In search for tuneable intramolecular intermetallic interactions in polynuclear

lanthanide complexes.

Natalia Dalla Favera, Laure Guénée,^{*} Gérald Bernardinelli, and Claude Piguet^{*}

Supporting Information

(31 pages)

Preparation of the ligands L4b and L5.

Scheme S1 Multistep syntheses of L4b and L5.

Preparation of 2-ethoxycarbonyl-carboxypyridine (5). Dipicolinic acid (1, 10 g, 60 mmol) was refluxed for 20 min in a methanol:water mixture (50 cm³:50 cm³) containing concentrated H₂SO₄ (5 cm³). The cooled solution was poured onto saturated NaHCO₃ (500 cm³) and the aq. phase was extracted with dichloromethane (4x100 cm³). Acidification of the resulting aq. phase (pH = 2) with concentrated hydrochloric acid (pH = 2) followed by extraction with dichloromethane (4x100 cm³)

provided a second organic phase, which was dried (anhydrous Na₂SO₄) and evaporated to dryness to yield 43% of 2-ethoxycarbonyl-carboxypyridine (**3**, 4.69 g, 25.9 mmol) as a white powder. TLC (CH₂Cl₂/MeOH: 9:1): Rf = 0.15. ¹H RMN (CD₃OD), δ (ppm): 8.35 (d, 1H, ³*J*=7.9 Hz), 8.32 (d, 1H, ³*J*=7.9 Hz), 8.18 (t, 1H, ³*J*=7.9 Hz), 4.02 (s, 3H). IR: 1723, 1703 cm⁻¹ (*v*C=O ester and

*v*C=O acid). Mp: 146°C.

Preparation of 6-(*N*,*N*-diethylcarbamoyl)pyridine-2-carboxylic acid (2). Thionyl chloride (30 cm³, 15 eq.), 2-ethoxycarbonyl-carboxypyridine (**3**, 5 g, 27.6 mmol) and freshly distilled *N*,*N*-dimethylformamide (0.2 cm³) were refluxed in dry dichloromethane (100 cm³) undert an inert atmosphere for 2h. The resulting brownish mixture was evaporated to dryness and then dissolved in dry dichloromethane (50 cm³). *N*,*N*-diethylamine (28.7 cm³, 0.276 mol, 10 eq.) were added dropwise at room temperature and the solution was refluxed for 2 h, and finally evaporated to dryness. The red brown residue was partitioned between dichloromethane (100 cm³) and half-saturated NH₄Cl (200 cm³). The aq. phase was extracted with dichloromethane (4x50 cm³) and the combined org. phases were washed with saturated NaHCO₃ (2x100 cm³), dried over anhydrous Na₂SO₄, filtered and evaporated to dryness. The red powder was redissolved into 1.0 mol·dm³ aq. KOH and stirred for 1 h at room temperature. After washing with dichloromethane (2x50 cm³), the aq. phase was neutralized (pH = 2) with concentrated hydrochloric acid and kept at 4°C for 12 h. The whicte microcrystalline precipitate was filtered and crystallized from acetonitrile to yield 54% of 6-(*N*,*N*-diethylcarbamoyl)pyridine-2-carboxylic acid (**2**, 3.31 g, 14.9 mmol).

TLC (CH₂Cl₂/MeOH: 9:1): Rf =0.2. ¹H NMR (CD₃OD), δ (ppm): 8.22 (d, 1H, ³*J*=7.9 Hz), 8.11 (t, 1H, ³*J*=7.9 Hz), 7.76 (d, 1H, ³*J*=7.9 Hz), 3.58 (q, 2H, ³*J*=7.3 Hz), 3.34 (q, 2H, ³*J*=7.3 Hz), 1.28 (t, 3H, ³*J*=7.3 Hz), 1.20 (t, 3H, ³*J*=7.3 Hz). IR: 1710 cm⁻¹ (*v*C=O acide), 1602 cm⁻¹ (*v*C=O amide). Mp: 164-165°C.

Preparation of *N***-ethyl-2-nitroaniline** (7). Ortho-nitrochlorobenzene (4, 10 g, 63 mmol) and ethyl amine (60 cm³ of a 70% solution in water, 756 mmol) were heated at 120°C in an autoclave ($P \le 5$ bar) for 24 h. After cooling, the mixture was concentrated and poured onto dichloromethane (200

cm³) and half-saturated aq. NH₄Cl. The organic layer was separated and the aq. phase further extracted with dichloromethane (3x50 cm³). The combined organic phases were dried over anhydrous Na₂SO₄ and evaporated to dryness to yield 89% of *N*-ethyl-2-nitroaniline (7, 9.46 g, 57 mmol) as an orange oil. ¹H NMR (CDCl₃), δ (ppm) : 8.17 (d, 1H, ³*J*=7.9 Hz), 7.97 (s, 1H), 7.43 (t, 1H, ³*J*=7.9 Hz), 6.85 (d, 1H, ³*J*=7.9 Hz), 6.63 (t, 1H, ³*J*=7.9 Hz), 3.37 (q, 2H, ³*J*=7.3 Hz), 1.38 (t, 3H, ³*J*=7.3 Hz).

Preparation of 3,3'-dinitro-4,4'-bis(*N*-ethylamino)diphenylmethane (9). *N*-ethyl-2-nitroaniline (7, 9.46 g, 57 mmol) and para-formaldehyde (0.855 g, 28.35 mmol, 0.5 eq) were stepwise heated in concentrated hydrochloric acid for 1 h. at 40°C, 1 h. at 60°C and 12 h. at 120°C. The cooled solution was poured onto water (350 cm³) and the resulting viscous mixture was neutralized (pH=9) with concentrated NH₄OH. The amorphous solid was separated by filtration, grinded in a mortar, suspended in the mother liquor and treated in an ultrasonic bath for 15 minutes. The solution was purifed by column chromatography (Silica gel, CH₂Cl₂) to yield 63% of 3,3'-dinitro-4,4'-bis(*N*-ethylamino)diphenylmethane (9, 6.34 g , 18 mmol) as an orange powder. ¹H NMR (CDCl₃), δ (ppm): 7.99 (s, 2H), 7.95 (s, 1H), 7.24 (d, 2H, ³*J*=8.9 Hz), 6.80 (d, 2H, ³*J*=8.9 Hz), 3.79 (s, 2H), 3.33 (q, 4H, ³*J*=7.1 Hz), 1.36 (t, 6H, ³*J*=7.3 Hz).

