Aerobic Oxidation of Alkenes Mediated by Rhodium(III) Porphyrin

Complexes in Water

Jiadi Zhang^a, Shan Li^b, Xuefeng Fu,*^a and Bradford B. Wayland^b

 ^a Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, Peking University, Beijing, 100871, China. Fax: +86 10 6275 1708; Tel: +86 10 6275 6035; E-mail: fuxf@pku.edu.cn
^b Department of Chemistry, Temple University, Philadelphia, PA 19122, USA. Fax: +1 215 204 1532; Tel: +1 215 204 7875; E-mail: BWayland@Temple.edu

General: D₂O and CDCl₃ were purchased from Cambridge Isotope Laboratory Inc; tetra p-sulfonatophenyl porphyrin from Tokyo Chemical Industry (TCI); (Rh(CO)₂Cl)₂ from Strem Chemicals Inc; and all other chemicals were purchased from Aldrich or Alfa Aesar unless otherwise noted and used as received. ¹H NMR spectra were recorded on a Bruker AVII⁺-400 spectrometer at ambient temperature and the chemical shifts were referenced to 3–trimethylsilyl–1 propanesulfonic acid sodium salt. GC-MS results were obtained by the Agilent 7890A/5975C GC/MSD system equipped with the DB-17MS(30m, 0.25mm, 0.25um) column.

Preparation of $Na_3[(TSPP)Rh^{III}(D_2O)_2]$ (1): Synthesis and the equilibrium distribution of $[(TSPP)Rh^{III}(D_2O)_2]^{-3}$, $[(TSPP)Rh^{III}(D_2O)(OD)]^{-4}$, and $[(TSPP)Rh^{III}(OD)_2]^{-5}$ were reported in the previously published papers.¹⁻³. ¹H NMR (D₂O, 400 MHz) δ (ppm): 9.15 (s, 8H, pyrrole), 8.44 (d, 8H, o-phenyl, J_{1H-1H}=8Hz), 8.25 (d, 8H, m-phenyl, J_{1H-1H}=8Hz).

*Typical procedure for Preparation of (TSPP)Rh-CH₂CH(OD)R in water:*⁴ Alkenes (0.3mmol) and **1** (1.1mg, 0.001mmol) were dissolved in 0.5 mL borate buffer D₂O solution (pH = 9.0) in vacuum adapted NMR tubes at room temperature, respectively. The biphase solution was shaken for a while, and the progress of the reaction was monitored by ¹H NMR spectroscopy. The chiral center β -carbon (CH₂-*C**H(OD)-R) gives diastereotopic protons at neighboring positions. The spectral data are given in the following.

Reaction of (TSPP) Rh^{III} with pentene to produce (*TSPP)*Rh-CH₂CH(OD)(CH₂)₂CH₃ in *D***₂O**: The reaction of **1** with pentene yields 92% of Rh-CH₂CH(OD)(CH₂)₂CH₃ and 3% of Rh-CH₂C(O)(CH₂)₂CH₃, with 5% (TSPP)Rh^{III} remaining. ¹H NMR (400 MHz, D₂O) δ (ppm):

8.71(8H, pyrrole), 8.40-8.12(16H, phenyl), -5.93(m, 1H_A), -5.74(m, 1H_B), -3.00(m, 1H), -2.64(m, 1H_A), -1.78(m, 1H_B), -0.73(m, 2H), -0.29(t, 3H).

¹H NMR spectra of pyrrole and phenyl hydrogens of Rh-CH₂CH(OD)CH₂CH₂CH₃ in D₂O

¹H NMR spectra of -CH₂CH(OD)CH₂CH₂CH₃ in Rh-CH₂CH(OD)CH₂CH₂CH₃ in D₂O

*Reaction of (TSPP)Rh^{III} with hexene to produce (TSPP)Rh-CH*₂*CH(OD)(CH*₂)₃*CH*₃ *in* D_2O : The reaction of 1 with hexene yields 80% of Rh-CH₂CH(OD)(CH₂)₃CH₃ and 6% of Rh-CH₂C(O)(CH₂)₃CH₃, with 14% (TSPP)Rh^{III} remaining. ¹H NMR (400 MHz, D₂O) δ (ppm): 8.70(8H, pyrrole), 8.38-8.12(16H, phenyl), -5.93(m, 1H_A), -5.71(m, 1H_B), -3.02(m, 1H), -2.50(m, 1H_A), -1.69(m, 1H_B), -0.89(m, 1H_A), -0.79(m, 1H_B), -0.13 (m, 1H_A), -0.02(m, 1H_B), 0.17(t, 3H).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

¹H NMR spectra of pyrrole and phenyl hydrogens of Rh-CH₂CH(OD)CH₂CH₂CH₂CH₃ in D_2O

¹H NMR spectra of -CH₂CH(OD)CH₂CH₂CH₂CH₃ in Rh-CH₂CH(OD)CH₂CH₂CH₂CH₃ in D_2O

Reaction of (TSPP)Rh^{III} with heptene to produce (TSPP)Rh-CH₂CH(OD)(CH₂)₄CH₃ in D₂O: ¹H NMR (400 MHz, D₂O) δ(ppm): 8.60(8H, pyrrole), 8.32-8.07(16H, phenyl), -5.99(m, 1H_A), -5.77(m, 1H_B), -3.12(m, 1H), -2.60(m, 1H_A), -1.75(m, 1H_B), -0.97(m, 1H_A), -0.80(m,

 $1H_B$), -0.32(m, $1H_A$), -0.18(m, $1H_B$), 0.43(m, 2H), 0.47(t, 3H).

