#### Electronic Supplementary Information for

# The [1,2,3]Triazolo[1,5-*a*]pyridine Ring: A Sensitive Sensor for the Electronic Profile of Phosphorus Substituents

Rafael Ballesteros-Garrido,<sup>a</sup> Laurence Bonnafoux,<sup>a</sup> Frédéric R. Leroux,<sup>a</sup>\* Belén Abarca<sup>b</sup>\* and Françoise Colobert<sup>a</sup>\*

<sup>a</sup> CNRS and University of Strasbourg (ECPM), UMR 7509, 25 rue Becquerel, 67087 Strasbourg (France)

<sup>b</sup> Departament de Quimica Orgànica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot; Valencia, (Spain).

#### **Table of Contents**

| Experimental Section                                                                | 2  |
|-------------------------------------------------------------------------------------|----|
| Example of NMR assignment                                                           | 4  |
| Experimental data                                                                   | 10 |
| Copies of <sup>1</sup> H, <sup>13</sup> C, <sup>31</sup> P NMR and COSY NMR spectra | 17 |
| Crystal Structure Analysis                                                          | 57 |

#### **Experimental Section**

#### **General Methods**

Starting materials, if commercial, were purchased and used as such, provided that adequate checks (melting ranges, refractive indices, and gas chromatography) had confirmed the claimed purity. When known compounds had to be prepared according to literature procedures, pertinent references are given. Air- and moisture-sensitive materials were stored in Schlenk tubes. They were protected by and handled under an atmosphere of argon, using appropriate glassware. Diethyl ether and tetrahydrofuran were dried by distillation from sodium after the characteristic blue color of sodium diphenyl ketyl (benzophenonesodium "radical-anion") had been found to persist. Ethereal or other organic extracts were dried by washing with brine and then by storage over sodium sulfate. If no reduced pressure is specified, boiling ranges (b.p.) refer to ordinary atmosphere conditions (725  $\pm$  25 Torr). Melting ranges (m.p.) given were found to be reproducible after recrystallization, unless stated otherwise ("decomp."), and are uncorrected. If melting points are missing, it means all attempts to crystallize the liquid at temperatures down to -75 °C failed. Thin-layer chromatography (TLC) were carried out on 0.25 mm Merck silica-gel (60-F254). The TLC plates were visualized with UV light and 7% phosphomolybdic acid. Column chromatography was carried out on a column packed with silica-gel 60N spherical neutral size 63-210 µm. The solid support was suspended in hexanes and, when all air bubbles had escaped, was washed into the column. When the level of the liquid was still 3-5 cm above the support layer, the dry powder, obtained by adsorption of the crude mixture to some 25 mL of silica and subsequent evaporation of the solvent, was poured on top of the column. <sup>1</sup>H and (<sup>1</sup>H decoupled) <sup>13</sup>C nuclear magnetic resonance (NMR) spectra were recorded at 400 or 300 and 101 or 75 MHz, respectively. Chemical shifts are reported in  $\delta$  units, parts per million (ppm) and were measured relative to the signals for residual chloroform (7.27 ppm). Coupling constants J are given in Hz. Coupling patterns are abbreviated as, for example, s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), td (triplet of doublets) and m (multiplet). H-H COSY experiment were performed for all compounds.





Typical Experimental procedure for the preparation of [1,2,3]triazolo[1,5-*a*]pyridine phosphines:

At -40 °C, butyllithium (3.6 mL, 5.6 mmol, 1.1 eq ) in hexanes (1.5M) was added to a solution of 3-(pyridin-2'-yl)-[1,2,3]triazolo[1,5-a]pyridine **1** (1.0 g, 5.1 mmol, 1.0 eq) in toluene (60 mL). The mixture was kept for 30 min at -40 °C before a solution of the corresponding chlorophosphine (5.9 mmol, 1.15 eq) in toluene (6.0 mL) was added and allowed to reach 20 °C (2 h). The reaction mixture was quenched with water (20 mL). The resulting mixture was extracted with dichloromethane ( $3 \times 50$  mL) and the combined organic extracts were washed with brine (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. Chromatography (silica gel, ethyl acetate/cyclohexane = 3:7) provided the corresponding to standard procedure: the phosphines were allowed to react with selenium powder in refluxing chloroform during 5 hours.

# Example of NMR assignment

<sup>1</sup>H NMR from systems **2d** are described in detail in order to show how the assignment has been done.

#### <sup>1</sup>H NMR of 2d:





#### Zoom of the aromatic region of 2d:

The  $\delta$  and J values for isomers **A** compared to other **A** isomers described in the literature <sup>(ref 5)</sup> indicates that they have a pyridyl-triazolopyridinephosphine structure. They contain a 3,7-disubstituted triazolopyridine moiety and a 2-substituted pyridine. The presence of a proton near 8.8 ppm with a coupling constant of J = 8.8-9.0 Hz is significant, corresponding to the <sup>4A</sup>H triazolopyridine proton. Furthermore, another signal with the same integration can be found near 6.5 ppm with J = 6.7-6.9 Hz consistent with a <sup>6A</sup>H proton. In the same way two more signals (appearing as a doublet) with the same integration must be found (<sup>3'A</sup>H and <sup>6'A</sup>H). Although <sup>6'A</sup>H has, normally, a similar chemical shift than <sup>7B</sup>H, <sup>3'A</sup>H can be perfectly found near 8.4 ppm (J = 8.0 Hz). H-H COSY correlation allows assign all protons of these systems.



On the other hand, the isomers **B** have a 3-substituted triazolopyridine and a 2,6disubstituted pyridine. The triazolopyridine presents its 4 hydrogen atoms; in this case <sup>7B</sup>H and <sup>4B</sup>H are mixed with other signals from the **A** and/or **B** structure. However, <sup>6B</sup>H and <sup>5B</sup>H appears as two apparent triplets. Once these signals are identified, H-H COSY allows the assignation of the whole 3-subtituted triazolopyridine. Near 8.3 ppm a doublet with J = 8.0 Hz can be found with the same integration than <sup>6B</sup>H and <sup>5B</sup>H. As it has been shown before (<sup>3'A</sup>H : 8.5 ppm, d, J = 8.0 Hz) this signal can be assigned to <sup>3'B</sup>H.

In the <sup>1</sup>H NMR Spectrum



P(<sup>A</sup>Ph<sub>2</sub>) and P(<sup>B</sup>Ph<sub>2</sub>) are coloured in purple.

Red colour corresponds to the signals of the major isomer (**B** in this case):  ${}^{3}{}^{8}$ H,  ${}^{5B}$ H and  ${}^{6B}$ H.

Green colour corresponds to the signals of minor isomer (A in this case):  ${}^{4A}H$ ,  ${}^{3'A}H$   ${}^{5'A}H$  and  ${}^{6A}H$ .

No colour is used when more than one hydrogen atom provides a signal at the same chemical shift.



#### COSY NMR of 2d:



From Up to down:  $R = PCy_2$  (2a),  $P(p-OMePh)_2$  (2b),  $P(^iPr)_2$  (2c),  $P(Ph)_2$  (2d),  $P(p-MePh)_2$  (2e),  $P(p-FPh)_2$  (2f),  $P(p-CF_3Ph)_2$  (2g)



#### **Experimental data**

7-(Dicyclohexylphosphino)-3-(pyridin-2'-yl)-[1,2,3]triazolo[1,5-a]pyridine (2a-A) and

3-(6'-(dicyclohexylphosphino)pyridin-2'-yl)-[1,2,3]triazolo[1,5-a]pyridine (2a-B).



When dicyclohexylphosphine chloride was used, 0.43 g (22%) were obtained after chromatography; A/B ratio =  $1.39. - {}^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta = 8.78$  (d, J = 8.9 Hz,  $H^{4A}$ ), 8.8-8.7 (m,  $H^{6A}+H^{7B}$ ), 8.6 (br d, J = 4.9 Hz,  $H^{6'A}$ ), 8.35 (d, J = 7.9 Hz,  $H^{3'A}$ ), 8.26 (d, J = 8.0 Hz, H<sup>3'B</sup>), 7.75 (ddd, J = 7.9, 7.6, 1.8 Hz, H<sup>4'A</sup>), 7.68 (ddd, J = 8.0, 7.7, 1.9 Hz,  $H^{4'B}$ ), 7.4-7.2 (m,  $H^{5A}+H^{5'B}+H^{5B}+H^{4B}$ ), 7.16 (dd,  $J = 7.6, 4.9, Hz, H^{5'A}$ ), 7.02 (ddd, J = 6.9, 6.8, 1.1 Hz, H<sup>6B</sup>), 2.8-2.6 (m, 1H), 2.3-2.1 (m, 1H), 2.0-1.8 (m, 2H), 1.8-1.5 (m, 7H), 1.3-0.9 (m, 11H).  $-{}^{13}\text{C}$  NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta = 160.82 \text{ (C)}$ , 160.66 (C), 152.11 (CH<sup>A</sup>), 151.92 (d,  $J_{C-P} = 5.62$  Hz, C), 149.20 (CH<sup>A</sup>), 137.79 (C), 137.35 (C), 137.14 (C), 136.77 (C), 136.49 (CH<sup>A</sup>), 135.25 (d,  $J_{C-P} = 8.92$  Hz, CH<sup>B</sup>), 132.13 (d,  $J_{C-P} = 16.02$  Hz, C), 129.25 (d,  $J_{C-P} = 33.79$  Hz, CH), 126.14 (CH), 125.71 (d,  $J_{C-P} = 27.09$  Hz, CH), 125.40 (d,  $J_{C-P} = 27.09$  Hz, 125.40 (d,  $J_{C-P} = 27.09$ 8.78 Hz, CH), 125.18 (CH), 121.81 (CH), 121.57 (CH), 121.38 (CH), 120.36 (CH), 119.18 (CH), 115.75 (CH), 32.75 (d,  $J_{C-P} = 11.11$  Hz, CH), 32.60 (d,  $J_{C-P} = 11.29$  Hz, CH), 31.06 (d,  $J_{C-P} = 19.49$  Hz, CH<sub>2</sub>), 30.06 (d,  $J_{C-P} = 8.74$  Hz, CH<sub>2</sub>), 29.74 (d,  $J_{C-P} = 14.97$  Hz, CH<sub>2</sub>), 29.16 (d, J<sub>C-P</sub> = 7.70 Hz, CH<sub>2</sub>), 27.44 (CH<sub>2</sub>), 27.28 (CH<sub>2</sub>), 27.12 (CH<sub>2</sub>), 27.01 (CH<sub>2</sub>), 26.81 (CH<sub>2</sub>), 26.75 (CH<sub>2</sub>), 26.63 (CH<sub>2</sub>), 26.36 (CH<sub>2</sub>), 26.12 (CH<sub>2</sub>), - <sup>31</sup>P NMR (CDCl<sub>3</sub>, 161 MHz):  $\delta = 8.92 (P^B)$ , 8.01 (P<sup>A</sup>);  $J_{P-Se} = 705.5 \text{ Hz.} - \text{MS(EI)}$ : m/z (%) = 392.2 (24) [M<sup>+</sup>],

364.2 (18)  $[M^+ N_2]$ , 309.2 (74)  $[M^+ C_6H_{11}]$ , 282.1 (74)  $[M^+ C_6H_{11} N_2]$ , 199.1 (100)  $[HM^+ N_2 - 2 \times C_6H_{11}]$ , 168.1 (58)  $[HM^+ N_2 - P(C_6H_{11})_2]$ . – HRMS ESI-[TOF] for  $C_{23}H_{29}N_4P$   $[M^+H^+]$ : calc 393.2203; found 393.2145,  $[M^+O^+Li]$ : calcd. 415.2245; found. 415.2161.