Preparation of pyridine–2,6-dicarboxylic acid-2-diethylamide-6-[N-ethyl-N-(2-nitrophenyl)amide] (10). 6-(*N*,*N*-diethylcarbamoyl)pyridine-2-carboxylic acid (**2**, 1.5 g, 6.8 mmol), thionyl chloride (7.6 cm³, 104 mmol) and *N*,*N*-dimethylformamide (0.1 cm³) dissolved in dry dichloromethane (60 cm³) were refluxed for 1.5 h. under an inert atmosphere. After evaporation to dryness, the white residue was dissolved in dry dichloromethane (60 cm³) and *N*-ethyl-2nitroaniline (1.13g, 6.8 mmol) in dichloromethane (40 cm³) containing Et₃N (4 cm³) were added dropwise at room temperature. The brown mixture was refluxed for 2 h. and then evaporated to dryness. The viscous oil was partitioned between dichloromethane (50 cm³) and aq. half-saturated NH₄Cl (50 cm³). The organic phase was separated and the aq. phase extracted with dichloromethane (4x25 cm³). The combined organic phases were dried (Na₂SO₄) and evaporated to dryness. The brown oil was purifed by column chromatography (Silica gel, CH₂Cl₂/MeOH 100:0 \rightarrow 97:3) to yield 80% of pyridine–2,6-dicarboxylic acid-2-diethylamide-6-[N-ethyl-N-(2-nitrophenyl)-amide] (**10**, 2 g, 5.4 mmol) as a yellowish oil. ESI-MS (CH₂Cl₂/MeOH): m/z 371.3[M+H]⁺.

Preparation of ligand L4^b. Pyridine–2,6-dicarboxylic acid-2-diethylamide-6-[N-ethyl-N-(2nitrophenyl)-amide] (10, 2 g, 5.4 mmol), iron powder (3 g, 54 mmol) and concentrated hydrochloric acid (7 cm³, 84 mmol) were refluxed in ethanol:water (100 cm³:30 cm³) for 8 h under an inert atmosphere. The excess iron was filtered and ethanol was evaporated. Dichloromethane (50 cm^3) was added into the aq. phase followed by a solution of Na₂H₂EDTA (45g, 15eq) in water (100 cm³). The mixture was neutralized (pH = 8.5) under vigourous stirring and hydrogen peroxyde (30%, 5) cm³) was slowly added. After 25 min strirring, the organic phase was separated and the aq. phase extracted with dichloromethane (4x80 cm³). The combined organic phases were washed with water (3x50 cm³), dried (Na₂SO₄) and evaporated to dryness. The residual solid was purifed by column chromatography (Silica gel, CH₂Cl₂/MeOH 97:3→95:5) to yield 67 % of L4^b (1.2g, 3.6 mmol) as a white solid. ESI-MS (CH₂Cl₂/MeOH): m/z 323.3[M+H]⁺. ¹H NMR (CD₃CN), δ (ppm): 8.38 (d, 1H, ³*J*=7.4 Hz), 8.04 (t, 1H, ³*J*=7.8 Hz), 7.76 (d, 1H), 7.54 (d, 1H, ³*J*=7.8 Hz), 7.38 (t, 1H, ³*J*=8.4 Hz), 7.32 (t, H, ${}^{3}J=8.6$ Hz), 4.75 (g, 2H, ${}^{3}J=7.1$ Hz), 3.88 (g, 2H), 3.78 (g, 2H, ${}^{3}J=7.1$ Hz), 1.45 (t, 3H, ${}^{3}J=7.3$ Hz), 1.26 (t, 3H, ${}^{3}J=7.3$ Hz), 1.08 (t, 3H, ${}^{3}J=7.3$ Hz). Elemental analyses (C₁₉H₂₂N₄O·0.3H₂O): Calcd: C, 69.63%; H, 6.59%; N, 17.09%. Found: C, 69.64%; H, 6.82%; N, 17.04%.

Preparation of 3,3'-dinitro-4,4'-bis(pyridine-2,6-dicarboxylic acid-2-diethylamide-6-[N-ethyl-
N-(2-nitrophenyl)-amide]N-ethylamino)diphenylmethane(11).6-(N,N-
diethylcarbamoyl)pyridine-2-carboxylic acid (2, 3.0 g, 13.6 mmol), thionyl chloride (15 cm³) and
N,N-dimethylformamide (0.1 cm³) dissolved in dry dichloromethane (60 cm³) were refluxed for 2 h.
under an inert atmosphere. After evaporation to dryness, the white residue was dissolved in

dichloromethane (60 cm³) and a solution of 3,3'-dinitro-4,4'-bis(*N*-ethylamino)diphenylmethane (**9**, 2.13g, 6.18 mmol) in dichloromethane (100 cm³) containing Et₃N (9.5 cm³) were added dropwise at room temperature. The brown mixture was refluxed for 2 h. and then evaporated to dryness. The residue was partitioned between dichloromethane (100 cm³) and aq. half-saturated NH₄Cl (100 cm³). The organic phase was separated and the aq. phase extracted with dichloromethane (4x50 cm³). The combined organic phases were dried (Na₂SO₄) and evaporated to dryness. The solid was purifed by column chromatography (Silica gel, CH₂Cl₂/MeOH 98:2–97:3) to yield 67% of 3,3'-dinitro-4,4'-bis(pyridine–2,6-dicarboxylic acid-2-diethylamide-6-[N-ethyl-N-(2-nitrophenyl)-amide]N-ethylamino)diphenylmethane (**11**, 3.09 g, 4.09 mmol). ESI-MS (CH₂Cl₂/MeOH): m/z 753.5 [M+H]⁺.

