1(3) . . ? C4 C5 Cr1 71.79(17) . . ? C1 C5 Cr1 70.98(17) . . ? C4 C5 H5 128(3) . . ? C1 C5 H5 123(3) . . ? Cr1 C5 H5 122(2) . . ? O1 C6 Cr1 178.9(3) . . ? O1 C6 H6 135(2) . . ? Cr1 C6 H6 45(2) . . ? O2 C7 Cr1 179.2(3) . . ? O3 C8 Cr1 179.8(3) . . ? _diffrn_measured_fraction_theta_max 0.969 _diffrn_reflns_theta_full 25.00 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 0.544 _refine_diff_density_min -0.291 _refine_diff_density_rms 0.069 # # #===END # #============================================================================== data_sg080467 # compound 2 _database_code_depnum_ccdc_archive 'CCDC 719807' _audit_creation_method SHELXL-97 _chemical_name_systematic ; Tricarbonylcyclopentadienylhydridomolybdenum(II) ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C8 H6 Mo O3' _chemical_formula_sum 'C8 H6 Mo O3' _chemical_formula_weight 246.07 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Mo Mo -1.6832 0.6857 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 21/c' _symmetry_space_group_name_Hall '-P 2ybc ' _symmetry_int_tables_number 14 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 11.1449(14) _cell_length_b 7.5856(10) _cell_length_c 11.617(2) _cell_angle_alpha 90.00 _cell_angle_beta 117.943(1) _cell_angle_gamma 90.00 _cell_volume 867.6(2) _cell_formula_units_Z 4 _cell_measurement_temperature 173(1) _cell_measurement_reflns_used 4504 _cell_measurement_theta_min 2.69 _cell_measurement_theta_max 28.42 _exptl_crystal_description Parallelepiped _exptl_crystal_colour 'pale pink' _exptl_crystal_size_max 0.40 _exptl_crystal_size_mid 0.30 _exptl_crystal_size_min 0.20 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.884 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 480 _exptl_absorpt_coefficient_mu 1.472 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.57869 _exptl_absorpt_correction_T_max 0.742056 _exptl_absorpt_process_details 'SADABS (Sheldrick, 2004)' _exptl_special_details ; Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections. ; _diffrn_ambient_temperature 173(1) _diffrn_radiation_probe x-ray _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_source 'fine-focus sealed tube' _diffrn_source_type K760 _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker AXS SMART1000/P4' _diffrn_measurement_method 'phi and omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time 0 _diffrn_standards_decay_% 0 _diffrn_reflns_number 5834 _diffrn_reflns_av_R_equivalents 0.0255 _diffrn_reflns_av_sigmaI/netI 0.0212 _diffrn_reflns_limit_h_min -14 _diffrn_reflns_limit_h_max 14 _diffrn_reflns_limit_k_min -9 _diffrn_reflns_limit_k_max 9 _diffrn_reflns_limit_l_min -14 _diffrn_reflns_limit_l_max 15 _diffrn_reflns_theta_min 2.07 _diffrn_reflns_theta_max 27.50 _reflns_number_total 