7-(Di(*p*-methoxyphenyl)phosphino)-3-(pyridin-2'-yl)-[1,2,3]triazolo[1,5-a]pyridine (2b-A) and 3-(6'-(di(*p*-methoxyphenyl)phosphino)pyridin-2'-yl)-[1,2,3]triazolo[1,5-a]pyridine (2b-B)



3-(Pyridine-2'-yl)-[1,2,3]triazolo[1,5-*a*]pyridine 1.5 1 (0.30)mmol) and g, diphenylphosphine chloride were used affording 0.13 g (10%) of **2b** after chromatography; A/B ratio =  $1.23. - {}^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta = 8.7-8.6$  (m, H<sup>6'A</sup>+H<sup>7B</sup>+H<sup>4A</sup>), 8.32 (d, J = 8.0 Hz, H<sup>3'A</sup>), 8.19 (d, J = 7.9 Hz, H<sup>3'B</sup>), 7.8-7.7 (m, H<sup>4B</sup> + H<sup>4'A</sup>), 7.66 (ddd, J = 7.9, 7.8, 2.5 Hz, H<sup>4'B</sup>), 7.5-7.3 (m, (Ph)), 7.3-7.1 (m, H<sup>5'B</sup>+H<sup>5A</sup>+H<sup>5'A</sup>), 7.1-6.9 (m, H<sup>5B</sup>+H<sup>6B</sup>+ Ph), 6.48 (d, J = 6.8 Hz, H<sup>6A</sup>), 3.82 (s, 3H<sup>B</sup>), 3.80 (s, 3H<sup>A</sup>). - <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta = 164.06$  (C), 160.96 (C-OMe), 160.46 (C-OMe), 152.14 (C), 152.03 (d,  $J_{C-P} =$ 8.54 Hz, C), 149.11 (CH), 140.19 (C), 139.88 (C), 137.34 (C), 137.14 (d,  $J_{C-P} = 1.95$ Hz,1C), 136.59 (C), 136.55 (CH), 136.18-135.78 (m), 135.54 (C), 134.09 (d, J = 10.99 Hz, C), 132.14 (C), 131.83 (C), 127.67 (d,  $J_{C-P} = 6.50$  Hz, C), 126.25 (d, J = 27.01 Hz, CH), 125.85 (CH), 124.80 (CH), 123.47 (d, J = 5.02 Hz, C), 122.00-121.71 (m), 121.14 (CH), 120.56 (CH), 120.44 (CH), 118.32 (CH), 115.79 (CH), 114.70-113.86 (m), 55.38 (OMe), 55.25 (OMe).  $-{}^{31}P$  NMR (CDCl<sub>3</sub>, 161 MHz):  $\delta = -0.35$  (P<sup>B</sup>), -17.62 (P<sup>A</sup>);  $J_{P-Se} = 725.4$  Hz.

-MS(EI): m/z (%) = 440.1 (87) [M<sup>+</sup>], 412.1 (64) [M<sup>+</sup>-N<sub>2</sub>], 411.1 (100) [M<sup>+</sup>-H - N<sub>2</sub>], 305.1 (48) [M<sup>+</sup>-MeOPh - N<sub>2</sub>], 245.1 (98) [P(*p*-MeOPh)<sub>2</sub>]. - HRMS ESI-[TOF] for C<sub>25</sub>H<sub>21</sub>N<sub>4</sub>O<sub>2</sub>P [M+H]: calcd. 441.1480; found. 441.1421. C<sub>25</sub>H<sub>21</sub>N<sub>4</sub>O<sub>2</sub>P [M+Li+O]: calcd. 463.1511; found. 463.1446.

#### 7-(Diisopropylphosphino)-3-(pyridin-2'-yl)-[1,2,3]triazolo[1,5-a]pyridine (2c-A) and



3-(6'-(diisopropylphosphino)pyridin-2'-yl)-[1,2,3]triazolo[1,5-a]pyridine (2c-B).

When diisopropylphosphine chloride was used 0.21 g (13%) were obtained after chromatography; A/B ratio = 1.04. – <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.8-8.7 (m, H<sup>4A</sup> +H<sup>6A</sup>+H<sup>7B</sup>), 8.66 (br d, *J* = 4.9 Hz, H<sup>6'A</sup>), 8.37 (br d, *J* = 8.0 Hz, H<sup>3'A</sup>), 8.30 (br d, *J* = 8.0 Hz, H<sup>3'B</sup>), 7.78 (ddd, *J* = 7.9, 7.6, 1.8 H<sup>4'A</sup>), 7.72 (ddd, *J* = 7.9, 7.7, 1.9 Hz, H<sup>4'B</sup>), 7.5-7.2 (m, H<sup>5A</sup>+H<sup>5'B</sup>+H<sup>5B</sup>+H<sup>4B</sup>), 7.20 (ddd, *J* = 7.6, 4.9, 1.2 Hz, H<sup>5'A</sup>), 7.1-7.0 (m, H<sup>6B</sup>), 2.92 (qd, *J* = 13.9, 6.9 Hz, 1H), 2.5-2.3 (m, 1H), 1.3-1.1 (m, 6H), 0.96 (ddd, *J* = 20.3, 12.5, 6.9 Hz, 6 H). – <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  = 160.88 (C), 160.72 (C), 152.04 (d, *J*<sub>C-P</sub> = 6.13 Hz, C),152.0 (CH) 149.15 (CH), 137.96 (C), 137.66 (C), 137.38 (C), 137.19 (C), 136.51 (CH), 135.27 (d, *J*<sub>C-P</sub> = 8.54 Hz,CH), 132.07 (d, *J*<sub>C-P</sub> = 15.42 Hz, C), 129.01 (d, *J*<sub>C-P</sub> = 32.52 Hz,CH), 126.31 (CH), 125.45 (d, *J*<sub>C-P</sub> = 8.17 Hz, CH), 125.27 (d, *J*<sub>C-P</sub> = 26.08 Hz,CH), 125.15 (CH), 121.83 (CH), 121.62 (CH), 121.14 (CH), 120.34 (CH), 119.32 (CH), 115.73 (CH), 23.06 (d, *J*<sub>C-P</sub> = 5.22 Hz, CH<sub>3</sub>), 19.68 (d, *J*<sub>C-P</sub> = 16.83 Hz, CH<sub>3</sub>), 19.20 (d, *J*<sub>C-P</sub> = 9.14 Hz, CH<sub>3</sub>). – <sup>31</sup>P NMR (CDCl<sub>3</sub>, 161 MHz):  $\delta$  = 17.07 (P<sup>B</sup>), 16.92 (P<sup>A</sup>); *J*<sub>P-Se</sub> =

713.5 Hz. – MS(EI): m/z (%) = 312.2 (23) [M<sup>+</sup>], 284.2 (8) [M<sup>+</sup>- N<sub>2</sub>], 269.2 (95) [M<sup>+</sup>-  $C_3H_7$ ], 241.1 (49) [M<sup>+</sup>-  $C_3H_7$ -N<sub>2</sub>], 199.1 (100) [HM<sup>+</sup>- N<sub>2</sub> - 2×C<sub>6</sub>H<sub>11</sub>], 168.1 (29) [HM<sup>+</sup>- N<sub>2</sub> - P(C<sub>6</sub>H<sub>11</sub>)<sub>2</sub>]. – HRMS ESI-[TOF] for C<sub>17</sub>H<sub>21</sub>N<sub>4</sub>P [M+Li-N<sub>2</sub>]: calc 305.1552; found 307.1542, C<sub>17</sub>H<sub>21</sub>N<sub>4</sub>P [M+O+Li]: calcd. 335.1613; found.335.1581.

7-(Diphenylphosphino)-3-(pyridin-2'-yl)-[1,2,3]triazolo[1,5-*a*]pyridine (2d-A) and 3-(6'-(diphenylphosphino)pyridin-2'-yl)-[1,2,3]triazolo[1,5-*a*]pyridine (2d-B)



When diphenylphosphine chloride was used 0.79 g (40%) were obtained after chromatography. A/B ratio = 0.72.  $^{-1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.77 (d, *J* = 8.8 Hz, H<sup>4A</sup>), 8.69 (app d, *J* = 6.3 Hz, H<sup>6'A</sup>+H<sup>7B</sup>), 8.38 (d, *J* = 8.0 Hz, H<sup>3'A</sup>), 8.31 (d, *J* = 8.0 Hz, H<sup>3'B</sup>), 7.8-7.6 (m, H<sup>4'A</sup> + H<sup>4'B</sup> + H<sup>4B</sup>), 7.6-7.3 (m, (PPh<sub>2</sub>)<sup>A</sup> + (PPh<sub>2</sub>)<sup>B</sup>), 7.3-7.2 (m, H<sup>5A</sup> + H<sup>5'B</sup>), 7.2-7.1 (m, H<sup>5'A</sup>), 7.1-7.0 (app t, *J* = 8.6, Hz, H<sup>5B</sup>), 6.94 (app t, *J* = 6.8, Hz, H<sup>6B</sup>), 6.55 (d, *J* = 6.8 Hz, H<sup>6A</sup>).  $^{-13}$ C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  = 162.74 (s,2 C), 152.12 (d, *J* = 8.61 Hz, C), 151.91 (C), 149.02 (CH<sup>A</sup>), 138.66 (d, *J*<sub>C-P</sub> = 23.20 Hz, C), 137.20 (d, *J*<sub>C-P</sub> = 1.84 Hz, C), 136.98 (C), 136.31 (CH<sup>A</sup>), 136.30 (d, *J*<sub>C-P</sub> = 9.69 Hz, C(PPh<sub>2</sub>), 135.96 (d, *J*<sub>C-P</sub> = 5.81 Hz, CH<sup>A</sup>), 134.29 (d, *J* = 19.71 Hz, CH (PPh<sub>2</sub>)), 134.03 (d, *J* = 20.48 Hz, CH<sup>B</sup>), 132.31 (d, *J*<sub>C-P</sub> = 7.78 Hz, CH<sup>B</sup>), 128.79 (CH(PPh<sub>2</sub>)), 126.54 (d, *J*<sub>C-P</sub> = 27.79 Hz, CH(PPh<sub>2</sub>)<sup>A</sup>), 125.96 (CH<sup>B</sup>), 125.72 (CH<sup>A</sup>), 121.55 (d, *J*<sub>C-P</sub> = 22.59 Hz, CH<sup>A</sup>), 121.37 (CH<sup>B</sup>), 120.68 (CH<sup>A</sup>), 120.30 (CH<sup>A</sup>), 118.52 (CH<sup>B</sup>), 115.63 (CH<sup>B</sup>).  $^{-31}$ P NMR (CDCl<sub>3</sub>, 161 MHz):  $\delta$  = -0.30 (P<sup>B</sup>), -14.77 (P<sup>A</sup>); *J*<sub>P-Se</sub> = 736.4 Hz. - MS(EI): m/z (%) = 13

380 (66)  $[M^+]$ , 352 (67)  $[M^+ - N_2]$ , 275.1(8)  $[M^+ - Ph - N_2]$ , 183.1 (100). – HRMS ESI-[TOF] for C<sub>23</sub>H<sub>17</sub>N<sub>4</sub>P  $[M^+ + O + Li]$ : calcd. 403.1300; found. 403.1230.