Preparation of ligand L5. 3.3'-dinitro-4,4'-bis(pyridine-2,6-dicarboxylic acid-2-diethylamide-6-[N-ethyl-N-(2-nitrophenyl)-amide]N-ethylamino)diphenylmethane (11, 3.09 g, 4.09 mmol), iron powder (3.6 g, 65.5 mmol) and concentrated hydrochloric acid (10.2 cm³, 123 mmol) were refluxed in ethanol:water (100 cm³:30 cm³) for 8 h under an inert atmosphere. The excess iron was filtered and ethanol was evaporated. Dichloromethane (100 cm^3) was added into the ag. phase followed by a solution of Na₂H₂EDTA (45g, 15eq) in water (100 cm³). The mixture was neutralized (pH = 8.5) under vigourous stirring and hydrogen peroxyde (30%, 5 cm³) was slowly added. After 25 min strirring, the organic phase was separated and the aq. phase extracted with dichloromethane (4x80 cm³). The combined organic phase was washed with water (3x50 cm³), dried (Na₂SO₄) and evaporated to dryness. The residual solid was purifed by column chromatography (Silica gel, CH₂Cl₂/MeOH 97:3 \rightarrow 95:5) to yield 56% of L5 (1.52 g, 2.3 mmol) as a white solid. ¹H NMR $(CDCl_3)$, δ (ppm): 8.38 (d, 2H, ³J=7.4 Hz); 7.93 (t, 2H, ³J=7.8 Hz), 7.71 (s, 2H), 7.55 (d, 2H, ³J=7.8 Hz), 7.5 Hz), 7.35 (d, 2H, ${}^{3}J=8.4$ Hz); 7.23 (t, 2H, ${}^{3}J=8.6$ Hz), 4.75 (g, 4H, ${}^{3}J=7.1$ Hz), 4.29 (s, 2H), 3.61 (g, 4H, ${}^{3}J=7.1$ Hz), 3.36 (q, 4H, ${}^{3}J=7.1$ Hz), 1.45 (t, 6H, ${}^{3}J=7.3$ Hz), 1.28 (t, 6H, ${}^{3}J=7.3$ Hz), 1.04 (t, 6H, ${}^{3}J=7.3$ Hz). Elemental analyses (C₃₉H₄₄N₈O₂·0.5H₂O): Calcd: C, 70.36%; H, 6.81%; N, 16.83%. Found : C, 70.36%; H, 6.76%; N, 16.82%.

01-C6	1.241(2)	N1-C1	1.352(2)
N1-C5	1.345(2)	N2-C6	1.351(2)
N2-C7	1.473(2)	N2-C9	1.474(2)
N3-C11	1.330(2)	N3-C12	1.395(2)
N4-C11	1.373(3)	N4-C17	1.385(2)
N4-C18	1.475(2)	C1-C2	1.393(3)
C1-C11	1.482(3)	C2-C3	1.386(3)
C3-C4	1.387(2)	C4-C5	1.392(3)
C5-C6	1.512(2)	C7-C8	1.514(3)
C9-C10	1.522(4)	C12-C13	1.407(2)
C12-C17	1.406(2)	C13-C14	1.381(3)
C14-C15	1.410(3)	C15-C16	1.386(2)
C16-C17	1.395(3)	C18-C19	1.514(3)
C1-N1-C5	117.6(1)	C6-N2-C7	124.8(1)
C6-N2-C9	117.7(1)	C7-N2-C9	116.2(1)
C11-N3-C12	104.3(1)	C11-N4-C17	106.2(1)
C11-N4-C18	129.9(1)	C17-N4-C18	122.6(2)
N1-C1-C2	122.9(2)	N1-C1-C11	116.6(2)
C2-C1-C11	120.4(1)	C1-C2-C3	118.6(2)
C2-C3-C4	119.2(2)	C3-C4-C5	118.7(2)
N1-C5-C4	123.0(1)	N1-C5-C6	118.0(2)
C4-C5-C6	119.0(2)	01-C6-N2	122.3(1)
01-C6-C5	118.1(1)	N2-C6-C5	119.6(1)
N2-C7-C8	113.7(2)	N2-C9-C10	112.0(2)
N3-C11-N4	113.6(2)	N3-C11-C1	121.8(2)
N4-C11-C1	124.4(1)	N3-C12-C13	130.3(2)
N3-C12-C17	110.0(1)	C13-C12-C17	119.6(2)
C12-C13-C14	117.6(2)	C13-C14-C15	122.2(2)
C14-C15-C16	121.0(2)	C15-C16-C17	116.8(2)
N4-C17-C12	105.9(2)	N4-C17-C16	131.3(2)
C12-C17-C16	122.9(1)	N4-C18-C19	111.5(2)

		Bond Dis	stances (A)		
C1-N1	1.348(2)	C13-C14	1.388(2)	C27-N22	1.474(2)
C1-C2	1.391(2)	C14-C15	1.406(2)	C27-C28	1.518(3)
C1-C11	1.477(2)	C14-C20	1.516(2)	C29-N22	1.471(2)
C2-C3	1.384(2)	C15-C16	1.387(2)	C29-C30	1.520(2)
C3-C4	1.381(2)	C16-C17	1.393(2)	C31-N23	1.321(2)
C4-C5	1.389(2)	C17-N4	1.384(2)	C31-N24	1.378(2)
C5-N1	1.342(2)	C18-N4	1.468(2)	C32-N23	1.385(2)
C5-C6	1.512(2)	C18-C19	1.515(2)	C32-C33	1.399(2)
C6-O1	1.230(2)	C20-C34	1.515(2)	C32-C37	1.401(2)
C6-N2	1.348(2)	C21-N21	1.341(2)	C33-C34	1.390(2)
C7-N2	1.466(2)	C21-C22	1.396(2)	C34-C35	1.409(2)
C7-C8	1.513(2)	C21-C31	1.474(2)	C35-C36	1.383(2)
C9-N2	1.472(2)	C22-C23	1.384(2)	C36-C37	1.396(2)
C9-C10	1.503(3)	C23-C24	1.384(2)	C37-N24	1.384(2)
C11-N3	1.327(2)	C24-C25	1.389(2)	C38-N24	1.470(2)
C11-N4	1.372(2)	C25-N21	1.342(2)	C38-C39	1.513(2)
C12-N3	1.385(2)	C25-C26	1.509(2)		
C12-C13	1.402(2)	C26-O2	1.233(2)		
C12-C17	1.403(2)	C26-N22	1.342(2)		
		Bond a	ingles (°)		
N1-C1-C2	123.5(1)	C22-C21-C31	119.0(1)	C15-C14-C20	118.9(1)
N1-C1-C11	117.8(1)	C23-C22-C21	118.5(1)	C16-C15-C14	122.5(1)