1942 _reflns_number_gt 1796 _reflns_threshold_expression 'I > 2\s(I)' _computing_data_collection ; Bruker (1999). SMART, version 5.054, Bruker AXS Inc., Madison, Wisconsin, USA. ; _computing_cell_refinement ; Bruker (1999). SMART, version 5.054, Bruker AXS Inc., Madison, Wisconsin, USA. ; _computing_data_reduction ; Bruker (2001). SAINT, version 7.23a, Bruker AXS Inc., Madison, Wisconsin, USA. ; _computing_structure_solution ; Sheldrick, G. M. (1997). SHELXS97. University of Gottingen, Germany. ; _computing_structure_refinement ; Sheldrick, G. M. (1997). SHELXL97. University of Gottingen, Germany. ; _computing_molecular_graphics ; Farrugia, L. J. (1997) ORTEP-3. J Appl. Crystallogr. 30, 565. ; _computing_publication_material ; Bruker AXS (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA. ; _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Hydrogen atoms were found in Fourier difference maps and refined using isotropic thermal parameters. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0401P)^2^+0.2150P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1942 _refine_ls_number_parameters 133 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0240 _refine_ls_R_factor_gt 0.0224 _refine_ls_wR_factor_ref 0.0632 _refine_ls_wR_factor_gt 0.0610 _refine_ls_goodness_of_fit_ref 1.067 _refine_ls_restrained_S_all 1.067 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Mo Mo 0.238149(16) 1.010253(19) 0.235184(18) 0.02743(9) Uani 1 1 d . . . C1 C 0.3681(2) 0.7530(3) 0.3149(2) 0.0479(5) Uani 1 1 d . . . C2 C 0.2575(2) 0.7115(3) 0.1941(3) 0.0496(5) Uani 1 1 d . . . C3 C 0.2691(2) 0.8121(3) 0.0981(2) 0.0474(5) Uani 1 1 d . . . C4 C 0.3883(2) 0.9154(3) 0.1609(2) 0.0431(5) Uani 1 1 d . . . C5 C 0.4491(2) 0.8788(3) 0.2942(2) 0.0440(5) Uani 1 1 d . . . C6 C 0.0553(3) 0.9924(2) 0.2219(3) 0.0411(6) Uani 1 1 d . . . C7 C 0.14841(19) 1.1984(2) 0.10257(18) 0.0383(4) Uani 1 1 d . . . C8 C 0.31105(19) 1.2217(3) 0.34438(18) 0.0352(4) Uani 1 1 d . . . O1 O -0.0495(2) 0.9788(2) 0.2161(3) 0.0658(6) Uani 1 1 d . . . O2 O 0.09768(18) 1.3092(2) 0.02852(16) 0.0600(4) Uani 1 1 d . . . O3 O 0.35629(16) 1.3427(2) 0.40995(16) 0.0519(4) Uani 1 1 d . . . H1 H 0.381(3) 0.700(4) 0.390(3) 0.062(8) Uiso 1 1 d . . . H2 H 0.185(3) 0.640(3) 0.176(3) 0.058(7) Uiso 1 1 d . . . H3 H 0.213(3) 0.809(3) 0.012(3) 0.061(7) Uiso 1 1 d . . . H4 H 0.412(4) 0.991(3) 0.114(4) 0.067(10) Uiso 1 1 d . . . H5 H 0.529(3) 0.930(4) 0.358(3) 0.063(7) Uiso 1 1 d . . . H6 H 0.224(4) 1.004(3) 0.374(4) 0.081(12) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Mo 0.02751(12) 0.02436(12) 0.03309(13) 0.00107(5) 0.01642(10) 0.00021(4) C1 0.0552(13) 0.0421(11) 0.0570(13) 0.0215(10) 0.0350(11) 0.0205(9) C2 0.0489(12) 0.0250(9) 0.0877(17) -0.0026(10) 