7-(Di(*p*-methylphenyl)phosphino)-3-(pyridin-2'-yl)-[1,2,3]triazolo[1,5-a]pyridine (2e-A) and 3-(6'-(di(*p*-methylphenyl)phosphino)pyridin-2'-yl)-[1,2,3]triazolo[1,5-a]pyridine (2e-B)



3-(Pyridine-2'-yl)-[1,2,3]triazolo[1,5-*a*]pyridine 1 (0.30)g, 1.5 mmol) and diphenylphosphine chloride were used affording 0.14 g (22%) of **2e** after chromatography; A/B ratio =  $0.71. - {}^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta = 8.7-8.6$  (m, H<sup>4A</sup>+H<sup>6'A</sup>+ H<sup>7B</sup>), 8.33 (br d, J = 8.1 Hz, H<sup>3'A</sup>), 8.22 (br d, J = 7.9, Hz, H<sup>3'B</sup>), 7.8-7.7 (m, H<sup>4B</sup>+H<sup>4'A</sup>), 7.67 (ddd, J =7.9, 7.8, 2.5 Hz, H<sup>4'B</sup>), 7.4-7.3 (m, H<sup>5'A</sup>+ H<sup>5A</sup>+(p-MePh)), 7.2-7.1 (m, H<sup>5'B</sup>+(p-MePh)), 7.1-6.9 (m,  $H^{6B}+H^{5B}$ ), 6.42 (d, J = 6.8 Hz,  $H^{6A}$ ), 2.38 (s,  $3H^{B}$ ), 2.36 (s,  $3H^{A}$ ).  $-{}^{13}C$  NMR (75.5) MHz, CDCl<sub>3</sub>):  $\delta = 163.56$  (C), 152.15 (C), 152.03 (C), 149.09 (CH), 139.87 (C), 139.74 (C), 139.43 (C), 137.35 (C), 136.54 (CH), 136.01 (d,  $J_{C-P} = 5.36$  Hz, CH), 134.45 (d,  $J_{C-P}$ = 20.16 Hz, CH), 134.17 (d,  $J_{C-P}$  = 21.50 Hz, CH), 133.12 (d,  $J_{C-P}$  = 8.19 Hz, C), 132.15 (s, C), 131.83 (C), 129.69 (d,  $J_{C-P} = 8.08$  Hz, CH), 129.31 (d,  $J_{C-P} = 7.60$  Hz, CH), 129.06 (d,  $J_{C-P} = 6.81$  Hz, C), 126.46 (d,  $J_{C-P} = 26.41$  Hz, CH), 125.86 (CH), 125.79 (CH), 124.81 (CH), 121.89-121.75 (m), 121.30 (CH), 120.61-120.48 (m), 118.46 (CH), 115.74 (CH), 21.34 (CH<sub>3</sub>), 21.01 (CH<sub>3</sub>).  $-{}^{31}$ P NMR (CDCl<sub>3</sub>, 161 MHz):  $\delta = -2.06$  (P<sup>B</sup>), -16.34 (P<sup>A</sup>);  $J_{P-Se}$ = 729.6 Hz. – MS(EI): m/z (%) = 408.2 (72) [M<sup>+</sup>], 396 (100) [OM<sup>+</sup> - N<sub>2</sub>], 396.2 (100) [MO<sup>+</sup>

-  $N_2$ ], 380.2 (68) [M<sup>+</sup>-  $N_2$ ], 289.1(53) [M<sup>+</sup>- *p*-MePh -  $N_2$ ]. – HRMS ESI-[TOF] for  $C_{25}H_{21}N_4P$  [M+Li+O]: calcd. 431.1613; found. 431.1537.

7-(Di(*p*-fluorophenyl)phosphino)-3-(pyridin-2'-yl)-[1,2,3]triazolo[1,5-a]pyridine (2f-A) and 3-(6'-(di(*p*-fluorophenyl)phosphino)pyridin-2'-yl)-[1,2,3]triazolo[1,5-a]pyridine (2f-B)



3-(Pyridine-2'-yl)-[1,2,3]triazolo[1,5-*a*]pyridine **1** (0.30 g, 1.5 mmol) and di(*p*-fluorophenyl)phosphine chloride afforded 0.43 g (66%) of **2f** after chromatography; A/B ratio = 0.40.  $^{-1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta = 8.74$  (d, J = 8.9 Hz, H<sup>4A</sup>), 8.68 (d, J = 7.0 Hz, H<sup>7B</sup>), 8.65 (d, J = 4.9 Hz, H<sup>6'A</sup>), 8.32 (d, J = 8.0 Hz, H<sup>3'A</sup>), 8.24 (d, J = 8.0 Hz, H<sup>3'B</sup>), 7.8-7.7 (m, H<sup>4'A</sup>), 7.7 (ddd, J = 7.9, 7.8, 2.5 Hz, H<sup>4'B</sup>), 7.64 (br d, J = 8.9 Hz, H<sup>4B</sup>), 7.42 (m, (Ph-F)), 7.3-7.2 (m, H<sup>5A</sup> + H<sup>5'A</sup> + H<sup>5'B</sup>), 7.1-7.0 (m, H<sup>5B</sup> + (Ph-F)), 6.96 (ddd, J = 6.9, 6.7, 1.4 Hz, H<sup>6B</sup>), 6.46 (d, J = 6.8 Hz, H<sup>6A</sup>).  $^{-13}$ C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta = 163.99$  (d,  $J_{C-F} = 251.04$  Hz, C), 163.58 (d,  $J_{C-F} = 249.60$  Hz, C), 162.41 (C), 152.40 (d,  $J_{C-P} = 8.23$  Hz, C), 151.89 (C), 149.16 (CH), 137.05 (C), 136.61-135.97 (m), 132.14-131.75 (m), 126.60 (d,  $J_{C-P} = 29.40$  Hz, CH), 126.10 (CH), 125.81 (CH), 124.96 (CH), 122.01 (CH), 121.42 (d, J = 1.38 Hz, CH), 121.29 (CH), 120.58 (CH), 118.92 (CH), 116.55-115.57 (m).  $^{-31}$ P NMR (CDCl<sub>3</sub>, 161 MHz):  $\delta = -3.22$  (t,  $J_{P-F} = 4.03$  Hz, P<sup>B</sup>), -17.16 (t,  $J_{P-F} = 4.05$  Hz, P<sup>A</sup>);  $J_{P-Se} = 744.4$  Hz.  $^{-}$ MS(EI): m/z (%) = 416.1 (39) [M<sup>+</sup>], 404.1 (80) [M<sup>+</sup> N<sub>2</sub> + O] 388.1 (100) [M<sup>+</sup> N<sub>2</sub>], 293.1(90) [M<sup>+</sup> - *p*-F-Ph - N<sub>2</sub>], 219.1 (65) [M<sup>+</sup> - N<sub>2</sub> - *p*-F-Ph - Py].  $^{-}$ HRMS ESI-[TOF] for C<sub>23</sub>H<sub>15</sub>F<sub>2</sub>N<sub>4</sub>P [M+O+Li]: calcd. 439.1112; found. 439.1081.

7-(Di(*p*-trifluoromethylphenyl)phosphino)-3-(pyridin-2'-yl)-[1,2,3]triazolo[1,5a]pyridine (2g-A) and 3-(6'-(di(*p*-trifluoromethylphenyl)phosphino)pyridin-2'-yl)-[1,2,3]triazolo[1,5-a]pyridine (2g-B)



3-(Pyridine-2'-yl)-[1,2,3]triazolo[1,5-a]pyridine **1** (0.30 g, 1.5 mmol) and di(ptrifluorophenyl)phosphine chloride were used affording 0.36 g (46%) of 2g after chromatography; A/B ratio = 0.18. -<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.80 (d, J = 8.7 Hz,  $H^{4A}$ ), 8.7-8.6 (m,  $H^{7B}+H^{6'A}$ ), 8.32 (app d, J = 8.0 Hz,  $H^{3'A}+H^{3'B}$ ), 7.77 (dd, J = 7.9, 7.7 Hz,  $H^{4'B}$ ), 7.76 (ddd, J = 7.9, 7.7, 2.8 Hz,  $H^{4'A}$ ), 7.7-7.5 (m,  $(p-CF_3Ph)_2+H^{4B}$ ), 7.4-7.3 (m,  $H^{5'A}+H^{5'B}$ ), 7.21 (dd, J = 8.7, 6.8 Hz,  $H^{5A}$ ), 7.1-6.9 (m,  $H^{5B}+H^{6B}$ ), 6.53 (d, J = 6.8 Hz,  $H^{6A}$ ). – <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  = 160.34 (C), 152.92 (d,  $J_{C-P}$ = 7.75 Hz, C), 151.68 (C), 149.19 (CH), 140.82 (d,  $J_{C-P} = 13.06$  Hz, C), 137.81 (C), 136.78 (C), 136.71-136.47 (C+CH), 134.54 (d,  $J_{C-P} = 19.91$  Hz, CH), 134.46 (d, J = 21.50 Hz, CH), 132.13 (q,  ${}^{2}J_{C-F} =$ 33.7 Hz,1 C<sup>A</sup>),132.03 (C), 131.8 (C), 131.44 (C), 131.23 (g,  ${}^{2}J_{C-F} = 32.6 \text{ Hz},1\text{C}^{\text{B}}$ ), 131.01 (C), 130.58 (C), 127.50 (d, J<sub>C-P</sub> = 33.58 Hz, CH), 126.27 (CH), 125.94-125.63 (m), 125.50-125.16 (m), 125.06 (CH), 123.91 (q,  $J_{C-F}$ = 272,3 Hz, C), 122.19-121.83 (m), 120.78 (CH), 120.60 (CH), 119.71 (CH), 118.50 (CH), 115.90 (CH);  ${}^{31}$ P NMR (CDCl<sub>3</sub>, 161 MHz):  $\delta$ = -1.15 (P<sup>B</sup>), -15.31 (P<sup>A</sup>);  $J_{P-Se} = 760.6$  Hz; MS(EI): m/z(%) = 516.1 (12) [M<sup>+</sup>], 488.1 (80) [M<sup>+</sup>- N<sub>2</sub>], 293.1(100) [M<sup>+</sup>- *p*-CF<sub>3</sub>-Ph - N<sub>2</sub>]. – HRMS ESI-[TOF] for C<sub>25</sub>H<sub>15</sub>F<sub>6</sub>N<sub>4</sub>P [M+K]: calcd. 555.0576 ; found. 555.0513.