Table S2Bond distances (Å) and bond angles (°) in the crystal structure of L5.

C2-C1-C11	118.7(1)	C24-C23-C22	119.2(1)	C15-C16-C17	116.4(1)
C3-C2-C1	118.3(1)	C23-C24-C25	118.5(1)	N4-C17-C16	131.5(1)
C4-C3-C2	119.1(1)	N21-C25-C24	123.3(1)	N4-C17-C12	105.9(1)
C3-C4-C5	118.8(2)	N21-C25-C26	114.2(1)	C16-C17-C12	122.5(1)
N1-C5-C4	123.3(2)	C24-C25-C26	122.1(1)	N4-C18-C19	112.0(1)
N1-C5-C6	119.2(1)	O2-C26-N22	123.4(1)	C34-C20-C14	114.8(1)
C4-C5-C6	117.3(1)	O2-C26-C25	117.8(1)	N21-C21-C22	123.0(1)
O1-C6-N2	123.3(2)	N22-C26-C25	118.8(1)	N21-C21-C31	118.0(1)
O1-C6-C5	117.0(1)	N22-C27-C28	113.3(1)	C35-C36-C37	116.4(1)
N2-C6-C5	119.7(1)	N22-C29-C30	113.3(1)	N24-C37-C36	131.7(1)
N2-C7-C8	113.3(1)	N23-C31-N24	113.2(1)	N24-C37-C32	106.1(1)
N2-C9-C10	112.6(1)	N23-C31-C21	121.5(1)	C36-C37-C32	122.2(1)
N3-C11-N4	113.2(1)	N24-C31-C21	125.3(1)	N24-C38-C39	112.5(1)
N3-C11-C1	121.7(1)	N23-C32-C33	129.9(1)	C5-N1-C1	116.9(1)
N4-C11-C1	125.1(1)	N23-C32-C37	109.8(1)	C6-N2-C7	124.9(1)
N3-C12-C13	130.4(1)	C33-C32-C37	120.2(1)	C6-N2-C9	117.0(1)
N3-C12-C17	109.9(1)	C34-C33-C32	118.5(1)	C7-N2-C9	116.6(1)
C13-C12-C17	119.7(1)	C33-C34-C35	119.9(1)	C11-N3-C12	104.8(1)
C14-C13-C12	118.7(1)	C33-C34-C20	119.9(1)	C11-N4-C17	106.1(1)
C13-C14-C15	120.1(1)	C35-C34-C20	120.2(1)	C11-N4-C18	130.9(1)
C13-C14-C20	121.0(1)	C36-C35-C34	122.8(1)	C17-N4-C18	123.0(1)
C21-N21-C25	117.5(1)	C26-N22-C29	118.6(1)	C26-N22-C27	124.1(1)
C29-N22-C27	117.3(1)	C31-N23-C32	105.1(1)	C31-N24-C37	105.8(1)
C31-N24-C38	130.8(1)	C37-N24-C38	122.9(1)		

%C ^{<i>a</i>}	% H ^{<i>a</i>}	%N ^a
33.00(33.03)	3.92(3.78)	14.17(14.02)
32.78(33.03)	3.76(3.78)	14.08(14.02)
32.11(32.15)	3.83(3.74)	13.80(13.77)
32.03(31.87)	3.82(3.72)	13.76(13.70)
32.10(32.31)	3.55(3.83)	13.79(13.44)
36.55(36.22)	4.04(3.87)	15.70(15.80)
34.43(34.50)	3.70(3.68)	14.41(14.23)
33.56(33.47)	3.68(3.67)	14.05(13.98)
33.09(32.99)	3.70(3.60)	13.85(14.20)
33.23(33.04)	3.65(3.58)	13.91(14.18)
31.50(31.44)	3.80(3.78)	13.19(13.00)
36.63(36.80)	4.09(3.90)	15.33(15.20)
	%C ^a 33.00(33.03) 32.78(33.03) 32.78(33.03) 32.11(32.15) 32.03(31.87) 32.10(32.31) 36.55(36.22) 34.43(34.50) 33.56(33.47) 33.09(32.99) 33.23(33.04) 31.50(31.44) 36.63(36.80)	%C ^a %H ^a 33.00(33.03) 3.92(3.78) 32.78(33.03) 3.76(3.78) 32.11(32.15) 3.83(3.74) 32.03(31.87) 3.82(3.72) 32.10(32.31) 3.55(3.83) 36.55(36.22) 4.04(3.87) 34.43(34.50) 3.70(3.68) 33.09(32.99) 3.70(3.60) 33.23(33.04) 3.65(3.58) 31.50(31.44) 3.80(3.78) 36.63(36.80) 4.09(3.90)

Table S3 Elemental analyses for the complexes $[Ln(L4^b)(NO_3)_3] \cdot xH_2O$

 $[Ln_2(L5)(NO_3)_6] \cdot xH_2O.$

^{*a*} Calculated (found).