¹H NMR spectra of pyrrole and phenyl hydrogens of Rh-CH₂CH(OD)CH₂CH₂CH₂CH₂CH₂CH₃ in D₂O

Reaction of (TSPP)Rh^{III} with 4-methyl-1-pentene to produce (TSPP)Rh-CH₂CH(OD) CH₂CH(CH₃)₂ in D₂O: ¹H NMR (400 MHz, D₂O) δ(ppm): 8.68(8H, pyrrole), 8.40-8.15(16H, phenyl), -5.93(m, 1H_A), -5.77(m, 1H_B), -2.89(m, 1H), -2.61(m, 1H_A), -1.63(m, 1H_B), -0.62.(m, 1H), -0.46(d, 3H), -0.41(d, 3H).

¹H NMR spectra of pyrrole and phenyl hydrogens of Rh-CH₂CH(OD)CH₂CH(CH₃)₂ in D₂O

¹H NMR spectra of -CH₂CH(OD)CH₂CH(CH₃)₂ in Rh-CH₂CH(OD)CH₂CH(CH₃)₂ in D₂O

*Reaction of (TSPP)Rh^{III} with 3-buten-1-ol to produce (TSPP)Rh-CH₂CH(OD) CH₂CH₂OH in D*₂O: ¹H NMR (400 MHz, D₂O) δ(ppm): 8.58(8H, pyrrole), 8.40-8.00(16H, phenyl), -5.93(m, 1H_A), -5.78(m, 1H_B), -2.98(m, 1H), -2.51(m, 1H_A), -1.55(m, 1H_B), 1.53.(m, 1H_A), 1.60(m, 1H_B).

¹H NMR spectra of pyrrole and phenyl hydrogens of Rh-CH₂CH(OD)CH₂CH₂OD in D₂O

¹H NMR spectra of -CH₂CH(OD)CH₂CH₂OD in Rh-CH₂CH(OD)CH₂CH₂OD in D₂O

Reaction of $(TSPP)Rh^{III}$ with 4-penten-1-ol to produce $(TSPP)Rh-CH_2CH(OD)$ $CH_2CH_2CH_2OH$ in D_2O : The reaction of 1 with 4-penten-ol turns out to be a complete conversion to Rh-CH_2CH(OD)(CH_2)_2CH_2OD without any observation of Rh-CH_2C(O)(CH_2)_2CH_2OD or remaining $(TSPP)Rh^{III}$. As a result, the product 5-hydroxy-2-pentanone was the only product quantitatively from the thermal dissociation of Rh-CH_2CH(OD)(CH_2)_2CH_2OD. ¹H NMR (400 MHz, D_2O) δ (ppm): 8.65(8H, pyrrole), 8.40-8.10(16H, phenyl), -5.90 — -5.88 (m, 2H), -3.25(m, 1H), -2.63(m, 1H_A), -1.80(m, 1H_B), 0.0 (m, 1H_A), 0.27 (m, 1H_B), 1.93 (t, 3H).

¹H NMR spectra of pyrrole and phenyl hydrogens of Rh-CH₂CH(OD)CH₂CH₂CH₂OD in D₂O

¹H NMR spectra of -CH₂CH(OD)CH₂CH₂CH₂OD in Rh-CH₂CH(OD)CH₂CH₂CH₂OD in D₂O

*Typical procedure for independent preparation of (TSPP)Rh-CH*₂*C(O)R in water:* Ketones (0.3mmol) and **1** (1.1mg, 0.001mmol) were dissolved in 0.5 mL borate buffer D₂O solution (pH = 9.0) in vacuum adapted NMR tubes at room temperature, respectively. Notably, 2-pentanone was dissolved in D₂O solution, while 2-hexanone and D₂O formed a biphase solution. The progress of the reaction was monitored by ¹H NMR spectroscopy. The spectral data of (TSPP)Rh-CH₂C(O)R are given in the following.

(TSPP)Rh-CH₂C(0)CH₃:

¹H NMR of the (TSPP)Rh-CH₂C(O)CH₃ from reaction of (TSPP)Rh^I with ClCH₂C(O)CH₃ in water, which is identical with compound formed by reaction of (TSPP)Rh^{III} with acetone.

(TSPP)Rh-CH₂C(0)CH₂CH₂CH₃:

¹H NMR (400 MHz, D₂O) δ(ppm): 8.85(8H, pyrrole), 8.46-8.18(16H, phenyl), -5.29(m, 2H), -2.15(m, 2H), -0.59(m, 2H), -0.23(t, 3H).