# Copies of <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P NMR and COSY NMR spectra

#### <sup>1</sup>H NMR of 2a:





#### <sup>13</sup>C NMR DEPT of 2a:



### <sup>13</sup>C NMR of 2a:



| 

ppm (f1)

#### COSY H-H of 2a:



# <sup>31</sup>P NMR of 2a:



# <sup>31</sup>P NMR of 3a:



### <sup>1</sup>H NMR of 2b:





Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

# <sup>13</sup>C NMR DEPT of 2b:



# <sup>13</sup>C NMR of 2b:





#### COSY H-H of 2b:



### <sup>31</sup>P NMR of 2b:







### <sup>1</sup>H NMR of 2c:



#### <sup>13</sup>C NMR DEPT of 2c:



<sup>13</sup>C NMR of 2c:





#### COSY H-H of 2c:



# <sup>31</sup>P NMR of 2c:



# <sup>31</sup>P NMR 3c:



Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

### <sup>1</sup>H NMR of 2d:





### <sup>13</sup>C NMR DEPT of 2c:








#### COSY H-H of 2c:



## <sup>31</sup>P NMR of 2c:







### <sup>1</sup>H NMR of 2e:





Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

#### <sup>13</sup>C NMR DEPT of 2e:



### <sup>13</sup>C NMR of 2e:





#### COSY H-H of 2e:



### <sup>31</sup>P NMR of 2e:



## <sup>31</sup>P NMR of 3e:



### <sup>1</sup>H NMR of 2f:





#### <sup>13</sup>C NMR DEPT of 2f:



### <sup>13</sup>C NMR of 2f:



### <sup>31</sup>P NMR of 2f:



## <sup>31</sup>P NMR of 3f:



## <sup>1</sup>H NMR of 2g:





# <sup>13</sup>C NMR DEPT of 2g:



## <sup>13</sup>C NMR of 2g:



#### COSY H-H of 2g:



## <sup>31</sup>P NMR of 2g:



## <sup>31</sup>P NMR of 3g:



# **Crystal Structure Analysis**

#### Compound 2d (B):

Crystal data

| $\underline{C_{23}H_{17}N_4P}$  | $D_{\rm x} = 1.335 {\rm Mg}{\rm m}^{-3}$                              |
|---------------------------------|-----------------------------------------------------------------------|
| $M_r = 380.38$                  |                                                                       |
| Orthorhombic, Pbca              | $\frac{Mo \ K\alpha}{\lambda = 0.71073} \text{ Å}$                    |
| Hall symbol: <u>-P 2ac 2ab</u>  | Cell parameters from <u>8814</u> reflections                          |
| <i>a</i> = <u>13.3540 (8)</u> Å | $\theta = \underline{1.0} - \underline{27.5}^{\circ}$                 |
| b = 14.4253 (4) Å               | $\mu = 0.16 \text{ mm}^{-1}$                                          |
| c = 19.6452 (10) Å              | T = 173 (2)  K                                                        |
| $V = 3784.4(3) \text{ Å}^3$     | Cell measurement pressure: ? kPa                                      |
| $Z = \underline{8}$             | Block, colorless                                                      |
| $F_{000} = \underline{1584}$    | $\underline{0.30} \times \underline{0.25} \times \underline{0.15}$ mm |

Data collection

| KappaCCD diffractometer                               | 4321 independent reflections                     |
|-------------------------------------------------------|--------------------------------------------------|
| Radiation source: fine-focus sealed tube              | <u>2533</u> reflections with $I > 2\sigma(I)$    |
| Monochromator: graphite                               | $R_{\rm int} = 0.072$                            |
| Detector resolution: <u>?</u> pixels mm <sup>-1</sup> | $\theta_{\text{max}} = \underline{27.5}^{\circ}$ |
| T = 173(2) K                                          | $\theta_{\min} = \underline{2.1}^{\circ}$        |
| $P = \underline{?} kPa$                               | h = -17  10                                      |
| phi and w scans                                       | k = -18  12                                      |
| Absorption correction: none                           | l = -18  25                                      |
| 16637 measured reflections                            |                                                  |

Refinement

| Refinement on $\underline{F^2}$                                           | Secondary atom site location: <u>difference</u><br>Fourier map                                                                                 |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: <u>full</u>                                         | Hydrogen site location: <u>inferred from</u><br><u>neighbouring sites</u>                                                                      |
| $R[F^2 > 2\sigma(F^2)] = \underline{0.056}$                               | H-atom parameters constrained                                                                                                                  |
| $wR(F^2) = \underline{0.178}$                                             | $\frac{w = 1/[\sigma^2(F_o^2) + (0.0964P)^2]}{\text{where } P = (F_o^2 + 2F_c^2)/3}$                                                           |
| S = 1.04                                                                  | $(\Delta/\sigma)_{max} \leq 0.001$                                                                                                             |
| 4321 reflections                                                          | $\Delta \rho_{\text{max}} = \underline{0.47} \text{ e } \text{\AA}^{-3}$                                                                       |
| 254 parameters                                                            | $\Delta \rho_{\rm min} = \underline{-0.53} \ e \ {\rm \AA}^{-3}$                                                                               |
| <u>?</u> constraints                                                      | Extinction correction: <u>SHELXL</u> ,<br><u>Fc</u> <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^{3}$ /sin(2 $\theta$ )] <sup>-1/4</sup> |
| Primary atom site location: <u>structure-</u><br>invariant direct methods | Extinction coefficient: 0.0064 (10)                                                                                                            |

Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\text{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

| -  |            |              |              |                             |
|----|------------|--------------|--------------|-----------------------------|
|    | x          | у            | z            | $U_{ m iso}$ */ $U_{ m eq}$ |
| C1 | 0.2917 (2) | 0.3962 (2)   | 0.63462 (15) | 0.0445 (7)                  |
| H1 | 0.2829     | 0.4109       | 0.6814       | 0.053*                      |
| C2 | 0.2707 (2) | 0.31117 (19) | 0.61084 (15) | 0.0459 (8)                  |
| H2 | 0.2462     | 0.2652       | 0.6412       | 0.055*                      |
| C3 | 0.2843 (2) | 0.28902 (18) | 0.54184 (15) | 0.0422 (7)                  |
| H3 | 0.2695     | 0.2282       | 0.5262       | 0.051*                      |
| C4 | 0.3184 (2) | 0.35348 (16) | 0.49725 (14) | 0.0350 (7)                  |

<u>Fractional atomic coordinates and isotropic or equivalent isotropic displacement</u> parameters  $(Å^2)$ 

| H4  | 0.3280       | 0.3383       | 0.4507       | 0.042*     |
|-----|--------------|--------------|--------------|------------|
| C5  | 0.33937 (19) | 0.44364 (16) | 0.52139 (13) | 0.0300 (6) |
| C6  | 0.3724 (2)   | 0.52895 (16) | 0.49557 (13) | 0.0306 (6) |
| C7  | 0.3990 (2)   | 0.55390 (16) | 0.42598 (13) | 0.0288 (6) |
| C8  | 0.4414 (2)   | 0.63897 (16) | 0.40926 (14) | 0.0354 (7) |
| H8  | 0.4536       | 0.6842       | 0.4434       | 0.042*     |
| C9  | 0.4653 (2)   | 0.65633 (17) | 0.34235 (15) | 0.0402 (7) |
| H9  | 0.4940       | 0.7141       | 0.3298       | 0.048*     |
| C10 | 0.4473 (2)   | 0.58907 (16) | 0.29312 (15) | 0.0375 (7) |
| H10 | 0.4648       | 0.5995       | 0.2469       | 0.045*     |
| C11 | 0.4029 (2)   | 0.50588 (16) | 0.31341 (13) | 0.0312 (6) |
| C12 | 0.3848 (2)   | 0.31085 (16) | 0.30077 (13) | 0.0306 (6) |
| C13 | 0.3125 (2)   | 0.24143 (17) | 0.30123 (13) | 0.0380 (7) |
| H13 | 0.2513       | 0.2502       | 0.2773       | 0.046*     |
| C14 | 0.3294 (3)   | 0.15884 (18) | 0.33672 (14) | 0.0446 (8) |
| H14 | 0.2805       | 0.1110       | 0.3359       | 0.054*     |
| C15 | 0.4170 (3)   | 0.14667 (17) | 0.37289 (14) | 0.0419 (8) |
| H15 | 0.4282       | 0.0906       | 0.3970       | 0.050*     |
| C16 | 0.4882 (2)   | 0.21564 (17) | 0.37407 (14) | 0.0400 (7) |
| H16 | 0.5479       | 0.2075       | 0.3997       | 0.048*     |
| C17 | 0.4731 (2)   | 0.29699 (16) | 0.33797 (14) | 0.0347 (7) |
| H17 | 0.5232       | 0.3438       | 0.3384       | 0.042*     |
| C18 | 0.4487 (2)   | 0.41595 (15) | 0.18499 (13) | 0.0307 (6) |
| C19 | 0.4092 (2)   | 0.40861 (17) | 0.11937 (13) | 0.0356 (7) |
| H19 | 0.3387       | 0.4095       | 0.1131       | 0.043*     |
| C20 | 0.4709 (2)   | 0.40008 (19) | 0.06368 (15) | 0.0428 (7) |
| H20 | 0.4428       | 0.3948       | 0.0194       | 0.051*     |

| C21 | 0.5739 (2)   | 0.39922 (17) | 0.07201 (15) | 0.0408 (7) |
|-----|--------------|--------------|--------------|------------|
| H21 | 0.6164       | 0.3932       | 0.0335       | 0.049*     |
| C22 | 0.6144 (2)   | 0.40708 (16) | 0.13581 (15) | 0.0373 (7) |
| H22 | 0.6851       | 0.4067       | 0.1414       | 0.045*     |
| C23 | 0.5524 (2)   | 0.41566 (16) | 0.19283 (14) | 0.0345 (7) |
| H23 | 0.5810       | 0.4213       | 0.2369       | 0.041*     |
| N1  | 0.32636 (18) | 0.46137 (14) | 0.58918 (11) | 0.0346 (5) |
| N2  | 0.35066 (19) | 0.55064 (16) | 0.60527 (12) | 0.0412 (6) |
| N3  | 0.37766 (17) | 0.59021 (14) | 0.54793 (12) | 0.0367 (6) |
| N4  | 0.37844 (17) | 0.48871 (13) | 0.37881 (10) | 0.0293 (5) |
| P1  | 0.35641 (6)  | 0.41764 (4)  | 0.25394 (3)  | 0.0322 (2) |