0.0428(13) 0.0006(8) C3 0.0499(12) 0.0482(12) 0.0451(12) -0.0098(9) 0.0231(10) 0.0111(9) C4 0.0477(11) 0.0384(10) 0.0602(13) 0.0112(9) 0.0393(10) 0.0093(8) C5 0.0316(9) 0.0437(11) 0.0547(12) 0.0034(9) 0.0185(9) 0.0094(8) C6 0.0390(13) 0.0373(11) 0.0523(16) -0.0074(7) 0.0259(12) -0.0038(7) C7 0.0407(10) 0.0318(9) 0.0357(9) -0.0031(7) 0.0122(8) 0.0014(7) C8 0.0343(9) 0.0362(9) 0.0319(9) 0.0014(7) 0.0128(8) 0.0024(7) O1 0.0453(11) 0.0717(12) 0.0956(19) -0.0160(10) 0.0457(13) -0.0108(7) O2 0.0722(11) 0.0432(8) 0.0453(9) 0.0093(7) 0.0114(8) 0.0134(8) O3 0.0546(9) 0.0447(8) 0.0454(8) -0.0118(7) 0.0143(7) -0.0051(7) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Mo C8 1.9687(19) . ? Mo C6 1.975(2) . ? Mo C7 1.9915(19) . ? Mo C4 2.3277(19) . ? Mo C3 2.330(2) . ? Mo C5 2.3411(18) . ? Mo C1 2.3461(19) . ? Mo C2 2.3461(19) . ? Mo H6 1.69(4) . ? C1 C2 1.402(4) . ? C1 C5 1.409(3) . ? C1 H1 0.91(3) . ? C2 C3 1.407(3) . ? C2 H2 0.91(3) . ? C3 C4 1.416(3) . ? C3 H3 0.90(3) . ? C4 C5 1.398(3) . ? C4 H4 0.91(3) . ? C5 H5 0.93(3) . ? C6 O1 1.143(3) . ? C7 O2 1.145(2) . ? C8 O3 1.148(2) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C8 Mo C6 101.85(8) . . ? C8 Mo C7 79.67(8) . . ? C6 Mo C7 82.13(9) . . ? C8 Mo C4 109.83(8) . . ? C6 Mo C4 147.66(9) . . ? C7 Mo C4 97.02(8) . . ? C8 Mo C3 144.83(8) . . ? C6 Mo C3 112.34(9) . . ? C7 Mo C3 96.60(8) . . ? C4 Mo C3 35.39(8) . . ? C8 Mo C5 95.95(8) . . ? C6 Mo C5 148.36(8) . . ? C7 Mo C5 127.11(8) . . ? C4 Mo C5 34.84(8) . . ? C3 Mo C5 58.38(8) . . ? C8 Mo C1 115.54(8) . . ? C6 Mo C1 113.39(8) . . ? C7 Mo C1 153.47(8) . . ? C4 Mo C1 58.10(7) . . ? C3 Mo C1 58.13(8) . . ? C5 Mo C1 35.00(8) . . ? C8 Mo C2 150.26(8) . . ? C6 Mo C2 96.17(7) . . ? C7 Mo C2 126.55(9) . . ? C4 Mo C2 58.38(7) . . ? C3 Mo C2 35.01(9) . . ? C5 Mo C2 58.19(8) . . ? C1 Mo C2 34.78(9) . . ? C8 Mo H6 66.6(9) . . ? C6 Mo H6 61.3(14) . . ? C7 Mo H6 121.3(10) . . ? C4 Mo H6 138.5(12) . . ? C3 Mo H6 138.0(8) . . ? C5 Mo H6 103.7(13) . . ? C1 Mo H6 85.2(10) . . ? C2 Mo H6 103.1(8) . . ? C2 C1 C5 108.3(2) . . ? C2 C1 Mo 72.61(11) . . ? C5 C1 Mo 72.31(11) . . ? C2 C1 H1 122.4(19) . . ? C5 C1 H1 129.3(19) . . ? Mo C1 H1 122.7(18) . . ? C1 C2 C3 107.93(19) . . ? C1 C2 Mo 72.61(12) . . ? C3 C2 Mo 71.85(11) . . ? C1 C2 H2 129.2(17) . . ? C3 C2 H2 122.7(17) . . ? Mo C2 H2 117.7(16) . . ? C2 C3 C4 107.7(2) . . ? C2 C3 Mo 73.13(12) . . ? C4 C3 Mo 72.23(12) . . ? C2 C3 H3 126.5(17) . . ? C4 C3 H3 125.7(17) . . ? Mo C3 H3 122.0(17) . . ? C5 C4 C3 108.12(19) . . ? C5 C4 Mo 73.11(11) . . ? C3 C4 Mo 72.38(11) . . ? C5 C4 H4 131(3) . . ? C3 C4 H4 121(3) . . ? Mo C4 H4 119.0(18) . . ? C4 C5 C1 107.9(2) . . ? C4 C5 Mo 72.06(11) . . ? C1 C5 Mo 72.69(11) . . ? C4 C5 H5 125.8(18) . . ? C1 C5 H5 126.3(18) . . ? Mo