(TSPP)Rh-CH₂C(O)CH₂CH₂CH₂CH₂CH₃:

¹H NMR (400 MHz, D₂O) δ(ppm): 8.85(8H, pyrrole), 8.46-8.18(16H, phenyl), -5.32(m, 2H), -2.16(m, 2H), -0.69(m, 2H), 0.09(m, 5H).

Typical procedure for thermal dissociation of (TSPP)Rh-CH₂CH(OD)R to produce ketones quantitatively in water: The Rh-CH₂CH(OD)R complexes were prepared from the reactions of Rh-OD with excess of alkenes in weak basic condition which exclusively converted (TSPP)Rh^{III} into Rh-CH₂CH(OD)R. The excess of alkenes and solvent D₂O were pumped out, fresh D₂O was added into the NMR tube and subjected to three freeze-pump-thaw cycles. The initial ¹H NMR was recorded to show the formation of Rh-CH₂CH(OD)R and a clean range from 0 to 4 ppm. The sample Rh-CH₂CH(OD)R was heated in a water bath at 60°C for a period of hours, and the progress of the reaction was monitored by ¹H NMR spectroscopy. When the reactions reach completion where all Rh-CH₂CH(OD)R were converted to ketones and (TSPP)Rh^I which shows a characteristic ¹H NMR singlet peak at 8.31 ppm, the product ketones were extracted by CDCl₃. A parallel

sample of Rh-CH₂CH(OH)R dissolved in H₂O was also heated under the same reaction condition, and extracted by CDCl₃. The ¹H NMR spectra for the product ketones are given in the following.

Pentanone (CH₃C(O)CH₂CH₂CH₃):

¹H NMR (400 MHz; CDCl₃) spectrum of pentanone produced from thermal dissociation of (TSPP)Rh-CH₂CH(OH)CH₂CH₂CH₃ in D₂O and H₂O. A) CH₂(D)C(O)CH₂CH₂CH₂CH₃ in D₂O; B) CH₃C(O)CH₂CH₂CH₂CH₃ (obtained in H₂O).

Hexanone (CH₃C(O)CH₂CH₂CH₂CH₃):

¹H NMR (400 MHz) spectrum of hexanone produced from thermal dissociation of (TSPP)Rh-CH₂CH(OH)CH₂CH₂CH₂CH₃ in D₂O and H₂O. A) CH₂(D)C(O)CH₂CH₂CH₂CH₂CH₃ in D₂O; B) CH₃C(O)CH₂CH₂CH₂CH₂CH₃ (obtained in H₂O) in CDCl₃.

Heptanone (CH₂DC (0)CH₂CH₂CH₂CH₂CH₃):

¹H NMR (400 MHz) spectrum of heptanone (CH₂(D)C(O)CH₂CH₂CH₂CH₂CH₂CH₃) produced from thermal dissociation of (TSPP)Rh-CH₂CH(OH)CH₂CH₂CH₂CH₂CH₂CH₃ in D₂O.

5-hydroxy-2-pentanone (CH₃C(0)CH₂CH₂CH₂OH)

¹H NMR (400 MHz) spectrum of 5-hydroxy-2-pentanone produced from thermal dissociation of (TSPP)Rh-CH₂CH(OH)CH₂CH₂CH₂OH in D₂O and H₂O. A) CD₃C(O)CD₂CH₂CH₂OD in D₂O; B) CH₃C(O)CH₂CH₂CH₂OH (obtained in H₂O) in CDCl₃.

GC-MS results.

Pentanone: 2-pentanone obtained in D₂O and in H₂O respectively was extracted by Et₂O and

then examined by GC-MS. The formed products both share the same retention time with that of commercially available 2-pentanone. The parent ion peak (M^{\ddagger}) of the product obtained in H₂O is 86.1, which conform with the exact mass of CH₃C(O)CH₂CH₂CH₃. M^{\ddagger} of the product obtained in D₂O is 87.1 associated with CH₂(D)C(O)CH₂CH₂CH₃, one deuterium substituent pentanone.

Commercial 2-pentanone

2-pentanone obtained in H₂O

2-pentanone obtained in D_2O

Hexanone: 2-hexanone obtained both in D_2O and in H_2O share the same retention time with that of commercially available 2-hexanone. M[‡] of the product obtained in H_2O is 100.1, which conform with the exact mass of $CH_3C(O)CH_2CH_2CH_2CH_3$. M[‡] of the product obtained in D_2O is 105.1 associated with $CD_3C(O)CD_2CH_2CH_2CH_3$.

2-hexanone obtained in D_2O

Heptanone: M⁺ of the product 2-heptanone obtained in D_2O is 115.1 associated with $CH_2(D)C(O)CH_2CH_2CH_2CH_2CH_3$.

References

- 1 K. R. Ashley. S. B. Shyu, J. G. Leipoldt, Inorg. Chem. 1980, 19, 1613.
- 2 X. Fu, L. Basickes and B. B. Wayland, Chem. Commun., 2003, 520-521.
- 3 X. Fu and B. B. Wayland, J. Am. Chem. Soc., 2004, 126, 2623-2631.
- 4 X. Fu, S. Li and B. B. Wayland, J. Am. Chem. Soc., 2006, 128, 8947-8954.