Direct Evidence of Singlet Molecular Oxygen Generation from Peroxynitrate, a Decomposition Product of Peroxynitrite

Sayuri Miyamoto,*^{,†} Graziella E. Ronsein, Thaís C. Corrêa,[†] Glaucia R. Martinez,^{†,‡}

Marisa H.G. Medeiros,[†] *and Paolo Di Mascio**,[†]

Supporting Information

*To whom correspondence should be addressed: pdmascio@iq.usp.br or miyamoto@iq.usp.br.

$$O_2 NOOH + 2 I^- + H^+ \rightarrow H_2 O + NO_3^- + I_2$$
(1)

$$H_2O_2 + 2I^- + H^+ \rightarrow 2H_2O + I_2$$
 (2)

Figure S1. Quantification of O₂NOOH by spectro-iodometry. The quantification is based on the rapid reaction of O₂NOOH with iodide (eq. 1), which has an intense absorption at 352 nm ($\varepsilon = 26400 \text{ M}^{-1}\text{cm}^{-1}$). The reaction of H₂O₂ with iodide (eq. 2) undergoes at an appreciable rate only after the addition of ammonium molybdate as a catalyst. For the experiment, 2 ml of 8 mM KI and 20 µl of 2.4 M HNO3 were pipetted into a cuvette. After recording the baseline, 20 µl of the diluted (1000 times) O₂NOOH solution in 2.4 M HNO₃ was added and the absorbance was measured for about 1 min. To determine the H₂O₂ concentration, 20 µl of 2% ammonium molybdate solution was added and the absorbance was recorded until a plateau was reached. I₃⁻ has a strong absorption at 352 nm and its concentration was determined by using its absorption coefficient of 26400 M⁻¹ cm⁻¹.

Figure S2. Kinetics of the decay of monomolecular light emission at 1270 nm due to O₂ (${}^{1}\Delta_{g}$) generated during decomposition of 10 mM DHPNO₂ incubated in 0.1 M phosphate buffer pD 7.8: A) decay curve of data collected for 3810 s (63.5 min), B) expanded view of the Intensity – time curve in the first 500 s, which show the region selected for integration, and C), the area integrated from 300 – 400 s. Thermolysis of DHPNO₂ follows first-order kinetics [30]: based on the half-life of decomposition of DHPNO₂ at 37°C ($t_{1/2} = \ln 2/k = 23 \text{ min}$), the calculated value for the first-order rate constant *k* is 5.02 × 10⁻⁴ s⁻¹. Taking into account that thermolysis of DHPNO₂ vields 59% O₂ (${}^{1}\Delta_{g}$) [30], the estimated rate of O₂ (${}^{1}\Delta_{g}$) production from 10 mM DHPNO₂ at 37°C is 2.96 μ M.s⁻¹. The area obtained by integrating the light emission intensity over a

period of 100 s yielded a value of 58140 (arbitrary units), which corresponds to 296 μ M of O₂ (¹ Δ _g). This value was used to convert integrated area to [O₂ (¹ Δ _g)].

Figure S3. Time course for the emission of light from of O_2 ($^1\Delta_g$) generated during injection of 0.9 M phosphate buffer at pD 7.6 into 1.5 ml of 1 mM ONOO⁻ in the absence of a) and in the presence of 10 mM b) NaNO₂ or c)NaNO₃.

Figure S4. Influence of pD on the amount of EAS consumed during incubation with ONOO⁻. Reaction conditions are the same as those described in Figure S3.