Eu-01	2.370(2)	Eu-N1	2.630(2)
Eu-N3	2.543(2)	Eu-Ola	2.563(2)
Eu-02a	2.533(2)	Eu-O1b	2.541(2)
Eu-02b	2.493(2)	Eu-Olc	2.512(2)
Eu-O2c	2.496(2)	Eu-N1d	2.595(2)
O1-Eu-N1	62.37(7)	Ol-Eu-N3	124.10(6)
01-Eu-01a	133.04(7)	01-Eu-02a	143.50(7)
01-Eu-01b	123.49(6)	01-Eu-02b	77.13(6)
01-Eu-01c	77.69(6)	01-Eu-02c	75.12(6)
O1-Eu-N1d	70.90(7)	N1-Eu-N3	61.95(7)
N1-Eu-O1a	164.11(7)	N1-Eu-O2a	116.17(6)
N1-Eu-O1b	109.30(7)	N1-Eu-O2b	69.90(6)
N1-Eu-O1c	68.63(6)	N1-Eu-O2c	111.85(7)
N1-Eu-N1d	126.08(6)	N3-Eu-01a	102.86(7)
N3-Eu-02a	70.08(6)	N3-Eu-O1b	72.22(7)
N3-Eu-O2b	80.06(7)	N3-Eu-Olc	86.90(7)
N3-Eu-O2c	131.57(7)	N3-Eu-N1d	146.90(8)
01a-Eu-02a	50.15(6)	01a-Eu-01b	67.22(6)
01a-Eu-02b	114.02(6)	01a-Eu-01c	107.87(6)
01a-Eu-02c	73.92(7)	Ola-Eu-N1d	68.99(6)
02a-Eu-01b	92.25(6)	02a-Eu-02b	138.79(7)
02a-Eu-01c	69.27(6)	02a-Eu-02c	72.35(6)
02a-Eu-N1d	117.29(6)	01b-Eu-02b	50.87(6)
01b-Eu-01c	156.13(6)	01b-Eu-02c	138.74(6)
O1b-Eu-N1d	75.20(8)	02b-Eu-01c	137.89(6)
02b-Eu-02c	146.55(6)	O2b-Eu-N1d	75.01(7)
01c-Eu-02c	51.34(6)	Olc-Eu-N1d	126.19(8)
O2c-Eu-N1d	78.53(7)		

Table S4Bond distances (Å) and bond angles (°) for $[Eu(L4^b)(NO_3)_3CH_3CN]$ in the crystal

structure of **3**.

Least-squares planes description	Abbreviation	Max. deviation /Å	Atom
Pyridine	Ру	0.0297	C5
N1,C1,C2,C3,C4,C5			
Benzimidazole	Bz	0.0205	C11
N3,N4,C11,C12,C13,C14,C15,C16,C17			
Nitrate I	NitI	-0.0033	N1a
N1a,O1a,O2a,O3a			
Nitrate II	NitII	0.0027	N1b
N1b,O1b,O2b,O3b			
Nitrate III	NitIII	-0.0028	N1c
N1c,O1c,O2c,O3c			

Table S5Selected Least-Squares Plane Data for [Eu(L4^b)(NO3)3CH3CN] in the crystal structure
of 3.

Interplane Angles / ° ^a

	Bz	NitI	NitII	NitIII
Ру	11.3	37.4	80.1	75.3
Bz		32.3	89.5	72.5
NitI			65.2	79.7
NitII				69.7

^{*a*} Typical errors are within 0.1°.

	-	a (°		
Atom ^c	Donor type	$\delta_{\mathrm{Eu},j}$ / A	$v_{\mathrm{Eu},j}$	
N1	bzim	2.477	0.426	
N3	ру	2.611	0.296	Average N-heterocyclic
N4	bzim	2.537	0.362	0.36(6)
O101	nitrate	2.453	0.326	
O102	nitrate	2.535	0.261	
O201	nitrate	2.68	0.176	
O202	nitrate	2.478	0.304	
O301	nitrate	2.474	0.308	Average O-nitrate
O302	nitrate	2.498	0.288	0.28(5)
O001	methanol	2.494	0.292	
		$V_{\rm Eu}$	3.039	

Table S6 Bond distances $(\delta_{Eu,j})$, bond valences $(v_{Eu,j})^a$ and bond valence sum $(V_{Eu})^b$ in the crystal structure of $[Eu(L3^a)(NO_3)_3(CH_3OH)]$.^{18a}

^{*a*} $V_{\text{Eu},j} = e^{\left[\left(R_{\text{Eu},j} - d_{\text{Eu},j} \right) / b \right]}$ with valence bond parameters $R_{\text{Eu},\text{N}}$ and $R_{\text{Eu},\text{O}}$ taken from ref 29 and b = 0.37Å.^{28 b} $V_{\text{Eu}} = \sum_{i} V_{\text{Eu},i}$.^{28 c} Numbering taken from reference 18a.

Table S7 Bond distances $(\delta_{Eu,j})$, bond valences $(v_{Eu,j})^a$ and bond valence sum $(V_{Eu})^b$ in the crystal structure of $[Eu(L3^e)(NO_3)_3(CH_3CN)]$.^{18b}

Atom ^c	Donor type	$\delta_{\mathrm{Eu},j}$ / Å	$v_{\mathrm{Eu},j}$	
N2	Bzim	2.522	0.377	
N4	Bzim	2.492	0.409	Average N-heterocyclic
N1	Ру	2.617	0.292	0.36(6)
Ola	Nitrate	2.526	0.267	
O2a	Nitrate	2.473	0.309	
O1b	Nitrate	2.546	0.253	
O2b	Nitrate	2.48	0.303	
O1c	Nitrate	2.61	0.213	Average O-nitrate
O2c	Nitrate	2.478	0.304	0.28(4)
N1d	Acetonitrile	2.57	0.331	
		$V_{\rm Eu}$	3.058	

 $\frac{1}{a} v_{\text{Eu}j} = e^{\left[(R_{\text{Eu}j} - d_{\text{Eu}j})/b \right]}$ with valence bond parameters $R_{\text{Eu},\text{N}}$ and $R_{\text{Eu},\text{O}}$ taken from ref 29 and b = 0.37

Å.^{28 b}
$$V_{\rm Eu} = \sum_{j} v_{\rm Eu,j}$$
.^{28 c} Numbering taken from reference 18b.

