Supporting Information

Fig. S1 Emission spectral changes of **1** (1 x 10^{-5} M) upon addition of increasing concentration of $Zn(ClO_4)_2$. Excitation wavelength: 456 nm. Inset: linear regression fit (double-logarithmic plot) of the titration data as a function of concentration of metal ion.

Fig. S2 Emission spectral changes of **3** (1 x 10^{-5} M) upon addition of increasing concentration of Pb(ClO₄)₂. Excitation wavelength: 454 nm. Inset: linear regression fit (double-logarithmic plot) of the titration data as a function of concentration of metal ion

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Fig. S3 Selected portion of the ¹H NMR spectral change for **4** upon addition of the increasing concentration of KClO₄, new peaks are growing with disappearance of the peaks of original complex.

Fig. S4 The non-linear least square fit (a) and Job's plot (b) from ¹H NMR titration data for the binding of **2** with KClO₄ in CD₃CN.

Fig. S5 The non-linear least square fit (a) and Job's plot (b) from ¹H NMR titration data for the binding of **2** with CsClO₄ in CD₃CN.