C5 H5 120.3(18) . . ? O1 C6 Mo 178.4(2) . . ? O2 C7 Mo 178.47(17) . . ? O3 C8 Mo 178.36(17) . . ? _diffrn_measured_fraction_theta_max 0.976 _diffrn_reflns_theta_full 25.00 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 1.344 _refine_diff_density_min -0.256 _refine_diff_density_rms 0.086 # #===END # # #============================================================================== data_sg060513 # compound 3 _database_code_depnum_ccdc_archive 'CCDC 719808' _audit_creation_method SHELXL-97 _chemical_name_systematic ; Tricarbonylcyclopentadienylhydridotungsten(II) ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C8 H6 O3 W' _chemical_formula_sum 'C8 H6 O3 W' _chemical_formula_weight 333.98 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' W W -0.8490 6.8722 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 21/n' _symmetry_space_group_name_Hall '-P 2yn ' _symmetry_int_tables_number 14 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 6.7980(18) _cell_length_b 10.968(3) _cell_length_c 11.815(3) _cell_angle_alpha 90.00 _cell_angle_beta 104.368(5) _cell_angle_gamma 90.00 _cell_volume 853.4(4) _cell_formula_units_Z 4 _cell_measurement_temperature 178(1) _cell_measurement_reflns_used 2956 _cell_measurement_theta_min 2.5715 _cell_measurement_theta_max 28.3715 _exptl_crystal_description Parallelepiped _exptl_crystal_colour Colourless _exptl_crystal_size_max 0.15 _exptl_crystal_size_mid 0.10 _exptl_crystal_size_min 0.075 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.599 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 608 _exptl_absorpt_coefficient_mu 13.496 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.198828 _exptl_absorpt_correction_T_max 0.361956 _exptl_absorpt_process_details 'SADABS (Sheldrick, 2004)' _exptl_special_details ; Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections. ; _diffrn_ambient_temperature 178(1) _diffrn_radiation_probe x-ray _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_source 'fine-focus sealed tube' _diffrn_source_type K760 _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker AXS SMART1000/P4' _diffrn_measurement_method 'phi and omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time 0 _diffrn_standards_decay_% 0 _diffrn_reflns_number 5765 _diffrn_reflns_av_R_equivalents 0.0285 _diffrn_reflns_av_sigmaI/netI 0.0265 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 7 _diffrn_reflns_limit_k_min -14 _diffrn_reflns_limit_k_max 12 _diffrn_reflns_limit_l_min -15 _diffrn_reflns_limit_l_max 15 _diffrn_reflns_theta_min 2.57 _diffrn_reflns_theta_max 27.50 _reflns_number_total 1913 _reflns_number_gt 1598 _reflns_threshold_expression 'I > 2\s(I)' _computing_data_collection ; Bruker (1999). SMART, version 5.054, Bruker AXS