Atom ^c	Donor type	$\delta_{\mathrm{Eu},j}$ / Å	$v_{{\rm Eu},j}$	
N3	bzim	2.543	0.356	Average N-heterocyclic
N1	ру	2.630	0.282	0.32(5)
01	amide	2.370	0.408	
Ola	nitrate	2.563	0.242	
O2a	nitrate	2.533	0.262	
O1b	nitrate	2.541	0.257	
O2b	nitrate	2.493	0.292	
Olc	nitrate	2.512	0.278	Average O-nitrate
O2c	nitrate	2.496	0.290	0.27(2)
N1d	acetonitrile	2.595	0.309	
		$V_{\rm Eu}$	2.976	

Table S8 Bond distances $(\delta_{Eu,j})$, bond valences $(v_{Eu,j})^a$ and bond valence sum $(V_{Eu})^b$ in the crystal structure of $[Eu(L4^b)(NO_3)_3(CH_3CN)]$ (3).

 $\frac{a}{V_{\text{Eu},j}} = e^{\left[(R_{\text{Eu},j} - d_{\text{Eu},j})/b \right]} \text{ with valence bond parameters } R_{\text{Eu},\text{N}} \text{ and } R_{\text{Eu},\text{O}} \text{ taken from ref 29 and } b = 0.37$ Å.²⁸ b $V_{\text{Eu}} = \sum_{j} V_{\text{Eu},j}$.²⁸ c Numbering taken from Figure 5a.

Atom ^c	Donor type	$\delta_{\mathrm{Eu},j}$ / Å	v _{Eu,j}	
N4	Bzim	2.510	0.389	Average N-heterocyclic
N2	Ру	2.628	0.283	0.34(8)
01	Amide	2.362	0.417	
03	Nitrate	2.505	0.283	
O4	Nitrate	2.515	0.275	
O6	Nitrate	2.610	0.213	
07	Nitrate	2.518	0.273	
09	Nitrate	2.542	0.256	Average O-nitrate
O10	Nitrate	2.544	0.255	0.26(3)
O21	Water	2.440	0.337	
		$V_{\rm Eu}$	2.982	

Table S9 Bond distances $(\delta_{Eu,j})$, bond valences $(v_{Eu,j})^a$ and bond valence sum $(V_{Eu})^b$ in the crystal structure of $[Eu_2(L5)(NO_3)_6(H_2O)_2]$ (4).

 $\frac{1}{a \, v_{\text{Eu}_{j}} = e^{\left[\left(R_{\text{Eu}_{j}} - d_{\text{Eu}_{j}} \right) / b \right]}}$ with valence bond parameters $R_{\text{Eu},\text{N}}$ and $R_{\text{Eu},\text{O}}$ taken from ref 29 and b = 0.37

Å.^{28 b} $V_{\rm Eu} = \sum_{j} v_{\rm Eu,j}$.^{28 c} Numbering taken from Figure 5b.

Bond Distances						
Eu1-Eu1'	8.564(1)	Eu1 – Eu1"	8.720(1)			
Eu1 – O1	2.362(2)	Eu1 – O3	2.505(2)	Eu1 – O9	2.542(2)	
Eu1 – N2	2.628(3)	Eu1 – O4	2.515(2)	Eu1 – O10	2.544(2)	
Eu1 – N4	2.510(2)	Eu1 – O6	2.610(2)	Eu1 – O21	2.440(2)	
		Eu1 – O7	2.518(2)			
Eu1' (1- <i>x</i> , <i>y</i> , 0.5- <i>z</i>), Eu1'' (1.5- <i>x</i> 1.5- <i>y</i> 1- <i>z</i>)						
		Donu a	ligies ()			
O1 -Eu-O21	73.40(6)	O21-Eu-N4	146.47(7)	O3 -Eu-O9	133.89(7)	
O1 -Eu-O3	76.59(5)	O21-Eu-O4	79.77(7)	O3 -Eu-O10	161.47(6)	
O1 -Eu-N4	124.18(7)	O21-Eu-O7	72.22(7)	O3 -Eu-O6	65.63(6)	
O1 -Eu-O4	78.14(6)	O21-Eu-O9	76.03(7)	O3 -Eu-N2	66.09(7)	
O1 -Eu-O7	140.16(7)	O21-Eu-O10	70.98(6)	N4 -Eu-O4	128.82(6)	
O1 -Eu-O9	73.06(6)	O21-Eu-O6	116.74(7)	N4 -Eu-O7	95.66(7)	
O1 -Eu-O10	118.18(5)	O21-Eu-N2	129.95(6)	N4 -Eu-O9	82.40(6)	
O1 -Eu-O6	138.92(6)	O3 -Eu-N4	86.95(6)	N4 -Eu-O10	75.49(7)	
O1 -Eu-N2	62.74(6)	O3 -Eu-O4	51.02(7)	N4 -Eu-O6	70.80(7)	
O21-Eu-O3	126.43(7)	O3 -Eu-O7	109.07(7)	N4 -Eu-N2	61.81(6)	
O4 -Eu-O7	76.53(7)	O4 -Eu-O6	66.00(6)	O7 -Eu-O10	67.66(7)	
O4 -Eu-O9	146.55(5)	O4 -Eu-N2	111.62(7)	O7 -Eu-O6	49.64(7)	
O4 -Eu-O10	138.99(7)	O7 -Eu-O9	116.54(7)	O7 -Eu-N2	156.59(6)	
O9 -Eu-O10	50.37(6)	O9 -Eu-N2	69.37(6)	O10-Eu-N2	109.16(7)	
O9 -Eu-O6	146.58(6)	O10-Eu-O6	102.26(6)	O6 -Eu-N2	112.07(6)	

Table S10 Selected bond distances (Å) and bite angles (°) for $[Eu_2(L5)(NO_3)_6(H_2O)_2]$ in the crystal

structure of **4**.