### Atomic displacement parameters (Å<sup>2</sup>)

|    | $U^{11}$       | $U^{22}$       | $U^{33}$       | $U^{12}$        | $U^{13}$        | $U^{23}$        |
|----|----------------|----------------|----------------|-----------------|-----------------|-----------------|
| C1 | 0.0382<br>(18) | 0.0616<br>(19) | 0.0336<br>(16) | 0.0025 (15)     | 0.0079 (15)     | 0.0098 (14)     |
| C2 | 0.044 (2)      | 0.0508<br>(18) | 0.0430<br>(18) | -0.0017<br>(15) | 0.0055 (16)     | 0.0161 (14)     |
| C3 | 0.0424<br>(19) | 0.0372<br>(14) | 0.0472<br>(18) | -0.0016<br>(13) | -0.0046<br>(16) | 0.0092 (13)     |
| C4 | 0.0356<br>(16) | 0.0348<br>(14) | 0.0346<br>(15) | 0.0000 (12)     | -0.0046<br>(13) | 0.0013 (11)     |
| C5 | 0.0254<br>(15) | 0.0362<br>(14) | 0.0283<br>(14) | 0.0048 (11)     | -0.0018<br>(12) | 0.0023 (11)     |
| C6 | 0.0284<br>(15) | 0.0313<br>(13) | 0.0321<br>(15) | 0.0032 (11)     | -0.0023<br>(12) | -0.0040<br>(11) |
| C7 | 0.0251<br>(14) | 0.0273<br>(13) | 0.0341<br>(15) | 0.0037 (11)     | -0.0038<br>(12) | -0.0001<br>(11) |
| C8 | 0.0364<br>(17) | 0.0287<br>(14) | 0.0410<br>(16) | 0.0013 (12)     | 0.0006 (14)     | -0.0010<br>(11) |

| C9  | 0.0376<br>(18) | 0.0249<br>(13) | 0.058 (2)      | -0.0013<br>(12) | 0.0038 (16)     | 0.0068 (13)     |
|-----|----------------|----------------|----------------|-----------------|-----------------|-----------------|
| C10 | 0.0421<br>(18) | 0.0312<br>(14) | 0.0391<br>(16) | 0.0041 (12)     | 0.0085 (14)     | 0.0076 (11)     |
| C11 | 0.0315<br>(16) | 0.0270<br>(13) | 0.0351<br>(15) | 0.0066 (11)     | 0.0038 (13)     | 0.0031 (11)     |
| C12 | 0.0366<br>(16) | 0.0284<br>(13) | 0.0269<br>(14) | -0.0018<br>(11) | 0.0054 (13)     | -0.0036<br>(10) |
| C13 | 0.0401<br>(18) | 0.0430<br>(15) | 0.0310<br>(15) | -0.0077<br>(13) | 0.0023 (14)     | -0.0045<br>(12) |
| C14 | 0.058 (2)      | 0.0343<br>(15) | 0.0416<br>(17) | -0.0156<br>(14) | 0.0087 (17)     | 0.0002 (12)     |
| C15 | 0.064 (2)      | 0.0272<br>(13) | 0.0347<br>(16) | -0.0018<br>(14) | 0.0032 (16)     | 0.0004 (11)     |
| C16 | 0.0484<br>(19) | 0.0366<br>(15) | 0.0350<br>(16) | 0.0033 (13)     | -0.0024<br>(15) | -0.0028<br>(12) |
| C17 | 0.0400<br>(18) | 0.0285<br>(13) | 0.0356<br>(16) | -0.0042<br>(12) | -0.0016<br>(14) | 0.0015 (11)     |
| C18 | 0.0334<br>(16) | 0.0262<br>(12) | 0.0324<br>(15) | 0.0000 (11)     | 0.0012 (13)     | 0.0016 (10)     |
| C19 | 0.0328<br>(16) | 0.0441<br>(15) | 0.0299<br>(15) | 0.0004 (12)     | -0.0009<br>(13) | -0.0006<br>(11) |
| C20 | 0.046 (2)      | 0.0522<br>(17) | 0.0303<br>(15) | 0.0006 (14)     | -0.0001<br>(15) | -0.0036<br>(12) |
| C21 | 0.049 (2)      | 0.0363<br>(15) | 0.0369<br>(17) | 0.0032 (13)     | 0.0128 (16)     | -0.0032<br>(12) |
| C22 | 0.0320<br>(16) | 0.0314<br>(14) | 0.0485<br>(18) | 0.0013 (12)     | 0.0031 (14)     | 0.0023 (12)     |
| C23 | 0.0383<br>(17) | 0.0322<br>(13) | 0.0328<br>(15) | 0.0012 (12)     | -0.0021<br>(14) | 0.0038 (11)     |
| N1  | 0.0326<br>(14) | 0.0419<br>(12) | 0.0292<br>(13) | 0.0010 (10)     | 0.0021 (11)     | -0.0003<br>(10) |
| N2  | 0.0408<br>(15) | 0.0473<br>(14) | 0.0356<br>(14) | 0.0001 (12)     | 0.0047 (12)     | -0.0082<br>(11) |

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

| N3 | 0.0345<br>(14) | 0.0396<br>(12) | 0.0360<br>(14) | 0.0015 (10) | 0.0005 (11) | -0.0054<br>(10) |
|----|----------------|----------------|----------------|-------------|-------------|-----------------|
| N4 | 0.0329<br>(14) | 0.0256<br>(10) | 0.0295<br>(12) | 0.0023 (9)  | 0.0012 (11) | 0.0009 (9)      |
| P1 | 0.0329 (4)     | 0.0351 (4)     | 0.0287 (4)     | 0.0011 (3)  | 0.0018 (3)  | 0.0015 (3)      |

## Geometric parameters (Å)

| C1—C2   | 1.342 (4) | C12—P1  | 1.834 (3) |
|---------|-----------|---------|-----------|
| C1—N1   | 1.377 (3) | C13—C14 | 1.399 (4) |
| C1—H1   | 0.9500    | С13—Н13 | 0.9500    |
| C2—C3   | 1.405 (4) | C14—C15 | 1.380 (4) |
| С2—Н2   | 0.9500    | C14—H14 | 0.9500    |
| C3—C4   | 1.356 (4) | C15—C16 | 1.377 (4) |
| С3—Н3   | 0.9500    | С15—Н15 | 0.9500    |
| C4—C5   | 1.412 (3) | C16—C17 | 1.386 (4) |
| C4—H4   | 0.9500    | С16—Н16 | 0.9500    |
| C5—N1   | 1.367 (3) | С17—Н17 | 0.9500    |
| C5—C6   | 1.402 (3) | C18—C23 | 1.394 (4) |
| C6—N3   | 1.358 (3) | C18—C19 | 1.397 (4) |
| C6—C7   | 1.458 (4) | C18—P1  | 1.831 (3) |
| C7—N4   | 1.348 (3) | C19—C20 | 1.374 (4) |
| С7—С8   | 1.391 (3) | С19—Н19 | 0.9500    |
| С8—С9   | 1.376 (4) | C20—C21 | 1.385 (4) |
| С8—Н8   | 0.9500    | С20—Н20 | 0.9500    |
| C9—C10  | 1.391 (4) | C21—C22 | 1.370 (4) |
| С9—Н9   | 0.9500    | C21—H21 | 0.9500    |
| C10—C11 | 1.396 (3) | C22—C23 | 1.398 (4) |
| С10—Н10 | 0.9500    | С22—Н22 | 0.9500    |

| C11—N4   | 1.349 (3) | С23—Н23     | 0.9500    |
|----------|-----------|-------------|-----------|
| C11—P1   | 1.836 (3) | N1—N2       | 1.365 (3) |
| C12—C13  | 1.392 (4) | N2—N3       | 1.313 (3) |
| C12—C17  | 1.401 (4) |             |           |
| C2—C1—N1 | 117.9 (3) | C15—C14—C13 | 120.2 (3) |
| C2—C1—H1 | 121.0     | C15—C14—H14 | 119.9     |
| N1—C1—H1 | 121.0     | C13—C14—H14 | 119.9     |
| C1—C2—C3 | 121.1 (3) | C16—C15—C14 | 120.2 (3) |
| С1—С2—Н2 | 119.4     | С16—С15—Н15 | 119.9     |
| С3—С2—Н2 | 119.4     | С14—С15—Н15 | 119.9     |
| C4—C3—C2 | 120.7 (3) | C15—C16—C17 | 120.2 (3) |
| С4—С3—Н3 | 119.6     | С15—С16—Н16 | 119.9     |
| С2—С3—Н3 | 119.6     | С17—С16—Н16 | 119.9     |
| C3—C4—C5 | 118.8 (3) | C16—C17—C12 | 120.6 (2) |
| С3—С4—Н4 | 120.6     | С16—С17—Н17 | 119.7     |
| С5—С4—Н4 | 120.6     | С12—С17—Н17 | 119.7     |
| N1—C5—C6 | 103.2 (2) | C23—C18—C19 | 118.5 (3) |
| N1—C5—C4 | 118.3 (2) | C23—C18—P1  | 125.9 (2) |
| C6—C5—C4 | 138.5 (2) | C19—C18—P1  | 115.5 (2) |
| N3—C6—C5 | 108.3 (2) | C20—C19—C18 | 121.1 (3) |
| N3—C6—C7 | 122.5 (2) | С20—С19—Н19 | 119.5     |
| C5—C6—C7 | 129.2 (2) | С18—С19—Н19 | 119.5     |
| N4—C7—C8 | 122.4 (2) | C19—C20—C21 | 120.1 (3) |
| N4—C7—C6 | 115.0 (2) | С19—С20—Н20 | 120.0     |
| C8—C7—C6 | 122.6 (2) | C21—C20—H20 | 120.0     |
| C9—C8—C7 | 118.7 (2) | C22—C21—C20 | 120.0 (3) |
| С9—С8—Н8 | 120.6     | C22—C21—H21 | 120.0     |