Inc., Madison, Wisconsin, USA. ; _computing_cell_refinement ; Bruker (1999). SMART, version 5.054, Bruker AXS Inc., Madison, Wisconsin, USA. ; _computing_data_reduction ; Bruker (2001). SAINT, version 7.23a, Bruker AXS Inc., Madison, Wisconsin, USA. ; _computing_structure_solution ; Sheldrick, G. M. (1997). SHELXS97. University of Gottingen, Germany. ; _computing_structure_refinement ; Sheldrick, G. M. (1997). SHELXL97. University of Gottingen, Germany. ; _computing_molecular_graphics ; Farrugia, L. J. (1997) ORTEP-3. J Appl. Crystallogr. 30, 565. ; _computing_publication_material ; Bruker AXS (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA. ; _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Hydrogen atoms were found in Fourier difference maps and refined using isotropic thermal parameters. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0282P)^2^+0.1438P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1913 _refine_ls_number_parameters 133 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0298 _refine_ls_R_factor_gt 0.0214 _refine_ls_wR_factor_ref 0.0552 _refine_ls_wR_factor_gt 0.0520 _refine_ls_goodness_of_fit_ref 1.085 _refine_ls_restrained_S_all 1.085 _refine_ls_shift/su_max 0.002 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group W W 0.16006(2) 0.257395(13) 0.699223(13) 0.02083(8) Uani 1 1 d . . . C1 C -0.1087(7) 0.1731(5) 0.7664(4) 0.0378(12) Uani 1 1 d . . . C2 C -0.1667(7) 0.1699(5) 0.6422(5) 0.0373(12) Uani 1 1 d . . . C3 C -0.1784(7) 0.2902(5) 0.6009(4) 0.0358(11) Uani 1 1 d . . . C4 C -0.1293(7) 0.3706(5) 0.6994(4) 0.0343(11) Uani 1 1 d . . . C5 C -0.0849(7) 0.2966(5) 0.8007(4) 0.0357(11) Uani 1 1 d . . . C6 C 0.2959(6) 0.1333(4) 0.6226(3) 0.0252(9) Uani 1 1 d . . . C7 C 0.2644(7) 0.3636(4) 0.5911(4) 0.0304(10) Uani 1 1 d . . . C8 C 0.3846(7) 0.3415(4) 0.8128(4) 0.0302(10) Uani 1 1 d . . . O1 O 0.3746(5) 0.0594(3) 0.5807(3) 0.0335(8) Uani 1 1 d . . . O2 O 0.3249(6) 0.4256(3) 0.5292(3) 0.0517(10) Uani 1 1 d . . . O3 O 0.5086(5) 0.3885(3) 0.8801(3) 0.0413(8) Uani 1 1 d . . . H1 H -0.088(8) 0.109(5) 0.826(4) 0.051(16) Uiso 1 1 d . . . H2 H -0.159(6) 0.099(4) 0.595(4) 0.031(12) Uiso 1 1 d . . . H3 H -0.211(6) 0.302(4) 0.515(4) 0.025(11) Uiso 1 1 d . . . H4 H -0.127(6) 0.453(4) 0.699(3) 0.018(10) Uiso 1 1 d . . . H5 H -0.047(7) 0.332(4) 0.873(4) 0.029(12) Uiso 1 1 d . . . H6 H 0.286(11) 0.150(8) 0.778(6) 0.12(3) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 W 0.01837(12) 0.02394(11) 0.02099(11) -0.00042(6) 0.00642(7) 0.00004(6) C1 0.025(3) 0.050(3) 0.044(3) 0.009(2) 0.020(2) -0.004(2) C2 0.021(3) 0.040(3) 0.050(3) -0.012(2) 0.007(2) -0.004(2) C3 0.020(2) 0.052(3) 0.033(2) -0.002(2) 0.0019(19) 0.005(2) C4 0.019(2) 0.032(3) 0.053(3) -0.007(2) 0.011(2) 