SUPPORTING INFORMATION

Mixed Donor-Functionalised Phosphinomethanide Complexes of the Alkali Metals; Synthesis, Structures, and Solution Dynamics

Corinne Wills, Keith Izod,* Jonathan Young, William Clegg and Ross W. Harrington

Main Group Chemistry Laboratories, School of Chemistry, Bedson Building, University of Newcastle. Newcastle upon Tyne, NE1 7RU, UK. e-mail: <u>k.j.izod@ncl.ac.uk</u> Geometry optimisations on the gas-phase molecules were performed with the Gaussian03 suite of programs (revision E.02)¹⁸ on a 224-core Silicon Graphics Altix 4700 computer with 1.6 GHz Montecito Itanium2 processors and 896 Gb of memory, via the EPSRC National Service for Computational Chemistry Software (http://www.nsccs.ac.uk) or via the UK National Grid Service. Optimisations were performed using the B3LYP hybrid functional¹⁹ with a 6-31G(d,p) all-electron basis set²⁰ on all atoms [default parameters were used throughout]; minima were confirmed by the absence of imaginary vibrational frequencies. NMR shielding tensors were calculated using the GIAO method²¹ at the B3LYP/6-311+G(2d,p)//6-31G(d,p) level of theory;²² chemical shifts are quoted in ppm relative to TMS calculated at the same level of theory. 18. Gaussian03, Revision E.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. 19. (a) A. D. Becke J. Chem. Phys. 1993, 98, 5648. (b) P. J. Stephens, F. J. Devlin, C. F. Chablowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623. (c) R. H. Hertwig, W. Koch, Chem.

```
Phys. Lett. 1997, 268, 345.
```

20. (a) P. C. Hariharan, J. A. Pople, *Theoret. Chim. Acta* 1973, 28, 213. (b) M. M. Francl, W. J.
Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, *J. Chem. Phys.* 1982, 77, 3654.

21. (a) R. McWeeny, *Phys. Rev.* 1962, **126**, 1028. (b) R. Ditchfield, *Mol. Phys.* 1974, **27**, 789. (b)
J. L. Dodds, R. McWeeny, A. J. Sadlej, *Mol. Phys.* 1980, **41**, 1419. (c) K. Wolinski, J. F. Hilton,
P. Pulay, *J. Am. Chem. Soc.* 1990, **112**, 8251.

Electronic Supplementary Information for Dalton Transactions This journal is $\[mathbb{C}$ The Royal Society of Chemistry 2009 Final atomic coordinates for **12a**:

			Coord			
Number	Number	Type	X Y Z			
1	6	0	-1.826911	-1.162446	-2.553381	
2	6	0	-0.924702	-1.448678	-1.519876	
3	6	0	-1.977287	-2.002720	-3.657169	
4	6	0	-0.117797	-2.609742	-1.637654	
5	6	0	-1.211528	-3.162822	-3.752443	
6	6	0	-0.292782	-3.453855	-2.743809	
7	15	0	-0.688385	-0.154956	-0.165530	
8	6	0	-2.028006	-2.580972	3.651647	
9	6	0	-1.204419	-1.459504	3.762212	
10	6	0	-2.438408	-2.994794	2.386796	
11	6	0	-0.786547	-0.747820	2.631226	
12	6	0	-2.044696	-2.278800	1.253341	
13	6	0	-1.225944	-1.141454	1.340930	
14	6	0	0.153577	0.420224	2.812619	
15	8	0	1.540226	0.079917	2.524937	
16	7	0	2.250254	-2.355181	-0.706404	
17	6	0	0.914299	-3.019346	-0.599988	
18	6	0	2.145540	-0.720834	3.532529	
19	6	0	2.845340	-2.561148	-2.032824	
20	6	0	3.133022	-2.927174	0.319208	
21	6	0	-1.749097	1.229870	-0.381638	
22	14	0	-0.936944	2.723950	-1.091332	
23	14	0	-3.518149	1.325462	0.162338	
24	6	0	-4.486696	2.716404	-0.721356	
25	6	0	-3.700996	1.700391	2.028266	
26	6	0	-4.577512	-0.232959	-0.148684	
27	6	0	-1.033574	4.285676	0.010429	
28	6	0	-1.594704	3.253018	-2.805354	
29	6	0	0.947613	2.501175	-1.398582	
30	8	0	4.162699	1.126739	0.098628	
31	6	0	4.798221	1.971770	1.074513	
32	6	0	5.003250	0.816323	-1.024954	
33	6	0	5.012060	1.918181	-2.078005	
34	6	0	3.749245	2.683357	1.909650	
35	1	0	-2.408700	-0.248097	-2.471565	
36	1	0	-2.695911	-1.754350	-4.433937	
37	1	0	-1.322141	-3.833782	-4.599566	
38	1	0	0.305154	-4.360432	-2.813474	
39	1	0	-2.341452	-3.120333	4.540586	
40	1	0	-0.880539	-1.125628	4.745939	
41	1	0	-3.078683	-3.866022	2.277110	
42	1	0	-2.387772	-2.607019	0.277909	
43	1	0	-0.093211	1.229980	2.123485	
44	1	0	0.104369	0.803061	3.840521	
45	1	0	0.544709	-2.817762	0.408128	
46	1	0	1.061999	-4.111571	-0.674355	
47	1	0	2.138425	-0.203940	4.502361	
48	1	0	1.636676	-1.685618	3.644936	
49	1	0	3.182626	-0.891170	3.231790	
50	1	0	2.216218	-2.110455	-2.801403	
51	1	0	3.835007	-2.094718	-2.066875	
52	1	0	2.971046	-3.631796	-2.272349	
53	1	0	2.696715	-2.777512	1.311552	
54	1	0	3.294009	-4.010939	0.180696	
55	1	0	4.110856	-2.434163	0.289733	
56	1	0	-5.497305	2.774467	-0.298476	
57	1	0	-4.033626	3.706893	-0.613319	
58	1	0	-4.591815	2.514968	-1.792926	