| С7—С8—Н8    | 120.6       | C20—C21—H21     | 120.0       |
|-------------|-------------|-----------------|-------------|
| C8—C9—C10   | 119.8 (2)   | C21—C22—C23     | 120.4 (3)   |
| С8—С9—Н9    | 120.1       | C21—C22—H22     | 119.8       |
| С10—С9—Н9   | 120.1       | С23—С22—Н22     | 119.8       |
| C9—C10—C11  | 118.3 (3)   | C18—C23—C22     | 120.0 (3)   |
| С9—С10—Н10  | 120.8       | С18—С23—Н23     | 120.0       |
| C11—C10—H10 | 120.8       | С22—С23—Н23     | 120.0       |
| N4—C11—C10  | 122.2 (2)   | N2—N1—C5        | 111.8 (2)   |
| N4—C11—P1   | 113.37 (18) | N2—N1—C1        | 125.0 (2)   |
| C10—C11—P1  | 123.9 (2)   | C5—N1—C1        | 123.1 (2)   |
| C13—C12—C17 | 118.6 (2)   | N3—N2—N1        | 106.1 (2)   |
| C13—C12—P1  | 117.6 (2)   | N2—N3—C6        | 110.6 (2)   |
| C17—C12—P1  | 123.75 (19) | C7—N4—C11       | 118.5 (2)   |
| C12—C13—C14 | 120.2 (3)   | C18—P1—C12      | 102.74 (11) |
| С12—С13—Н13 | 119.9       | C18—P1—C11      | 104.60 (12) |
| С14—С13—Н13 | 119.9       | C12—P1—C11      | 101.13 (11) |
| N1—C1—C2—C3 | 0.4 (5)     | C20—C21—C22—C23 | 0.2 (4)     |
| C1—C2—C3—C4 | -0.5 (5)    | C19—C18—C23—C22 | -0.7 (3)    |
| C2—C3—C4—C5 | -0.4 (4)    | P1—C18—C23—C22  | 175.05 (18) |
| C3—C4—C5—N1 | 1.4 (4)     | C21—C22—C23—C18 | 0.2 (4)     |
| C3—C4—C5—C6 | -178.6 (3)  | C6—C5—N1—N2     | -0.8 (3)    |
| N1-C5-C6-N3 | 0.5 (3)     | C4—C5—N1—N2     | 179.2 (2)   |
| C4—C5—C6—N3 | -179.6 (3)  | C6—C5—N1—C1     | 178.4 (2)   |
| N1—C5—C6—C7 | 179.9 (3)   | C4—C5—N1—C1     | -1.5 (4)    |
| C4—C5—C6—C7 | -0.1 (5)    | C2-C1-N1-N2     | 179.8 (3)   |
| N3—C6—C7—N4 | -172.5 (2)  | C2—C1—N1—C5     | 0.6 (4)     |
| C5—C6—C7—N4 | 8.1 (4)     | C5—N1—N2—N3     | 0.9 (3)     |

| N3—C6—C7—C8     | 6.8 (4)    | C1—N1—N2—N3    | -178.4 (3)   |
|-----------------|------------|----------------|--------------|
| С5—С6—С7—С8     | -172.6 (3) | N1—N2—N3—C6    | -0.6 (3)     |
| N4—C7—C8—C9     | -1.5 (4)   | C5—C6—N3—N2    | 0.1 (3)      |
| С6—С7—С8—С9     | 179.2 (3)  | C7—C6—N3—N2    | -179.4 (2)   |
| C7—C8—C9—C10    | -0.3 (4)   | C8—C7—N4—C11   | 2.1 (4)      |
| C8—C9—C10—C11   | 1.4 (4)    | C6—C7—N4—C11   | -178.6 (2)   |
| C9—C10—C11—N4   | -0.8 (4)   | C10—C11—N4—C7  | -0.9 (4)     |
| C9—C10—C11—P1   | 170.2 (2)  | P1—C11—N4—C7   | -172.77 (18) |
| C17—C12—C13—C14 | -1.7 (4)   | C23—C18—P1—C12 | -60.1 (2)    |
| P1—C12—C13—C14  | -179.3 (2) | C19—C18—P1—C12 | 115.75 (19)  |
| C12—C13—C14—C15 | 1.6 (4)    | C23—C18—P1—C11 | 45.1 (2)     |
| C13—C14—C15—C16 | -0.2 (4)   | C19—C18—P1—C11 | -138.98 (18) |
| C14—C15—C16—C17 | -1.2 (4)   | C13—C12—P1—C18 | -114.6 (2)   |
| C15—C16—C17—C12 | 1.0 (4)    | C17—C12—P1—C18 | 67.9 (2)     |
| C13—C12—C17—C16 | 0.4 (4)    | C13—C12—P1—C11 | 137.4 (2)    |
| P1—C12—C17—C16  | 177.8 (2)  | C17—C12—P1—C11 | -40.0 (3)    |
| C23—C18—C19—C20 | 0.8 (4)    | N4—C11—P1—C18  | -149.50 (19) |
| P1—C18—C19—C20  | -175.4 (2) | C10—C11—P1—C18 | 38.8 (3)     |
| C18—C19—C20—C21 | -0.4 (4)   | N4—C11—P1—C12  | -43.0 (2)    |
| C19—C20—C21—C22 | -0.1 (4)   | C10-C11-P1-C12 | 145.3 (2)    |

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Data collection: <u>Collect (Nonius B.V., 1998)</u>; cell refinement: <u>DENZO (Nonius B.V., 1998)</u>; data reduction: <u>DENZO (Nonius B.V., 1998)</u>; program(s) used to solve structure: <u>SHELXS97 (Sheldrick, 1997)</u>; program(s) used to refine structure: <u>SHELXL97 (Sheldrick, 1997)</u>; molecular graphics: <u>PLATON 98 (Spek, 1998)</u>; software used to prepare material for publication: <u>SHELXL97 (Sheldrick, 1997)</u>.

Compound 3e (B):

Crystal data

| $\underline{C_{25}H_{21}N_4PSe}$         | $F_{000} = \underline{496}$                                                   |
|------------------------------------------|-------------------------------------------------------------------------------|
| $M_r = 487.39$                           | $D_{\rm x} = 1.456 {\rm Mg m}^{-3}$                                           |
| Triclinic, P                             |                                                                               |
| Hall symbol: <u>-P 1</u>                 | $\frac{Mo \ K\alpha}{\lambda = 0.71073} \text{ Å}$                            |
| $a = \underline{8.6696(8)}$ Å            | Cell parameters from <u>13838</u> reflections                                 |
| b = 11.0202 (11)  Å                      | $\theta = \underline{1.0} - \underline{27.5}^{\circ}$                         |
| c = 12.2054 (15)  Å                      | $\mu = 1.78 \text{ mm}^{-1}$                                                  |
| $\alpha = \underline{88.075(6)}^{\circ}$ | T = 173 (2)  K                                                                |
| $\beta = \underline{87.392(6)}^{\circ}$  | Cell measurement pressure: <u>?</u> kPa                                       |
| $\gamma = \underline{72.639(6)}^{\circ}$ | Prism, colorless                                                              |
| $V = \underline{1111.6(2)} \text{ Å}^3$  | $\underline{0.16} \times \underline{0.12} \times \underline{0.10} \text{ mm}$ |
| Z = <u>2</u>                             |                                                                               |

#### Data collection

| KappaCCD diffractometer                                                                        | 10682 measured reflections                                |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Radiation source: fine-focus sealed tube                                                       | 5065 independent reflections                              |
| Monochromator: graphite                                                                        | <u>2903</u> reflections with $\underline{I > 2\sigma(I)}$ |
| Detector resolution: <u>?</u> pixels mm <sup>-1</sup>                                          | $R_{\rm int} = 0.079$                                     |
| T = 173(2) K                                                                                   | $\theta_{\text{max}} = \underline{27.6}^{\circ}$          |
| $P = \underline{?} kPa$                                                                        | $\theta_{\min} = \underline{1.7}^{\circ}$                 |
| phi and w scans                                                                                | $h = \underline{-11}  \underline{9}$                      |
| Absorption correction: <u>multi-scan</u><br><u>MULscanABS in PLATON (Spek,</u><br><u>2003)</u> | k = -14  14                                               |
| $T_{\min} = 0.724, \ T_{\max} = 0.846$                                                         | l = -13  15                                               |

Refinement

| Refinement on $\underline{F^2}$                                           | Secondary atom site location: <u>difference</u><br>Fourier map                                |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Least-squares matrix: <u>full</u>                                         | Hydrogen site location: <u>inferred from</u><br><u>neighbouring sites</u>                     |
| $R[F^2 > 2\sigma(F^2)] = \underline{0.092}$                               | H-atom parameters constrained                                                                 |
| $wR(F^2) = \underline{0.263}$                                             | $\frac{w = 1/[\sigma^2(F_o^2) + (0.113P)^2 + 2.7079P]}{\text{where } P = (F_o^2 + 2F_c^2)/3}$ |
| S = 1.10                                                                  | $(\Delta/\sigma)_{max} \leq 0.001$                                                            |
| 5065 reflections                                                          | $\Delta \rho_{\text{max}} = \underline{0.63} \text{ e } \text{\AA}^{-3}$                      |
| 282 parameters                                                            | $\Delta \rho_{\rm min} = \underline{-0.88} \ e \ {\rm \AA}^{-3}$                              |
| ? constraints                                                             | Extinction correction: none                                                                   |
| Primary atom site location: <u>structure-</u><br>invariant direct methods |                                                                                               |

Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\text{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å<sup>2</sup>)

|    | X           | у           | Z.          | $U_{ m iso}$ */ $U_{ m eq}$ |
|----|-------------|-------------|-------------|-----------------------------|
| C1 | 0.6687 (10) | -0.2313 (7) | -0.0289 (8) | 0.041 (2)                   |
| H1 | 0.6735      | -0.2967     | -0.0788     | 0.049*                      |
| C2 | 0.6005 (10) | -0.2332 (7) | 0.0724 (8)  | 0.043 (2)                   |
| H2 | 0.5573      | -0.3003     | 0.0945      | 0.052*                      |
| C3 | 0.5939 (10) | -0.1366 (7) | 0.1442 (7)  | 0.0383 (19)                 |
| Н3 | 0.5455      | -0.1388     | 0.2154      | 0.046*                      |
| C4 | 0.6540 (9)  | -0.0399 (7) | 0.1162 (6)  | 0.0303 (17)                 |

| H4   | 0.6494      | 0.0247      | 0.1669      | 0.036*      |
|------|-------------|-------------|-------------|-------------|
| C5   | 0.7245 (8)  | -0.0369 (6) | 0.0090 (6)  | 0.0278 (17) |
| C6   | 0.7978 (8)  | 0.0405 (6)  | -0.0533 (6) | 0.0253 (16) |
| C7   | 0.8244 (8)  | 0.1601 (7)  | -0.0289 (6) | 0.0279 (17) |
| C8   | 0.9074 (9)  | 0.2210 (7)  | -0.1025 (6) | 0.0308 (17) |
| H8   | 0.9495      | 0.1847      | -0.1711     | 0.037*      |
| C9   | 0.9263 (9)  | 0.3351 (7)  | -0.0724 (6) | 0.0320 (17) |
| Н9   | 0.9797      | 0.3796      | -0.1214     | 0.038*      |
| C10  | 0.8677 (9)  | 0.3845 (7)  | 0.0288 (6)  | 0.0311 (17) |
| H10  | 0.8835      | 0.4613      | 0.0518      | 0.037*      |
| C11  | 0.7848 (8)  | 0.3186 (6)  | 0.0963 (6)  | 0.0249 (16) |
| C12  | 0.8150 (8)  | 0.4679 (6)  | 0.2812 (6)  | 0.0247 (15) |
| C13  | 0.9782 (9)  | 0.4065 (7)  | 0.2901 (6)  | 0.0300 (17) |
| H13  | 1.0227      | 0.3221      | 0.2649      | 0.036*      |
| C14  | 1.0746 (10) | 0.4666 (7)  | 0.3347 (6)  | 0.0338 (18) |
| H14  | 1.1862      | 0.4224      | 0.3414      | 0.041*      |
| C15  | 1.0160 (10) | 0.5918 (7)  | 0.3716 (6)  | 0.0329 (18) |
| C18  | 1.1258 (11) | 0.6564 (8)  | 0.4200 (7)  | 0.046 (2)   |
| H18A | 1.0610      | 0.7310      | 0.4604      | 0.069*      |
| H18B | 1.1898      | 0.6834      | 0.3611      | 0.069*      |
| H18C | 1.1985      | 0.5972      | 0.4702      | 0.069*      |
| C16  | 0.8540 (10) | 0.6507 (7)  | 0.3611 (7)  | 0.038 (2)   |
| H16  | 0.8097      | 0.7354      | 0.3857      | 0.046*      |
| C17  | 0.7535 (10) | 0.5920 (7)  | 0.3166 (6)  | 0.0331 (18) |
| H17  | 0.6419      | 0.6362      | 0.3100      | 0.040*      |
| C19  | 0.6952 (8)  | 0.2530 (6)  | 0.3213 (6)  | 0.0250 (15) |
| C20  | 0.8219 (9)  | 0.1411 (7)  | 0.3190 (6)  | 0.0292 (17) |

| H20  | 0.9026       | 0.1278       | 0.2617       | 0.035*      |
|------|--------------|--------------|--------------|-------------|
| C21  | 0.8311 (9)   | 0.0487 (7)   | 0.3998 (6)   | 0.0298 (17) |
| H21  | 0.9183       | -0.0278      | 0.3967       | 0.036*      |
| C22  | 0.7153 (9)   | 0.0649 (7)   | 0.4863 (6)   | 0.0322 (18) |
| C25  | 0.7301 (11)  | -0.0331 (8)  | 0.5759 (7)   | 0.049 (2)   |
| H25A | 0.7921       | -0.1167      | 0.5482       | 0.073*      |
| H25B | 0.6221       | -0.0353      | 0.6013       | 0.073*      |
| H25C | 0.7859       | -0.0117      | 0.6371       | 0.073*      |
| C23  | 0.5894 (9)   | 0.1778 (8)   | 0.4867 (7)   | 0.038 (2)   |
| H23  | 0.5091       | 0.1908       | 0.5443       | 0.046*      |
| C24  | 0.5757 (9)   | 0.2723 (7)   | 0.4067 (6)   | 0.0317 (18) |
| H24  | 0.4878       | 0.3483       | 0.4092       | 0.038*      |
| N1   | 0.7305 (7)   | -0.1347 (5)  | -0.0588 (5)  | 0.0318 (15) |
| N2   | 0.8016 (8)   | -0.1189 (6)  | -0.1577 (5)  | 0.0406 (17) |
| N3   | 0.8405 (8)   | -0.0134 (6)  | -0.1534 (5)  | 0.0365 (16) |
| N4   | 0.7625 (7)   | 0.2083 (5)   | 0.0696 (5)   | 0.0248 (13) |
| P1   | 0.6831 (2)   | 0.38533 (17) | 0.22541 (15) | 0.0248 (4)  |
| Se1  | 0.44749 (10) | 0.50076 (8)  | 0.19694 (8)  | 0.0445 (3)  |

Atomic displacement parameters (Å<sup>2</sup>)

|    | $U^{11}$  | $U^{22}$  | $U^{33}$  | $U^{12}$   | $U^{13}$   | $U^{23}$   |
|----|-----------|-----------|-----------|------------|------------|------------|
| C1 | 0.040 (5) | 0.024 (4) | 0.060 (6) | -0.006 (4) | -0.027 (4) | -0.008 (4) |
| C2 | 0.044 (5) | 0.029 (4) | 0.058 (6) | -0.012 (4) | -0.008 (4) | 0.007 (4)  |
| C3 | 0.041 (5) | 0.037 (4) | 0.039 (5) | -0.014 (4) | -0.007 (4) | 0.005 (4)  |
| C4 | 0.031 (4) | 0.027 (4) | 0.030 (4) | -0.005 (3) | -0.006 (3) | -0.002 (3) |
| C5 | 0.022 (4) | 0.023 (4) | 0.033 (4) | 0.002 (3)  | -0.011 (3) | -0.005 (3) |
| C6 | 0.021 (4) | 0.025 (4) | 0.027 (4) | -0.003 (3) | -0.003 (3) | -0.003 (3) |

| C7  | 0.024 (4)  | 0.027 (4)  | 0.030 (4)   | -0.003 (3)  | -0.004 (3)  | -0.005 (3)  |
|-----|------------|------------|-------------|-------------|-------------|-------------|
| C8  | 0.024 (4)  | 0.041 (4)  | 0.026 (4)   | -0.007 (3)  | -0.003 (3)  | 0.000 (3)   |
| C9  | 0.032 (4)  | 0.038 (4)  | 0.033 (5)   | -0.023 (3)  | -0.003 (3)  | 0.009 (3)   |
| C10 | 0.034 (4)  | 0.030 (4)  | 0.034 (5)   | -0.016 (3)  | -0.006 (3)  | 0.002 (3)   |
| C11 | 0.021 (4)  | 0.025 (4)  | 0.027 (4)   | -0.004 (3)  | -0.004 (3)  | -0.001 (3)  |
| C12 | 0.028 (4)  | 0.025 (4)  | 0.025 (4)   | -0.013 (3)  | -0.003 (3)  | -0.001 (3)  |
| C13 | 0.035 (4)  | 0.023 (4)  | 0.033 (4)   | -0.010 (3)  | -0.001 (3)  | -0.001 (3)  |
| C14 | 0.034 (4)  | 0.033 (4)  | 0.037 (5)   | -0.014 (3)  | -0.005 (3)  | -0.001 (3)  |
| C15 | 0.042 (5)  | 0.036 (4)  | 0.028 (4)   | -0.022 (4)  | -0.007 (3)  | -0.002 (3)  |
| C18 | 0.054 (5)  | 0.050 (5)  | 0.045 (5)   | -0.031 (4)  | -0.011 (4)  | -0.010 (4)  |
| C16 | 0.043 (5)  | 0.031 (4)  | 0.040 (5)   | -0.008 (4)  | -0.004 (4)  | -0.017 (4)  |
| C17 | 0.037 (4)  | 0.026 (4)  | 0.037 (5)   | -0.009 (3)  | 0.001 (3)   | -0.009 (3)  |
| C19 | 0.026 (4)  | 0.029 (4)  | 0.025 (4)   | -0.016 (3)  | -0.003 (3)  | -0.006 (3)  |
| C20 | 0.026 (4)  | 0.034 (4)  | 0.030 (4)   | -0.011 (3)  | 0.002 (3)   | -0.009 (3)  |
| C21 | 0.035 (4)  | 0.023 (4)  | 0.033 (4)   | -0.012 (3)  | -0.005 (3)  | -0.001 (3)  |
| C22 | 0.041 (5)  | 0.042 (4)  | 0.025 (4)   | -0.028 (4)  | -0.012 (3)  | 0.001 (3)   |
| C25 | 0.057 (6)  | 0.052 (5)  | 0.046 (5)   | -0.030 (5)  | -0.009 (4)  | 0.008 (4)   |
| C23 | 0.032 (4)  | 0.057 (5)  | 0.032 (5)   | -0.024 (4)  | 0.005 (3)   | -0.010 (4)  |
| C24 | 0.028 (4)  | 0.034 (4)  | 0.032 (4)   | -0.008 (3)  | 0.000 (3)   | -0.002 (3)  |
| N1  | 0.032 (4)  | 0.025 (3)  | 0.037 (4)   | -0.006 (3)  | -0.010 (3)  | -0.008 (3)  |
| N2  | 0.049 (4)  | 0.036 (4)  | 0.034 (4)   | -0.006 (3)  | -0.008 (3)  | -0.013 (3)  |
| N3  | 0.042 (4)  | 0.033 (4)  | 0.032 (4)   | -0.006 (3)  | 0.002 (3)   | -0.014 (3)  |
| N4  | 0.024 (3)  | 0.024 (3)  | 0.028 (3)   | -0.010 (3)  | -0.002 (2)  | -0.002 (2)  |
| P1  | 0.0230 (9) | 0.0232 (9) | 0.0300 (11) | -0.0087 (8) | -0.0029 (8) | -0.0045 (7) |
| Se1 | 0.0340 (5) | 0.0406 (5) | 0.0593 (7)  | -0.0112 (4) | -0.0020(4)  | -0.0036 (4) |