4. Least-squares planes description Abbreviation Max. deviation/Å Atom Pyridine N2 C10 Py 0.022(3) Benzimidazole N3, N4 Bz .013(3) N4 N9 Nitrate 1 N9 O3 O4 O5 NitI 0.0015 N10 Nitrate 2 N10 O6 O7 O8 NitII -0.0028 Nitrate 3 N11 O9 O10 O11 0.0072 NitIII N11

 $\label{eq:construction} \textbf{Table S11} \hspace{0.1 cm} \text{Selected Least-Squares Plane Data for} \hspace{0.1 cm} [\text{Eu}_2(\textbf{L5})(\text{NO}_3)_6(\text{H}_2\text{O})_2] \hspace{0.1 cm} \text{in the crystal structure of} \hspace{0.1 cm}$

Interplane Angles / °

	Bz	NitI	NitII	NitIII
Ру	14.3	75.3	57.8	77.9
Bz		68.0	68.7	87.9
NitI			49.0	63.3
NitII				44.1

Bz'' (1-*x*, 1-*y*, 1-*z*)

Protons	L4 ^b	$[La(L4b)(NO_3)_3]$	$[\operatorname{Eu}(\mathbf{L4}^{\mathbf{b}})(\operatorname{NO}_3)_3]$	$[Lu(L4b)(NO_3)_3]$	$[Y(L4^{b})(NO_{3})_{3}]$	L5	$[La_2(L5)(NO_3)_6]$	$[Lu_2(L5)(NO_3)_6]$
H1	7.60	7.7	6.5	7.78	7.77	4.25	4.3	4.33
H2	7.37	7.5	6.8	7.56	7.55	7.27	7.48	7.46
H3	7.32	7.5	5.0	7.51	7.50	7.49	7.75	7.69
H4	7.75	7.9	6.4	8.11	8.07	7.66	7.90	8.07
Н5	8.39	8.27	7.4	8.40	8.37	7.49	8.27	8.36
H6	8.04	8.39	8.2	8.47	8.44	8.01	8.39	8.47
H7	7.53	8.01	7.6	8.07	8.07	8.37	8.01	8.07
H8	3.57	3.78	2.2	3.84	3.81	3.55	3.78	3.82
H9	3.36	3.68	4.0	3.7	3.7	3.34	3.68	3.69
H10	1.1	1.32	0.6	1.35	1.33	1.24	1.42	1.5
H11	1.26	1.44	1.9	1.52	1.49	1.06	1.29	1.33
H12	4.81	4.64	5.6	4.73	4.72	4.75	4.72	4.67
H13	1.45	1.66	2.2	1.68	1.67	1.4	1.69	1.62

Table S12. ¹H NMR shifts (in ppm with respect to TMS) for the ligand $L4^{b}$, L5 and their complexes [Ln($L4^{b}$)(NO₃)₃] and [Ln₂(L5)(NO₃)₆] in CD₃CN at 293 K (Ln = La, Eu, Lu, Y).^{*a*}

^{*a*} Numbering is shown in Scheme 2.

	$J_{\rm N20}$, Ell Eu	, Du, Du, T, 275 IL).		
Ln ^{III}	$\log(f_{ m N2O}^{ m Ln})$	$\Delta G_{\rm N20}^{\rm Ln}$ /kJ·mol ⁻¹	$\log(u^{\text{Ln,Ln}})$	$\Delta E^{\mathrm{Ln,Ln}}$ /kJ·mol ⁻¹
La	4.8(5)	-27(3)	-1.4(1.2)	8(7)
Eu	4.75(4)	-27.1(5)	-1.0(1)	6(1)
Y	5.2(3)	-30(2)	-1.3(7)	7(4)
Lu	5.3(3)	-30(2)	-1.2(7)	7(4)

Table S13 Fitted microscopic thermodynamic parameters for $[Ln(L4^b)(NO_3)_3]$ and $[Ln_m(L5)(NO_3)_6]$ (m = 1, 2) in acetonitrile (eqns 13-15 using a single affinity parameter f_{120}^{Ln} , Ln = La, Eu, Lu, Y, 293 K).^{*a*}

 a The uncertainties correspond to those obtained during the multi-linear least-square fit of eqns (13)-(15).

Table S14 Summary of Crystal Data , Intensity Measurement and Structure Refinement for $L4^b$, L5, $[Eu(L4^b)(NO_3)_3(CH_3CN)](CH_3CN)_2$ (3) and $[Eu_2(L5)(NO_3)_6(H_2O)_2](H_2O)_4(CH_3CH_2CN)_2$ (4).

Compound	L4 ^b	L5	3	4
Formula	$C_{19}H_{22}N_4O$	$C_{39}H_{44}N_8O_2$	C ₂₅ H ₃₁ EuN ₁₀ O ₁₀	$C_{45}H_{66}Eu_2N_{16}O_{26}$
fw	322.5	656.8	783.6	1551.2
Crystal system	monoclinic	monoclinic	triclinic	monoclinic
Space Group	$P 2_1/c$	$P 2_1/c$	$P\overline{1}$	C 2/c
a (Å)	12.5918(11)	22.2062(9)	9.7831(7)	33.2594(16)
<i>b</i> (Å)	11.5723(8)	12.4592(6)	9.9818(7)	11.3096(7)
<i>c</i> (Å)	12.3018(8)	12.6087(5)	16.8841(12)	18.1293(8)
α (deg)	90	90	94.322(8)	90
β (deg)	105.483(9)	101.188(3)	93.184(9)	116.890(5)
$\gamma(\text{deg})$	90	90	105.660(8)	90
$V(\text{\AA}^3)$	1727.5(2)	3422.2(3)	1578.1(2)	6082.0(6)
Ζ	4	4	2	4