Electronic Su	pplementary Information	for Dalton Transactio	ons		
This journal is	S C The Royal Society of	Chemistry 2009	2 020050	0 01 001 5	0 000000
59	1	0	-3.239059	0.916015	2.637790
60	1	0	-3.212922	2.648036	2.284625
61	1	0	-4.753931	1.776871	2.327626
62	1	0	-5.625272	-0.013132	0.092182
63	1	0	-4.272133	-1.079550	0.471837
64	1	0	-4.539919	-0.554926	-1.194513
65	1	0	-0.580958	5.156273	-0.480879
66	1	0	-2.066763	4.550759	0.258107
67	1	0	-0.508271	4.126149	0.960222
68	1	0	-1.458971	2.448831	-3.538076
69	1	0	-2.661255	3.494677	-2.781240
70	1	0	-1.063982	4.138401	-3.178255
71	1	0	1.163845	1.619150	-2.014097
72	1	0	1.330133	3.378538	-1.934845
73	1	0	1.515294	2.434152	-0.462481
74	1	0	5.453776	1.351524	1.704168
75	1	0	5.431241	2.706202	0.562113
76	1	0	4.598018	-0.105891	-1.452478
77	1	0	6.019612	0.593848	-0.670152
78	1	0	3.995852	2.121405	-2.426678
79	1	0	5.434298	2.850553	-1.691893
80	1	0	5.619710	1.608378	-2.934743
81	1	0	3.157236	3.363153	1.290319
82	1	0	3.070944	1.971984	2.388634
83	1	0	4.240372	3.272604	2.690825
84	11	0	2.056816	0.036326	0.186786

Final energy for 12a: -2384.46816760 a.u. NIMAG = 0

Final atomic coordinates for **12b**:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	14	0	-3.651895	-0.830393	0.238677
2	14	0	-1.787411	-1.413342	-2.285038
3	11	0	2.085287	-0.288708	-0.232623
4	15	0	-0.666597	0.305306	-0.047051
5	7	0	1.611648	-2.266000	1.246054
6	8	0	2.319475	2.058857	-0.213911
7	8	0	4.443195	-0.523717	-0.862539
8	6	0	-2.038255	-0.611925	-0.645941
9	6	0	0.029282	-1.335895	-2.898426
10	1	0	0.385934	-0.303510	-2.993498
11	1	0	0.105464	-1.809082	-3.885107
12	1	0	0.705983	-1.876100	-2.225562
13	6	0	-2.213993	-3.278575	-2.321989
14	1	0	-1.573285	-3.845852	-1.635745
15	1	0	-2.080557	-3.698088	-3.327043
16	1	0	-3.250131	-3.471948	-2.024567
17	6	0	-2.777773	-0.629296	-3.718745
18	1	0	-3.856190	-0.666938	-3.536523
19	1	0	-2.584278	-1.141291	-4.669996
20	1	0	-2.505191	0.425085	-3.845261
21	6	0	-4.202244	0.635119	1.331614
22	1	0	-3.551571	0.781704	2.197980
23	1	0	-5.213849	0.442236	1.710264
24	1	0	-4.232298	1.578048	0.775878
25	6	0	-3.669853	-2.356529	1.391484
26	1	0	-3.428114	-3.270850	0.837141