Geometric parameters (Å)

| C1—C2   | 1.348 (12) | C14—C15  | 1.402 (10) |
|---------|------------|----------|------------|
| C1—N1   | 1.361 (10) | C14—H14  | 0.9500     |
| C1—H1   | 0.9500     | C15—C16  | 1.371 (11) |
| C2—C3   | 1.387 (12) | C15—C18  | 1.499 (11) |
| С2—Н2   | 0.9500     | C18—H18A | 0.9800     |
| C3—C4   | 1.347 (11) | C18—H18B | 0.9800     |
| С3—Н3   | 0.9500     | C18—H18C | 0.9800     |
| C4—C5   | 1.422 (11) | C16—C17  | 1.369 (11) |
| C4—H4   | 0.9500     | С16—Н16  | 0.9500     |
| C5—N1   | 1.368 (9)  | С17—Н17  | 0.9500     |
| C5—C6   | 1.394 (10) | C19—C20  | 1.385 (10) |
| C6—N3   | 1.363 (9)  | C19—C24  | 1.410 (10) |
| C6—C7   | 1.447 (10) | C19—P1   | 1.821 (7)  |
| C7—N4   | 1.353 (9)  | C20—C21  | 1.381 (10) |
| С7—С8   | 1.401 (11) | С20—Н20  | 0.9500     |
| С8—С9   | 1.379 (11) | C21—C22  | 1.401 (11) |
| С8—Н8   | 0.9500     | С21—Н21  | 0.9500     |
| C9—C10  | 1.380 (10) | C22—C23  | 1.389 (11) |
| С9—Н9   | 0.9500     | C22—C25  | 1.493 (11) |
| C10—C11 | 1.393 (10) | С25—Н25А | 0.9800     |
| C10—H10 | 0.9500     | С25—Н25В | 0.9800     |
| C11—N4  | 1.340 (9)  | С25—Н25С | 0.9800     |
| C11—P1  | 1.834 (7)  | C23—C24  | 1.386 (11) |
| C12—C13 | 1.382 (10) | С23—Н23  | 0.9500     |
| C12—C17 | 1.388 (10) | C24—H24  | 0.9500     |
| C12—P1  | 1.826 (7)  | N1—N2    | 1.359 (9)  |
| C13—C14 | 1.353 (11) | N2—N3    | 1.307 (9)  |

| С13—Н13   | 0.9500    | P1—Se1        | 2.0965 (19) |
|-----------|-----------|---------------|-------------|
| C2—C1—N1  | 119.3 (7) | H18A—C18—H18B | 109.5       |
| C2—C1—H1  | 120.4     | C15—C18—H18C  | 109.5       |
| N1—C1—H1  | 120.4     | H18A—C18—H18C | 109.5       |
| C1—C2—C3  | 119.6 (8) | H18B—C18—H18C | 109.5       |
| С1—С2—Н2  | 120.2     | C17—C16—C15   | 122.4 (7)   |
| С3—С2—Н2  | 120.2     | С17—С16—Н16   | 118.8       |
| C4—C3—C2  | 122.1 (8) | С15—С16—Н16   | 118.8       |
| С4—С3—Н3  | 119.0     | C16—C17—C12   | 119.9 (7)   |
| С2—С3—Н3  | 119.0     | С16—С17—Н17   | 120.1       |
| C3—C4—C5  | 118.5 (7) | С12—С17—Н17   | 120.1       |
| С3—С4—Н4  | 120.8     | C20—C19—C24   | 119.7 (7)   |
| С5—С4—Н4  | 120.8     | C20—C19—P1    | 123.1 (6)   |
| N1—C5—C6  | 104.2 (6) | C24—C19—P1    | 117.0 (5)   |
| N1—C5—C4  | 117.6 (7) | C21—C20—C19   | 120.2 (7)   |
| C6—C5—C4  | 138.1 (7) | С21—С20—Н20   | 119.9       |
| N3—C6—C5  | 107.5 (6) | С19—С20—Н20   | 119.9       |
| N3—C6—C7  | 121.2 (7) | C20—C21—C22   | 121.7 (7)   |
| C5—C6—C7  | 131.2 (6) | C20—C21—H21   | 119.2       |
| N4—C7—C8  | 122.9 (7) | C22—C21—H21   | 119.2       |
| N4—C7—C6  | 114.9 (6) | C23—C22—C21   | 117.0 (7)   |
| C8—C7—C6  | 122.2 (7) | C23—C22—C25   | 121.6 (7)   |
| С9—С8—С7  | 118.1 (7) | C21—C22—C25   | 121.3 (7)   |
| С9—С8—Н8  | 120.9     | С22—С25—Н25А  | 109.5       |
| С7—С8—Н8  | 120.9     | С22—С25—Н25В  | 109.5       |
| C8—C9—C10 | 120.0 (7) | H25A—C25—H25B | 109.5       |
| С8—С9—Н9  | 120.0     | C22—C25—H25C  | 109.5       |
| С10—С9—Н9    | 120.0     | H25A—C25—H25C   | 109.5      |
|--------------|-----------|-----------------|------------|
| C9—C10—C11   | 118.1 (7) | H25B—C25—H25C   | 109.5      |
| С9—С10—Н10   | 120.9     | C24—C23—C22     | 122.9 (7)  |
| C11—C10—H10  | 120.9     | С24—С23—Н23     | 118.6      |
| N4—C11—C10   | 123.6 (6) | С22—С23—Н23     | 118.6      |
| N4—C11—P1    | 114.9 (5) | C23—C24—C19     | 118.5 (7)  |
| C10—C11—P1   | 121.3 (5) | C23—C24—H24     | 120.7      |
| C13—C12—C17  | 118.9 (7) | С19—С24—Н24     | 120.7      |
| C13—C12—P1   | 120.1 (5) | N2—N1—C1        | 126.3 (7)  |
| C17—C12—P1   | 120.9 (6) | N2—N1—C5        | 110.8 (6)  |
| C14—C13—C12  | 119.9 (7) | C1—N1—C5        | 122.9 (7)  |
| C14—C13—H13  | 120.0     | N3—N2—N1        | 106.8 (6)  |
| С12—С13—Н13  | 120.0     | N2—N3—C6        | 110.6 (6)  |
| C13—C14—C15  | 122.5 (7) | C11—N4—C7       | 117.2 (6)  |
| C13—C14—H14  | 118.8     | C19—P1—C12      | 104.2 (3)  |
| C15—C14—H14  | 118.8     | C19—P1—C11      | 107.4 (3)  |
| C16—C15—C14  | 116.4 (7) | C12—P1—C11      | 105.0 (3)  |
| C16—C15—C18  | 122.3 (7) | C19—P1—Se1      | 114.6 (2)  |
| C14—C15—C18  | 121.3 (7) | C12—P1—Se1      | 114.7 (2)  |
| C15—C18—H18A | 109.5     | C11—P1—Se1      | 110.3 (2)  |
| C15—C18—H18B | 109.5     |                 |            |
| N1—C1—C2—C3  | 0.2 (12)  | C22—C23—C24—C19 | -0.2 (12)  |
| C1—C2—C3—C4  | -0.1 (12) | C20—C19—C24—C23 | 0.3 (11)   |
| C2—C3—C4—C5  | 0.8 (11)  | P1—C19—C24—C23  | -174.4 (6) |
| C3—C4—C5—N1  | -1.5 (10) | C2-C1-N1-N2     | -179.5 (7) |
| C3—C4—C5—C6  | 179.8 (8) | C2-C1-N1-C5     | -1.1 (11)  |
| N1-C5-C6-N3  | 0.9 (7)   | C6—C5—N1—N2     | -0.6 (7)   |

| C4—C5—C6—N3     | 179.6 (8)  | C4—C5—N1—N2    | -179.6 (6) |
|-----------------|------------|----------------|------------|
| N1—C5—C6—C7     | 178.0 (7)  | C6—C5—N1—C1    | -179.2 (6) |
| C4—C5—C6—C7     | -3.2 (14)  | C4—C5—N1—C1    | 1.7 (10)   |
| N3—C6—C7—N4     | 174.0 (6)  | C1—N1—N2—N3    | 178.6 (6)  |
| C5—C6—C7—N4     | -2.8 (11)  | C5—N1—N2—N3    | 0.0 (8)    |
| N3—C6—C7—C8     | -5.7 (10)  | N1—N2—N3—C6    | 0.5 (8)    |
| С5—С6—С7—С8     | 177.5 (7)  | C5—C6—N3—N2    | -0.9 (8)   |
| N4—C7—C8—C9     | 0.0 (10)   | C7—C6—N3—N2    | -178.4 (6) |
| С6—С7—С8—С9     | 179.7 (7)  | C10—C11—N4—C7  | -0.2 (10)  |
| C7—C8—C9—C10    | 1.6 (11)   | P1—C11—N4—C7   | 175.0 (5)  |
| C8—C9—C10—C11   | -2.4 (11)  | C8—C7—N4—C11   | -0.7 (10)  |
| C9—C10—C11—N4   | 1.8 (11)   | C6—C7—N4—C11   | 179.6 (6)  |
| C9—C10—C11—P1   | -173.1 (5) | C20—C19—P1—C12 | -80.7 (6)  |
| C17—C12—C13—C14 | 1.2 (11)   | C24—C19—P1—C12 | 93.8 (6)   |
| P1—C12—C13—C14  | -177.9 (6) | C20—C19—P1—C11 | 30.3 (7)   |
| C12—C13—C14—C15 | -1.1 (12)  | C24—C19—P1—C11 | -155.2 (6) |
| C13—C14—C15—C16 | 0.6 (12)   | C20-C19-P1-Se1 | 153.2 (5)  |
| C13—C14—C15—C18 | -179.5 (8) | C24—C19—P1—Se1 | -32.4 (6)  |
| C14—C15—C16—C17 | -0.4 (12)  | C13—C12—P1—C19 | 62.3 (6)   |
| C18—C15—C16—C17 | 179.8 (8)  | C17—C12—P1—C19 | -116.7 (6) |
| C15—C16—C17—C12 | 0.6 (13)   | C13—C12—P1—C11 | -50.4 (7)  |
| C13—C12—C17—C16 | -1.0 (11)  | C17—C12—P1—C11 | 130.5 (6)  |
| P1—C12—C17—C16  | 178.1 (6)  | C13—C12—P1—Se1 | -171.6 (5) |
| C24—C19—C20—C21 | 0.1 (11)   | C17—C12—P1—Se1 | 9.4 (7)    |
| P1-C19-C20-C21  | 174.4 (6)  | N4—C11—P1—C19  | 37.3 (6)   |
| C19—C20—C21—C22 | -0.5 (11)  | C10—C11—P1—C19 | -147.4 (6) |
| C20—C21—C22—C23 | 0.6 (11)   | N4—C11—P1—C12  | 147.7 (5)  |

| C20—C21—C22—C25 | -177.3 (7) | C10-C11-P1-C12 | -36.9 (6) |
|-----------------|------------|----------------|-----------|
| C21—C22—C23—C24 | -0.2 (11)  | N4—C11—P1—Se1  | -88.3 (5) |
| C25—C22—C23—C24 | 177.7 (8)  | C10-C11-P1-Se1 | 87.1 (6)  |

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Data collection: <u>Collect (Nonius B.V., 1998)</u>; cell refinement: <u>DENZO (Nonius B.V., 1998)</u>; data reduction: <u>DENZO (Nonius B.V., 1998)</u>; program(s) used to solve structure: <u>SHELXS97 (Sheldrick, 1997)</u>; program(s) used to refine structure: <u>SHELXL97 (Sheldrick, 1997)</u>; molecular graphics: <u>PLATON 98 (Spek, 1998)</u>; software used to prepare material for publication: <u>SHELXL97 (Sheldrick, 1997)</u>.