Crystal Size (mm)	0.096 x 0.194 x 0.28	0.13 x 0.16 x 0.25	0.095 x 0.175 x 0.368	0.20 x 0.24 x 0.34
d_{calcd} (Mg m ⁻³)	1.240	1.275	1.649	1.694
$\mu(MoK\alpha) (mm^{-1})$	0.079	0.082	2.06	2.14
Tmin, Tmax	0.9824 , 0.9924	0.9849, 0.9916	0.6241, 0.8314	0.5921 , 0.7357
$2\theta \max (\deg)$	53.4	66.9	53.09	56.2
No. of reflns collected	20448	45534	20807	28970
No. of independent reflns	3590	13246	6349	7079
Criterion (q) for obsd reflns ^{<i>a</i>}	4	4	4	3
No. of obsd ^{a} (used ^{b}) reflns	1814 (1971)	7112 (8936)	5416 (5466)	5696 (5809)
No. of variables	305	574	415	501
Weighting scheme p^{c}	0.0002	0.0004	0.0001	0.0003
Max and min $\Delta \rho$ (e Å ⁻³)	0.35 , -0.37	0.56 , -0.66	1.08 , -0.63	0.76 , -0.66
GOF (F) ^{d} (all data)	1.07(2)	1.17(1)	1.36(1)	1.05(1)
R^{e} , ωR^{f} (refluctions used)	0.031, 0.028	0.047, 0.044	0.022 , 0.024	0.022 , 0.026

^{*a*} $|Fo| > q\sigma(Fo)$; ^{*b*} Used in the refinements (including reflns with $|Fo| \le q\sigma(Fo)$ if |Fc| > |Fo|); ^{*c*} $\omega = 1/[\sigma^2(F_o) + p(F_o)^2]$; ^{*d*} $S = [\Sigma \{((F_o - F_c) + \sigma(F_o))^2\} / (N_{ref} - N_{var})]^{1/2}$; ^{*e*} $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$; ^{*f*} $\omega R = [\Sigma (\omega |Fo| - |Fc|)^2 / \Sigma \omega |Fo|^2]^{1/2}$;

b)

c)

Lβ

 $[Tb_2Eu(L\chi)]^{9+}$

Gunnlaugsson and coworkers9

HHH-[LaLu($L\beta$)₃]⁶⁺ Bünzli and coworkers⁸

 $[LaEu\,(\textbf{L}\textbf{\delta}\text{-}3H)]^{3+}$ Tamburini and coworkers^{10}

Mazzanti and coworkers11

Figure S1 Selected successful syntheses of pure heterometallic 4f-4f' polynuclear complexes obtained under apparent thermodynamic control.⁷⁻¹¹

La^{III}

Lu^{III}

Figure S2 Optimized superimposition of the molecular structures of $[Eu(L3^e)(NO_3)_3(CH_3CN)]$ (blue) and $[Eu(L4^b)(NO_3)_3(CH_3CN)]$ (red).

Figure S3 Optimized superimposition of the molecular structures of $[Eu(L4^b)(NO_3)_3(CH_3CN)]$ (red) and the asymmetrical unit of $[Eu_2(L5)(NO_3)_6(H_2O)_2]$ (blue).

Figure S4 Network of hydrogen bonds involving coordinated and interstitial water molecules in the crystal structure of 4. The chain of $[Eu_2(L5)(NO_3)_6(H_2O)_2]$ complexes is roughly aligned with the [1 0 1] direction.

Figure S5 Perspective views of two $[Eu_2(L5)(NO_3)_6(H_2O)_2]$ complexes related by a centre of inversion (1-x, 1-y, 1-z) and highligting the interchain π -stacking interactions operating between the benzimidazole rings.

Figure S6 Aromatic part of the ¹H NMR spectra of a) $L4^{b}$, b) $[Lu(L4^{b})(NO_{3})_{3}]$ and c) $[La(L4^{b})(NO_{3})_{3}]$ (total ligand concentration $L4^{b}$: 10 mol·dm⁻³ in CD₃CN).

Figure S7 The three possible planar arrangements of the diphenylmethane spacer of ligand L5. a) proximal C_{2v} -symmetrical, b) alternated C_s -symmetrical (never observed on the NMR time scale) and c) distal C_{2v} -symmetrical.

Figure S8 Variation of absorption spectra observed during the spectrophotometric titrations of a) L4b with Lu(NO₃)₃·2H₂O and b) L5 with Eu(NO₃)₃·3H₂O (293 K, CH₃CN, total ligand concentration: 10⁻⁴ mol·dm³).

Figure S9 Symmetry numbers (σ) and statistical factors (ω) for the complexation of ninecoordinate $[Ln(NO_3)_3(CH_3CN)_3]^{17}$ to $L4^b$ and L5 in acetonitrile. The somewhat arbitrary choice¹⁷ of an ideal symmetry C_{3v} for the metallic unit $[Ln(NO_3)_3(CH_3CN)_3]$ is not crucial since each equilibrium refers to the same starting metal-containing entity.

Figure S10 Emission spectra recorded in the solid state ($\lambda_{exc} = 310 \text{ nm}, 77\text{K}$) for a) $L4^b$, b) [Gd(L4b)(NO₃)₃] (delay time: 0 ms, fluorescence) and c) [Gd(L4b)(NO₃)₃] (delay time 0.1 ms, phosphorescence).

Figure S11 Emission spectra recorded in the solid state ($\lambda_{exc} = 310$ nm, 77K) for a) L5, b) [Gd₂(L5)(NO₃)₆] (delay time: 0 ms, fluorescence) and c) [Gd₂(L5)(NO₃)₆] (delay time 0.1 ms, phosphorescence).

Figure S12 Fluorescence emission spectra recorded in the solid state ($\lambda_{exc} = 310 \text{ nm}, 295\text{K}$) for a) [Eu(L4^b)(NO₃)₃] and b) [Tb(L4^b)(NO₃)₃].