Electronic Supp This journal is ©	lementary Information The Royal Society o	n for Dalton Transactions f Chemistry 2009			
27	1	0	-4.652293	-2.500433	1.858694
28	1	0	-2.934493	-2.254649	2.197661
29	6	0	-5.116965	-1.100300	-0.959825
30	1	0	-5.298481	-0.214021	-1.578010
31	1	0	-6.030904	-1.293227	-0.384618
32	1	0	-4.974875	-1.949337	-1.635955
33	6	0	-0.613537	0.232765	1.829136
34	6	0	-0 962774	1 328572	2 639212
35	1	0	-1 322416	2 237296	2 168060
35	±	0	_0 997027	1 277000	4 032091
20	1	0		1.277099	4.032091
27	I C	0	-1.172303	2.140009	4.019199
20	0	0	-0.470930	0.105647	4.002090
39	1 C	0	-0.4331/9	0.043614	5.746283
40	6	0	-0.137941	-0.997960	3.880646
41	1	0	0.158700	-1.925370	4.365676
42	6	0	-0.177754	-0.953444	2.480313
43	6	0	0.194116	-2.207652	1.712068
44	1	0	-0.007286	-3.088423	2.346579
45	1	0	-0.443735	-2.285659	0.827279
46	6	0	1.775277	-3.453231	0.393625
47	1	0	2.804728	-3.505394	0.023690
48	1	0	1.094592	-3.395379	-0.459786
49	1	0	1.561607	-4.389539	0.937875
50	6	0	2.541470	-2.355296	2.378831
51	1	0	2.446969	-1.472748	3.014735
52	1	0	3.568921	-2.414446	2.005700
53	1	0	2 353717	-3 248602	3 000591
50	£	0	-0 907506	2 162502	-0 342751
54	C C	0	-0.907300	2.102502	1 022/06
55	0	0	-2.057441	2.565660	-1.033400
50	I C	0	-2.791510	1.801456	-1.2/3692
57	6	0	-2.262931	3.891057	-1.421/05
58	1	0	-3.175486	4.165218	-1.944676
59	6	0	-1.300704	4.857113	-1.136432
60	1	0	-1.446998	5.892220	-1.431238
61	6	0	-0.134035	4.472972	-0.474468
62	1	0	0.627675	5.218892	-0.254251
63	6	0	0.083332	3.144998	-0.083616
64	6	0	1.391112	2.817966	0.601676
65	1	0	1.892791	3.745132	0.912403
66	1	0	1.238151	2.200159	1.488512
67	6	0	2.810841	2.777444	-1.340096
68	1	0	2.002572	3.057766	-2.024335
69	1	0	3.513221	2.116995	-1.854187
70	1	0	3.339381	3.687782	-1.023307
71	6	0	3.782878	-1.708917	-2.866047
72	1	0	3 386070	-2 554845	-2 297118
72	1	0	4 149893	-2 092308	-3 822944
73	1	0	2 962556	_1 017789	_3 079893
75	- -	0	1 012622		-2 119462
75	1	0	F 724742	1 727705	1 025505
76	1	0	5./34/43	-1./3//85	-1.935505
//	1 C	0	5.325084	-0.197009	-2.711120
78	6	U	5.506510	0.082759	-0.113082
79	1	0	5.914909	0.926414	-0.690026
80	1	0	6.316009	-0.651720	0.012249
81	6	0	5.000369	0.557634	1.236211
82	1	0	4.205497	1.297928	1.113246
83	1	0	5.821354	1.021887	1.791538
84	1	0	4.624248	-0.278213	1.833221

Final energy for 12b: -238.47081009 a.u. NIMAG = 0