0.0077(19) C5 0.024(2) 0.056(3) 0.030(2) -0.007(2) 0.0128(19) -0.002(2) C6 0.018(2) 0.032(2) 0.024(2) 0.0045(17) 0.0022(16) -0.0023(18) C7 0.024(3) 0.033(2) 0.035(2) 0.0009(19) 0.0102(19) -0.0009(19) C8 0.029(3) 0.037(3) 0.028(2) 0.0007(18) 0.0118(19) 0.0037(19) O1 0.0293(18) 0.0350(18) 0.0366(17) -0.0068(14) 0.0090(14) 0.0092(14) O2 0.065(3) 0.049(2) 0.047(2) 0.0139(18) 0.0257(19) -0.0053(19) O3 0.035(2) 0.049(2) 0.0367(18) -0.0117(15) 0.0021(15) -0.0079(16) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag W C6 1.985(5) . ? W C7 1.986(5) . ? W C8 1.991(5) . ? W C5 2.321(5) . ? W C4 2.327(4) . ? W C3 2.334(4) . ? W C1 2.354(5) . ? W C2 2.359(5) . ? W H6 1.61(8) . ? C1 C5 1.412(8) . ? C1 C2 1.422(7) . ? C1 H1 0.98(5) . ? C2 C3 1.402(7) . ? C2 H2 0.96(5) . ? C3 C4 1.432(7) . ? C3 H3 0.99(4) . ? C4 C5 1.415(7) . ? C4 H4 0.91(4) . ? C5 H5 0.92(4) . ? C6 O1 1.148(5) . ? C7 O2 1.147(6) . ? C8 O3 1.130(5) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C6 W C7 80.1(2) . . ? C6 W C8 105.04(18) . . ? C7 W C8 79.93(18) . . ? C6 W C5 146.9(2) . . ? C7 W C5 129.8(2) . . ? C8 W C5 95.41(18) . . ? C6 W C4 148.82(17) . . ? C7 W C4 97.14(19) . . ? C8 W C4 105.01(18) . . ? C5 W C4 35.46(18) . . ? C6 W C3 113.05(17) . . ? C7 W C3 93.15(19) . . ? C8 W C3 139.48(18) . . ? C5 W C3 58.89(17) . . ? C4 W C3 35.79(17) . . ? C6 W C1 111.86(18) . . ? C7 W C1 151.44(18) . . ? C8 W C1 118.95(18) . . ? C5 W C1 35.1(2) . . ? C4 W C1 58.82(19) . . ? C3 W C1 58.42(19) . . ? C6 W C2 95.88(18) . . ? C7 W C2 121.09(18) . . ? C8 W C2 152.97(19) . . ? C5 W C2 58.50(18) . . ? C4 W C2 58.74(17) . . ? C3 W C2 34.76(18) . . ? C1 W C2 35.11(17) . . ? C6 W H6 61(3) . . ? C7 W H6 125(3) . . ? C8 W H6 75(3) . . ? C5 W H6 101(3) . . ? C4 W H6 136(3) . . ? C3 W H6 136(3) . . ? C1 W H6 82(3) . . ? C2 W H6 101(3) . . ? C5 C1 C2 107.6(4) . . ? C5 C1 W 71.2(3) . . ? C2 C1 W 72.6(3) . . ? C5 C1 H1 119(3) . . ? C2 C1 H1 133(3) . . ? W C1 H1 123(3) . . ? C3 C2 C1 108.2(4) . . ? C3 C2 W 71.6(3) . . ? C1 C2 W 72.2(3) . . ? C3 C2 H2 124(3) . . ? C1 C2 H2 125(3) . . ? W C2 H2 108(3) . . ? C2 C3 C4 108.4(4) . . ? C2 C3 W 73.6(3) . . ? C4 C3 W 71.8(3) . . ? C2 C3 H3 117(3) . . ? C4 C3 H3 135(3) . . ? W C3 H3 118(3) . . ? C5 C4 C3 107.0(5) . . ? C5 C4 W 72.1(3) . . ? C3 C4 W 72.4(3) . . ? C5 C4 H4 125(3) . . ? C3 C4 H4 128(3) . . ? W C4 H4 121(3) . . ? C1 C5 C4 108.8(4) . . ? C1 C5 W 73.7(3) . . ? C4 C5 W 72.5(3) . . ? C1 C5 H5 131(3) . . ? C4 C5 H5 120(3) . . ? W C5 H5 120(3) . . ? O1 C6 W 178.2(4) . . ? O2 C7 W 179.6(4) . . ? O3 C8 W 177.7(4) . . ? _diffrn_measured_fraction_theta_max 0.977 _diffrn_reflns_theta_full 25.00 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 0.841 _refine_diff_density_min -1.274 _refine_diff_density_rms 0.169 #===END